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PREFACE

This book is intended to serve as an upper-level undergraduate or introductory-level
graduate text for students of Naval Architecture or related fields. It is not a book
about design of marine vehicles, but rather addresses the question, “How can we
predict the dynamic performance of the vehicle, given its physical characteristics?”
Thus the material should be of interest to present and future designers, since
evaluation of maneuverability/coursekeeping ability and performance in waves is of
course an essential (though sometimes neglected) part of the infamous “design
spiral” in naval architecture. In addition, the material should also be useful to those
interested in simulation of vehicle performance, for training purposes or to conduct
engineering studies. The emphasis is on hydrodynamics, since these are the
predominant external forces acting on marine vehicles. Knowledge of differential
and integral calculus, elementary differential equations, and complex numbers is
presumed, as is familiarity with basic fluid mechanics and potential flow theory.
The treatment is not intended to be highly mathematical or theoretical; an outline of
the theory is given but the emphasis is on exposition of practically useful results.
To this end an attempt has been made to present results in the form of equations
(“curve fits”) rather than plots that do not lend themselves to automatic
computation. Several fairly detailed worked examples are included.

Chapter 1 provides a background for the material to follow by introducing
coordinate systems and giving the basic form of the equations of motion of a rigid
body, with origin at the center of gravity and also at an arbitrary point. (It was my
original intention to write a chapter entitled “Introduction” which would precede
this and demonstrate the importance and practical usefulness of the material to
follow; I ultimately decided that this would be superfluous as this is patently
obvious to all). Subsequently, Chapters 2, 3 and 5 consider the forces on marine
vehicles at zero speed (hydrostatics and gravity), at nonzero speed in calm water,
and in waves (zero and nonzero speed), respectively. Chapter 4 provides the
necessary background in water wave hydrodynamics and the spectral representation
of ocean waves; those who would like a more thorough treatment should consult
C.C Mei’s The Applied Dynamics of Ocean Surface Waves, Volume 1 in this
Advanced Series on Ocean Engineering. Chapters 1 — S constitute a fairly complete
coverage of the subject matter for “conventional” marine vehicles (displacement
craft and submersibles). Chapter 6 presents supplementary material on the
maneuvering and seakeeping performance of “high-speed craft”, admittedly biased
toward planing monohulls. The formulas presented there, mostly empirical in
nature, should be of interest to practitioners but may be “beneath the dignity” of
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theoreticians; however, it will be of use to them for purposes of validation of future
theoretical predictions.

One problem that arises in writing a book covering both seakeeping and
maneuvering is that traditionally, different coordinate systems have been employed
in these two areas: In almost all published works on maneuvering, body-fixed axes
are used, with the x, y and z axes pointing forward, to starboard, and downwards,
respectively. In seakeeping there is less uniformity, but usually derivations are
carried out relative to fixed axes, and the vertical axis is inevitably pointing
upwards. This is a natural choice since that is the coordinate system used to
describe the waves. The maneuvering convention is adopted here as the “primary”
coordinate system; however, most of the material in Chapter 5 is presented relative
to “seakeeping axes” with a z-axis pointing upwards. This has necessitated the use
of several fixed and moving coordinate systems, which unfortunately may cause
some confusion. The maneuvering body axes are denoted by x,y,z as usual, and
£,m.§ are the corresponding “fixed” axes. In Chapter 4, &1, are introduced; these
are fixed axes with &7 lying in the plane of the undisturbed free surface and ¢
pointing up. Finally, “seakeeping body axes” x,y,z are applied in Chapter 5; in this
case z is positive upwards and so y points to port. In problems in which
maneuvering (“steady flow”) forces are negligible, you are encouraged to work
exclusively with the seakeeping coordinates. However for simulation of ship
performance we do not in general have the luxury of neglecting steady flow effects;
so the necessary transformations are included.

In closing I would like to acknowledge the steadfast support of my wife,
Donna, and the patience of my daughters Teresa and Janet, throughout the more
than five years that it has taken me to finish the book. Completion of this project
would not have been possible without their continuous encouragement and
understanding.
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CHAPTER 1

DYNAMICS OF RIGID BODIES

In this text we will consider the ship to be a “rigid body”, that is, it is “composed of
a continuous distribution of particles having mutual distances that are inextensible”
(Shames [1961]). While all ships undergo elastic and possibly plastic deformations,
these are of much smaller magnitude than displacements of interest in maneuvering
and seakeeping studies and thus can safely be neglected in such work.

1. Coordinate systems and definitions

Two general types of coordinate systems will be useful in the following discussions:
fixed systems (relative to the earth) and moving systems, which usually have at least
one axis fixed with respect to the moving body. Right-handed Cartesian coordinates
&€ m, £ will be taken to be fixed with & and n lying in a horizontal plane and £
vertical, positive downward. The latter may seem a bit strange, but it is consistent
with the convention for body-fixed axes in maneuvering in which x is the
longitudinal coordinate, positive forward; y is the transverse coordinate, positive to
starboard; and (by process of elimination) z is “vertical” and the positive sense must
be “downward” in a right-handed system. Most marine craft have a transverse
plane of symmetry and the origin of this “body” coordinate system is generally
taken to lie in that plane. The longitudinal location of the origin is sometimes
chosen to be at amidships and sometimes at the LCG; for the moment it will be
assumed to be arbitrary. It is convenient, for the time being, to take the vertical
location of the origin to lie at the level of the undisturbed free surface when the
body is at rest. In subsequent chapters the origin will be moved to the center of
gravity of the vessel, which will greatly simplify some of the equations we will be
dealing with later.

Unfortunately there is no such universally accepted coordinate system
convention in the seakeeping literature; furthermore, the vertical coordinate is
almost always taken as positive upwards. The same coordinate convention will be
retained throughout this text and the reader should be alert to the fact that the form
of some of the equations in the seakeeping chapters may differ slightly from those
found in other references because of this.
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Why is it necessary to have two coordinate systems? In maneuvering studies
(perhaps more so than in seakeeping) the trajectory of the vessel is of interest, and
this is of course described with respect to earth-fixed coordinates; the environment
in which the vessel is maneuvering, including the shoreline, harbor, channels, etc.
are most easily represented in earth-fixed coordinates. However, the mass (inertial)
and hydrodynamic properties of the vessel are more conveniently expressed in
terms of body-fixed coordinates; in such a system, for example, the moments of
inertia of the body are generally constants®. Most of the subsequent discussions will
involve the body-fixed axes.

Unit vectors associated with the x, y and z directions will be denoted i, j, and k,
respectively. The velocity of the origin of the body axes will be expressed as

U=ui+vj+wk (1.1)

where u, v and w are commonly referred to as “surge”, “sway” and “heave” velocity
components. Similarly the angular velocity of the body axes can be written as

Q =pi +qj +rk (1.2)
where p, q and r are roll, pitch and yaw angular velocity components.

The origins of the fixed and moving systems will be denoted O and o, and the
position of o with respect to O is given by

R, = &I +1J +5,K (1.3)

SO

and the position of an arbitrary point is
R =&l +nJ +K (1.4)
A location of a point within the body with respect to o is given by

p=xi+yj+zk (1.5)

# Of course, nearly all marine vehicles consume fuel and carry passengers who move around; thus neither
mass nor moments of inertia are really constant; variations in these quantities will not be considered in
this text.
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Forces and moments about o will be expressed as follows:

F=Xi+Yj+7Zk (1.6a)
(which is why we used Greek letters for the components of R!) and

M = Ki + Mj +Nk (1.6b)

A complication associated with using body-fixed coordinates is that the unit
vectors change direction as the body moves; thus, when differentiating U (for
example) with respect to time we will obtain terms associated with these direction
changes. This will be addressed in the following section.

2. Angular Displacements and Coordinate Transformations

Specifying the location of o with respect to O is straightforward: the location is
given unambiguously by the vector R. What about the orientation of the xyz system
relative to &n{? It seems natural to express the orientation in terms of angular
displacements.  Starting with the two systems parallel, consider the orientation
produced by first rotating xyz about 1| through an angle of -45 degrees. Axes x and
z move to x' and z' as shown on Figure 1.1a. Then rotate the system 90 degrees
about { to produce the orientation x" y" 2" shown on Figure 1.1b. In this final
orientation, the x" axis lies in the M{ plane, and is at an angle of 45 degrees,
downward.

X

/ X
z

Figure 1.1a Figure 1.1b
Now, starting from the initial position, reverse the order of the rotations: Rotate 90

degrees about { (Figure 1.2a) and then -45 degrees about 1 (Figure 1.2b); the
resulting orientation is quite different than that obtained by the first set of rotations.
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90 deg

L

1
Z,Z '

z,Z
Figure 1.2a Figure 1.2b

Thus finite rotations are NOT commutative and although they have a magnitude and
a direction, they are not vector quantities. However, if the rotations are
infinitesimal, it can be shown that they do satisfy the commutative law of addition
and can be considered to be true vector quantities. Thus the angular velocity vector
Q can be expressed as the time rate of change of the vector of infinitesimal
rotations.

It is necessary, however, to employ finite rotations to specify the angular
orientation of the body (body-fixed axes) with respect to the fixed reference system.
Given that rotations about more than axis will be required, and that such operations
are not commutative, it is important to adhere to the established convention, which
(at least in aeronautics and ship dynamics) consists of a modified set of “Euler’s
angles” ¢, 0, y (Bishop [1967]). If the body axes are initially parallel to the fixed
axes, the actual position of the body axes is obtained by the following three
rotations:

1. A yaw y about the  (or ) axis: x,y,z=>xY, 2
2. A pitch 0 about the y' axis: x',y',z=>x",y,z'
3. Aroll ¢ about the X" axis: x",y, z'=>x", y", 2"

to bring the body to its actual orientation. Note that these rotations are NOT about
mutually orthogonal axes.
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How can we obtain the fixed-axes coordinates of a point P whose body-axes
coordinates are (X, y, z)? This can be conveniently done using a “transformation
matrix” [T]. Let {p}and {R} denote column vectors whose elements are

X £
Pl=iyp Ri=in
z g
then
{R(P)} = {R}+ [THp(P)} (1.7)
where

6 coswsmesmd) . cos\ysinfcos¢

COSYCEOSY " _in ycos¢ +sinysing

e smwsmesm¢ sinysinBcos¢ (1.8)
[T]— siny cosd . +coswcos¢ . —cosysind
~sin@ cosBOsind cosBcosd

A property of a transformation matrix is that its inverse is equal to its transpose;
thus the inverse of [T] can be obtained by interchanging elements across the main
diagonal.

3. Velocity and Acceleration

Now we are in a position to discuss the derivative of a vector quantity such as R.
Consider a change in the location of P to P', say, due to rotation of the body about
an axis through O. This can be expressed by three mutually orthogonal rotations
d®, d®, d¥ about the £, n) and £ axes, respectively. Then it can be shown that

R(P) =R(P) + (£d® — n dP) + (£ d¥ — £ dD)T + (n dD — £ dO)K  (1.9)

where &, 1 and £ are coordinates of P. Differentiating with respect to time yields,
after some rearrangement,

ER R R
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or

4R _o.R (1.11)

where

Q —921+d—®J+le

= — K =®1+6J+¥K (1.12)
dt  dt  dt

is the angular velocity expressed in terms of its fixed-axes components.

The time rate of change of a vector fixed in the body, say the position vector
p(P), can now be determined. Since

P(P)=R(P)-R,
we can differentiate with respect to time to obtain

dp _dR _dR, O«R-QxR,=0Qx(R-R,)=Qxp (1.13)
dt dt dt
The axis of rotation was initially assumed to pass through O but in fact it can be

shown that this result holds regardless of the axis of rotation or the orientation of Q
(Shames [1961]).

The velocity of any point in a rigid body can be expressed as the superposition
of the velocity of any other point in the body, and a velocity due to rotation about
an axis passing through this other point. It is natural to choose o as the “other
point”; thus

UP)=U + Qx p(P) (1.14)
relative to the fixed frame. Note that U(P) can be resolved into components in
either the fixed or moving frame; the components in the two frames are related by

the transformation matrix [T], Eq.(1.8).

For completeness, we will note that if point P is not fixed in the body, its
velocity can be expressed as

U(P)=U + Uy,(P) + Qx p(P) (1.15)



1. Dynamics of Rigid Bodies 7

where U,y, is the velocity of P relative to the moving frame.

Another important relationship can be obtained from these results. The
expression

applies not only to a position vector p but also to any vector fixed in the body. In
particular it applies to the unit vectors i, j and k:

4 _ox dJ

=Qx j,——QXk (1.16)
dt > dt dt

The acceleration of point P relative to the fixed frame is determined by
differentiation of U(P), Eq. (1.15), with respect to time:

du(p) dU+deyz(P) daQ

% p(P) + Qx dP() (1.17)
dt ot dt  dt

The first term in Eq. (1.17) is the acceleration of o with respect to O. The second
term, the time rate of change observed in the fixed frame of the velocity relative to
the moving frame, can be rewritten as follows:

dUm(P):(deyx(P)j +QxU,,(P) (1.18)
dt d ),

And the last term in Eq. (1.17) can also be rewritten in a more convenient form:

Qx d(;(tP) - Qx[(%} +Qx p(P)J = Qx [nyz(p)+gx p(P)] (1.19)

Combining Eqgs. (1.17)-(1.19), and using a dot to denote time derivatives, we obtain
U(P) = U+U,,(P)+2Qx U, (P)+ Qxp(P) + Qx (Qx p(P)) (1.20)

Remember that velocities and accelerations with the xyz subscript are relative
to the moving coordinate system, and the other velocities and accelerations are with
respect to the fixed frame and so could be referred to as the “absolute” reference
frame. In most of the material that follows, we will be concerned with points which
are fixed in the moving frame, U,, = U 4+ 0.
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A final exposition that should be made in this section concerns the relationship
between the rates of change of the Euler angles, ¢,6,y, and the components of

angular velocity relative to the body-fixed axes, p, q, r. Note that the
“corresponding” components are NOT equal, principally because the Euler rotations
are not taken about the orthogonal body axes, but about axes which are defined
during the rotation process. The relationship can be obtained by relating unit
vectors along the Euler rotation axes to the body-axes values; the result is:

p] [1 0 -sin® ][¢

{Q}=:q}=]0 cos¢ singcosd {0 (121

T 0 -sind cosdcosO (Y

The matrix in this equation is not strictly speaking a transformation matrix since the
“Euler axes” are not orthogonal (so its inverse cannot be determined by the method
described above). Inverting Eq. (1.21) gives

| [1 singtan® cosptand](p

. _ (1.22)
0:=|0 cosd -sind |1 q

v/ 0 sindsecO cosdsechH (|1

4. Equations of Motion: Origin at the Center of Mass

Now that we have established expressions for the acceleration of a rigid body we
can write the equations of motion, which will be the starting point for all of our
subsequent studies of marine craft dynamics. When discussing the dynamics of a
rigid body it is advantageous to begin by assuming that the origin of the body
coordinate system is at the center of mass of the body. The reason for this is the
fact that the center of mass of any system of particles acted on by any number of
external forces accelerates as if it were a particle with the mass of the system, acted
on by the resultant of the external forces. Thus “Newton’s law” for a particle can be
applied directly to the rigid body if the reference is at the center of mass.
Furthermore, we can then write separate force and moment equations since we don’t
have to consider the moment produced by the resultant force in the moment
equation (it is zero). The form of the equations (particularly the moment equation)
1s much simpler if the origin is at the center of mass.
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The center of mass is not always the most convenient choice for the origin of
the body coordinates, however. In some cases the exact location of the mass center
(or center of gravity, CG) may not be known when calculations are being carried
out, such as in the preliminary stages of design. In other cases one may wish to
consider the effects of changing the CG location without recalculating all of the
terms in the equations of motion. Finally, other considerations may dictate the
choice of the origin; this is true in seakeeping studies, where the origin is almost
always taken to be at the undisturbed free surface level. So we will also present the
equations written with respect to any origin fixed in the body.

The equation for linear acceleration of the center of mass has the familiar form
F=mU (1.23)

relative to the fixed reference frame, which will be assumed to be an “inertial
reference frame”; F is the resultant of all external forces. Recall that an inertial
reference frame is by definition a frame in which this equation holds “with an
acceptable degree of accuracy” (Pytel and Kiusalaas [1994]). Strictly speaking, this
means that the reference frame cannot be accelerating; for most maneuvering and
seakeeping studies, “acceptable accuracy” is obtained by using an earth-fixed
inertial reference frame (which will be done for the remainder of this text).

It will generally be more convenient to work with accelerations in the body
reference frame. We can use the rule established above in Eq. (1.14) to express U,
the acceleration of the origin, in terms of body-axes acceleration components:

U=(0),+Qxu (1.24)

Plugging into Eq. (1.23), and taking components, we obtain

X:m(u+wq—vr) 125
Y = m(V + ur- wp) (1.25)

Z=m(w+vp—uq)

where u, v, and w are the body axes components of U and the time derivatives
U,V,W are evaluated relative to the moving frame.

The moment equation, or “moment-angular momentum relationship”, can be
written as follows:

M(P) = h(P) + U(P) x mU (1.26)
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where M(P) is the resultant of the applied moments (including moments associated
with applied forces) about some point P, and h(P) is the angular momentum of the
body about P, relative to the fixed frame. If the reference point P is taken to be the
center of mass, the second term vanishes and we are left with

M=h (1.27)
or

M=h_ +Qxh (1.28)

if h is expressed relative to the body coordinate system (this again follows from the
rule for evaluating the time derivative of a vector fixed in a moving body,
developed above).

The angular momentum is defined as follows:

h= 'fpx(pr)im (1.29)

v

where the integral is taken over the volume of the body. If we write the vectors p
and Q in terms of their body-axes components and write out the cross products, the
components of the angular velocity vector can be expressed as follows:

hy :Dj(yz+zz)dm 7qJ.Xy dm —rIxz dm
v v v

hy=—pIxy dm +qJ.(zz+xz)dm—x'Jyzdm (1.30)
v v v
h, = —p‘{xz dm 7qJ‘yz dm +r.[(x2+y2)dm
v v v
or

{h} =[1]{Q} (1.31)

The elements of the inertia tensor | are defined as
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i 1
J(y2+zz>im - J-xydm - J.xzdm _ ~ _
v Y v I, - Ixy -1,
[T]: - nydm I(Z?- +x2}1m - Jyzdm = —Txy Tyy _Iyz (1.32)
v v v i, -1, 1,
- sz dm - Iyz dm J'(Xz +y? hm xz vz
L v v v |

where the bar denotes that the origin is at the center of mass. The diagonal and oft-
diagonal elements are known as moments and products of inertia, respectively.
Remember that we have for the moment taken the origin of the body axes at the
center of mass; the expression for the inertia tensor applies for this choice of origin
only.

Most marine vehicles possess at least one plane of symmetry, namely the xz
plane. In this case, if the mass distribution within the vehicle can also be assumed

to be symmetrical, the products of inertia I = Izy and I Iyx are zero. This is
because for every positive contribution (yz dm) or (xy dm) to the integrand, there is
an equal but opposite contribution from the mass element on the opposite side of the

symmetry plane. In fact, the third pair ixz = izx is also often assumed to be zero,
which is strictly true only for craft having two planes of symmetry such as some
double-ended ferries.

Now let’s plug these results into Eq. (1.28):

i j kK
M = ([op-Tyd T Ji+ (Lp+ 1,4 - Lb)i+ CLup-T 4+ Lk +[p q r| (133)
h, h, h,

or, writing out the components,

K = Lp + Ty (G =pr)+ T+ pa)+ 1, a2 = 2) # (1, — 1, Jar + mlyg (9 + vp — uq)— 2 (v + ur - wp)]
M=1,4+1,(—pq)+1,(p+qr) +sz(r2 p2)+ (I = I )rp + mizg (0 + wg = vr)— xg (W + vp —uq)]

N=Izzr+sz(p_'qr)+I (q+rp)+lxy(p q2)+( —Ixx»q+me(V+ur Wp) yG(u+Wq VI')]
(1.34)

where, as in the force equation, the time derivatives are evaluated in the moving
(body) coordinate system. An obvious advantage of using body-fixed coordinates
here is that the moments and products of inertia are constant, so we don’t have to
consider dI/dt when evaluating the rate of change of angular momentum. The price



12 The Dynamics of Marine Craft

we pay is the addition of many additional terms produced by the rotating reference
frame; however , as previously mentioned, we can use symmetry considerations to
eliminate many of these additional terms.

5. Equations of Motion: Origin at an Arbitrary Point

To write the force equation with respect to an arbitrary origin fixed in the body, we
will employ the expression already developed relative to the center of mass, and
insert an expression for the acceleration of the center of mass relative to the new
origin. Denoting the position of the center of mass by pg in the body system (the
subscript indicates “Gravity” as in “center of gravity” which is used interchangeably
with “center of mass” in many engineering applications), and noting that Ug,,, =
U ox 0 (the center of mass is fixed in the moving frame) we have
Ug =U+Qxp, +Qx(Qxpg)

or

Ug = (U),, + @x U+ Qxp; +Qx(Qxpg) (1.35)

Substituting Eq. (1.23), writing out components, and carrying out the cross-products
yields

m[ﬁ+wq - vr —xG(q2 +r2)+ yolpq — i)+ zg (pr +q)]
m[\'/+ur - wp —yG(r2 +p2)+ zG(qr —]:'))+ xG(qp +f)] (1.36)
=m[vi/+vp - uq ‘ZG(P2+q2)+XG(rP—CI)+YG(rq+I5)]

X
Y
Z

where (X, Yg, Zg) are the coordinates of the center of mass.

It is again emphasized that all terms in this expression pertain to the body-fixed
coordinate system. Consider for the example the side force on a ship executing a
steady turn. “Steady” implies that the ship’s velocity and angular velocity are
constant; relative to body axes, this means that all velocity and angular velocity
components are constant (only u, v and r are nonzero for horizontal-plane motions)
and so all acceleration componentsi, V... are zero in a steady turn! The centripetal
acceleration, required for uniform circular motion, has seemingly disappeared, but
inspection of the force equations reveals that it is indeed present, resolved into
body-axes components: a,. = ur. The other terms on the right-hand side of the Y
equation represent “centripetal forces” and inertial reaction forces induced by
acceleration of the center of mass relative to the origin (Abkowitz [1964]).
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Now for the moment equation. If we again start with the equation written with
respect to the center of mass, we have to add the moment due to the resultant force
which “acts” at the center of mass:

M=Mg+psxF (1.37)
The moment equation , Eq. (1.28), could then be written as

M = (h,,, + Qxh)_+pg xF (1.38)

where the angular momentum is expressed with respect to the original body axes
(with origin at the center of mass). The assumption will now be made that our new
body axes are parallel to the system we originally considered; this permits us to
write the angular momentum in terms of the new coordinate system by using the
“parallel axis theorem” and “parallel plane theorem” for the moments and products
of inertia, respectively. This assumption does not restrict the applicability of the
results since the orientation of the original body axes was arbitrary (the convention
that “x points through the bow”, etc., was not necessary in the subsequent
derivations). The parallel axis theorem and parallel plane theorem can be stated as
follows:

I =La—m(ys® +z%); Txy =Ly + mxgys (1.39)
with similar expressions for the other elements.

Writing out the components of the vectors in Eq. (1.38), inserting the
expressions for the force components (Eq. (1.36)) and for the moments of inertia
(Eq. (1.39)), and carrying out the cross products, yields the following set of
equations:

K=Ip+L (q—pr)+L{f +pg)+ Iyz(q2 _r2)+(lzz - Iyy)qr+ y(W+ vp—ug) - z5(v +ur—wp)
M=1q+L,(F —qp)+ L (p+qn)+ sz(rz —p2)+(lxx — I, rp+ iz (i + wq—1v) - x5(W+ vp—-ug)] (1.40)
N=Li+1,(p-rq+ L (q+m)+ Ixy(p2 —q2)+(Iyy - Ixx)pq+ mxg (¥ + ur—wp) - yg (o + wg—rv)]

These three equations, together with the corresponding set of force equations,
constitute the most general form of the equations of motion relative to a body-fixed
coordinate system, if the mass and mass distribution does not change in time".

b Additional terms accounting for changing mass and moments of inertia can be found in Strumpf
[1960].
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6. A Third Coordinate System

In our study of the maneuverability of high speed craft we will need yet another
coordinate system, the origin of which is fixed in the body but which remains in a
given orientation with respect to the earth-fixed system. Thus in this new system,
the coordinate axes can change orientation with respect to the body. For
convenience we will choose the origin of this system to be at the center of mass of
the craft, which isn’t absolutely necessary but which will save writing many terms.
It will be necessary to define a new quantity ® to represent the angular velocity of
the body, with respect to the fixed axes; Q is the angular velocity of the body axes
as before. Now the angular momentum of the body is

th} =110} (131)
and the moment equation is

M=h,,+Qxh (1.28)

in terms of the body coordinates as before. Now, however, the moments and
products of inertia are functions of time; this must be accounted for when evaluating
h. Plugging in the expression for h, Eq. (1.30), writing out components, and
evaluating the cross product we obtain

K:%G o, -L,o,-1,0 )—r(iyycoy—fyza)z—f o )+q(1umz—fxzo)X -1,0,)

XXX Xz 0z Xy X yz Uy

M= %(Tyycoy —Tyza)z —Txymx)—p(l o,-1,0, —fyz(oy)+ r(f,‘x(oX —Txymy —szmz) (1.41)

zz°7z

N= i(i © —szmx -1 o )— q(ixxcox —Txyu)y —szmz)+ p(fyycoy —Tyzmz —Txyu)x)

t zzVz yZ
The force equations are the same as those for axes fixed in the body with origin at
the center of mass, Eq. (1.25). Note that when @ = €, indicating that the axes move
with the body, Egs. (1.41) reduce to the body axes expressions, Eqs. (1.34).



CHAPTER 2

CALM WATER BEHAVIOR OF MARINE VEHICLES
AT ZERO SPEED: HYDROSTATICS

The discussions in Chapter 1 have focused on the “right-hand side” of the equations
of motion, the inertia terms. In much of the remainder of this book, we will be
concerned with evaluation of the left-hand side, which contains the resultants of the
applied forces and moments. Some of these, such as weight and buoyancy, are easy
to determine; others are much more difficult and we must resort to various
approximate methods.

The applied forces and moments which we will consider include gravitational
(weight), hydrodynamic (including hydrostatic), and aerodynamic forces; other
forces such as those due to mooring lines will not be specifically addressed but can
easily be incorporated. Hydrodynamic forces can be subdivided into hydrostatic
forces (buoyancy); forces associated with steady motion (including currents) such as
drag and lift; forces arising from acceleration through the water (“added mass™);
“control” forces exerted by rudders or other steering devices; thrust generated by the
propulsion system; and wave-induced forces. Thus the applied force and moment
resultants can be expressed in terms of their constituents:

F=Fgpt+tFs+Faqy+tFct+tFp+Fy+F,
2.1)
M=MG_B+M5+Mm+Mc+Mp+Mw+MA

where the subscripts denote “gravity and buoyancy” (we will see that it is
convenient to group these together); “steady”; “added mass”; “control”;
“propulsion”; “wave-induced”; and “aerodynamic”, respectively. “Steady” may be
a misnomer since these forces and moments (as well as most of the others) are
generally functions of time; however a “quasi-steady” approach is often employed

in their evaluation.



16 The Dynamics of Marine Craft

1. Gravity and Buoyancy

We will consider in this chapter the simplest case of a body floating at zero speed.
A body-fixed coordinate system with origin at amidships on the static waterplane
will be adopted. In this equilibrium position the xy plane will be assumed to be
horizontal; the x-axis points forward, the y-axis to starboard, and the z-axis
downward as described in the previous chapter. In addition, the body system will
be assumed to initially coincide with the fixed &, n, £ axes (thus the &, m plane
corresponds to the undisturbed free surface).
The acceleration of gravity in the fixed coordinate system is
g=gK

The corresponding expression relative to body axes can be obtained using the
transformation matrix, which in this case is the inverse of Eq. (1.8):

{82 = (T} {8}

yielding
Exyz = —g Sin0 i + g sing cosO j + g cosd cosO k
An expression for the gravitational force relative to body axes can now be written:
Fg xy, = —mg sind i + mg sin¢ cosO j + mg cos¢ cosb k (2.2)

The moment relative to body axes is given by

Mgy, = pg x Fg
or

Mg yy, = mg [(yg cos$ cos 6 ~ zg sing cosB)i + (—zg sind — xg cosd cosB)j (2.3)
+ (Xg sing cosO + yg sinf)k]

The hydrostatic force is determined by integration of the hydrostatic pressure,

p=peC

over the submerged portion of the hull surface:
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F, = ”pndS =pg ”Cnds (2.4)

where n is a unit normal to the hull surface, directed out of the fluid and so into the
body, and S denotes the submerged or “wetted” surface; recall that the subscript “B”
denotes “buoyancy” and the scalar p is the water density. The corresponding
expression for the moment is

M, =pg [[¢[(R(S)- R)xnks (2.5)

where R(S) is the position vector of a point on the surface S; recall that R denotes
the position of the body axes origin). We can simplify these expressions somewhat
by applying Gauss’ theorem from vector calculus,

q’jf ndS = jj Vfdv (2.6)
s’ v

where S 1s a closed surface and V ' is the enclosed volume; f is any scalar function.
The vector V, in another unfortunate duplication of symbols, denotes the gradient
operator. We can form a closed surface by including the projection of the free
surface through the body; this has no effect on Eq. (2.4) since the hydrostatic
pressure is zero at the free surface (£ = 0). Application of Eq. (2.6) to Eq. (2.4) then
yields

F, = -Kopg [[[dV = —pgVK 2.7)

which is a statement of Archimedes’ principle, that the buoyant force is equal to the
weight of the displaced fluid. The sign reversal is necessary because we have taken
the normal direction into the body; Gauss’ theorem requires an outward-directed
normal.

An alternate form of Gauss’ theorem, applicable to the moment equation, is
[[nxQds =[[[vxQav (2.8)
s’ \'A

where Q is a vector function. Application of Eq. (2.8) to Eq. (2.5) yields
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M, = -pg [[[[(n(®)- ) - E@)-ephv (2.9)

where P is a point within the volume V. The center of buoyancy, relative to the
fixed axes, is

jvij dv

Ry=—"—

so that Eq. (2.9) can also be written in the form
Mg = —pgV [(ns - NI - (& - E)J] (2.10)
which, by comparison with Eq. (2.7), can be written in terms of the buoyancy force:
M, =(R, ~R)xF, (2.11)
Relative to the body axes, the hydrostatic moment is

M, =P, xF, (2.12)

xyz

where pg represents the body-axes location of the center of buoyancy,

i

pdVv
(2.13)
A%

Ps =

The body-axes buoyancy force is obtained by application of the inverse
transformation matrix to Eq. (2.7):

Fayy. =[T1" Fg = pgV (sin i — sing cosO j — cosd cos6 k) (2.14)
Inserting Eq. (2.14) in Eq. (2.12) and carrying out the cross product, we obtain

Mgy, = —pgV [(¥s cosd cos 6 — zg sin cosO)i + (—zp sind — xg cosd cosb)j (2.15)
+ (xp sing cosb + yp sinB)k]

Equations (2.14) and (2.15) should look very familiar; if they do not, you
should re-read the paragraphs above on gravitational force and moment! The
expressions are identical except for the presence of “~pV” in place of “m” and the
coordinates of the center of buoyancy in place of those of the center of mass. For
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this reason it is convenient to combine these expressions to obtain the “weight and
buoyancy” force and moment:

Fsp=g(m - pV )(~sinb i + sin cosO j -+ cosdh cosb k) (2.16)

Mg.p = g {[(myg — pVyp)cos¢ cos 6 — (mzg — pVzp)sing cosb)]i
— [(mzg —~ pVzp)sind + (mxg — pVxp)cosd cosd)]j (2.17)
— [(mxg ~ pVxp)sing cosB + (myg — pVys)sin6)]k}

in the body coordinate system; since we will be dealing almost exclusively with
forces and moments in the body system we will henceforth drop the “xyz” subscript
on these quantities.

For floating bodies, in the absence of other forces and moments, a state of
“hydrostatic equilibrium” must exist®. This means that

Fop=Mgp=0

in the “static floating condition”, {=¢=6=0. Equations (2.16) and (2.17) then give
the conditions for static equilibrium:

m=pV (2.18)
Y = ¥B; Xg = X8 (2.19)

Eq. (2.18) is becomes a restatement of Archimedes’ principle upon multiplication of
both sides by the acceleration of gravity. Eq. (2.19) states that the center of
buoyancy and the center of gravity must be located along the same vertical line.

Note that the submerged surface S and volume V in Egs. (2.4) — (2.18) are the
instantaneous values which are, in the presence of other “perturbing” forces,
generally functions of time. It is convenient to express these quantities as the sum
of the static values and increments due to the motions of the vessel. Thus we will
define Vy , S, as the static values corresponding to the volume and surface area of
the body below the &n plane; thus

Vo=m/p (2.20)

? This is not necessarily true for fully submerged bodies, as we will see.
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2. Small Perturbations

In most theoretical treatments of maneuvering and wave-induced motions, the
motions are assumed to consist of small perturbations from an equilibrium
condition. In maneuvering, the equilibrium condition is usually straight-ahead
motion with constant velocity, and the perturbations are in the velocity components;
in seakeeping, the equilibrium condition is generally zero speed in calm water. The
limitation to small perturbations might seem to be overly restrictive but we will see
that the resulting “linear” theories work remarkably well for many practical
applications.

The assumption that the motion or velocity perturbations are small implies that
the equilibrium condition is stable; otherwise the motions increase (usually
exponentially) in time. We will discuss the conditions for stability below.

The transformation from the body-fixed to the earth-fixed coordinate system
was given by

{R(P)} = {R}+ [T]{p(P)} (1.7

where the transformation matrix [T] is defined in Eq. (1.8). If the motions of the
body relative to the reference static free-floating position are small, the sines and
cosines of the Euler angles can be replaced by the angles themselves and 1,
respectively; the transformation matrix then takes the form

WEIRY w9¢+1 wo-0

—e§¢?1

Neglecting the products of the (small) angles, we have, to first order in the angular
displacements,

_______ (2.21)
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Using Eq. (2.21), it can easily be shown that Eq. (1.7) can be written in the form
R(P)-R=p+@®xp (2.22)
where the “small angular displacement vector” @ is defined as
®=¢i +0j+ yk (2.23)

Thus although the angular displacement defined by the Euler angles is not in
general a vector quantity, it behaves as a vector (i.e., follows the rules of vector
algebra) if the displacements are small.

What we will next examine is the behavior of the buoyancy force and moment
when the body is perturbed from its equilibrium position. For submerged bodies,
Egs. (2.16) and (2.17) can readily be applied, even for large motions, since the
buoyancy and center of buoyancy are constant. However for floating bodies, as we
have already mentioned, the buoyant force and moment depend on the instantaneous
position of the body. The hydrostatic force can be expressed as the sum of the
equilibrium buoyancy, given by pgV, and the weight of the additional water
displaced due to the body motions, represented by the hatched area in Figure 2.1.

z

FIGURE 2.1 Additional displacement due to small motions

For small perturbations, the volume of fluid above the xy plane is

8V = [[c(s)ds = [[(¢+z-0x +oyks (2.24)

where Awp is the static waterplane area; {(S) refers to the ¢ coordinate of a point on
the surface of integration. This can be written in a somewhat simpler form if we
define the waterplane moments (Newman [1977]):
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S, = ”de; S, = ”de (2.25)
Aup Awe
Combining (2.24) and (2.25) we obtain
dV=CAwp-06S,+¢8S, (2.26)
where we have used the fact that z = 0 on the (displaced) waterplane.

We will now write the gravity-buoyancy force in terms of the small
perturbation from equilibrium. Plugging the expression for the total displaced
volume,

V=V, +8V
in Eq. (2.16), and using Egs. (2.20) and (2.26):
Fos=pg(-CAwp 08,9 S, )k (2.27)

where the sines and cosines in Eq. (2.16) have been replaced with the arguments
and 1, respectively, and products of the small displacements have been neglected as
before.

We will express the hydrostatic moment as the sum of the static equilibrium
value, given by Eq. (2.15) with V, substituted for V and with the understanding that
the center of buoyancy coordinates correspond to this equilibrium condition, and the
contribution of the additional motion-induced buoyancy:

M; = Mg, + OMp

The moment increment §Mp is found by integration of the moment induced by the
element of volume of fluid above the xy plane (Figure 2.2). The force dFy on the
elemental volume is given by

dFg = —pg dV K= —pg{(S) dx dyK = —pg({ — 6x + dy)(-0i + ¢j + k)dx dy (2.28)

where the small-perturbation transformation matrix, Eq. (2.21), was used to express
the unit vector K in terms of body axes. The moment induced by this elemental
buoyancy force is then

dMB =pXx dFB



2. Calm Water Behavior of Marine Vehicles: Hydrostatics 23

or

dMp ~ —pg{(Cy — Oxy + 0yD)i + (-Lx + 6x ~ dxy)j}dS  (2.29)

where terms involving products of the small motions ¢, ¢ and 6 have been
neglected. Integrating Eq. (2.29) over the static waterplane area, and defining the
additional waterplane moments (Newman 1977]):

S. = [[x?ds; s, = [[ydas; s, = [[xyds (2.30)
Awp

A Ayp
we obtain the following expression for the total hydrostatic moment increment:
8Mp = —pg{(C Sy -8 S,y + ¢ Sy)i + (=L S +0 S - ¢S} (231
Adding the contribution 8Mp to the total gravity-buoyancy moment in Eq.

(2.17), and applying the equilibrium conditions [Eqs. (2.18) and (2.19)] yields the
following expression for the total gravity-buoyancy moment for small motions:

Mg = —pg{[Vo (ZG - ZB)d) + C Sy -6 Sxy + ¢ Syy]i (2'32)
+ [Vo (ZG - ZB)e - C Sx +6 Sxx - d) Sxy].]}

FIGURE 2.2 Moment induced by volume element
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3. The Restoring Force Coefficient Matrix

Note that each term in the gravity-buoyancy force and moment expressions is
linearly proportional to the heave, pitch or roll perturbations. It will be convenient
to express the force and moment in matrix form:

XG-B
Ys-n
Zo-B | _ "[CJ
Kg-B
Mg_p
Ng-p

(2.33)

€ O S Jx I3 Jux

Examination of Eqs. (2.27) and (2.33) shows that the matrix C has 9 nonzero
elements:

Cs3 = pgAwp Csi = pgS, Cis = —pgSy
Cas = pgS, Cus = pg[Vo(z6-2z8)+Syy]  Cas =—pgSyy
Cs3 = —pgSy Css = —pgSyy Css = pg[Vo(zc—28)+Sx]

These results apply to any floating body, initially in a state of hydrostatic
equilibrium, which undergoes small motions. Because the diagonal terms are
negative (except in the case of a very high center of mass; more on this later),
indicating that the gravity-buoyancy force and moments oppose the perturbations,
the elements of the matrix C are often referred to as “restoring force (or moment)
coefficients”.

The center of flotation (CF) is defined as the point on a freely-floating body
which undergoes no vertical motion under the action of horizontal moments. This
point lies at the centroid of the waterplane:

Aj xdS < Aj [yds S o0
— wp - __X . — Dwe = Y .
Xer = ”dS AW‘p 5> YeF des AW‘p
Awp Awp

(and zcg = 0). If the origin were to be placed at the CF, the waterplane moments S,
and S, would be zero, eliminating the “hydrostatic coupling” between the heave
motion and the pitch and roll motions.

Most marine vehicles possess at least one plane of symmetry. For a body with
a vertical plane of symmetry, which we will assume coincides with the xz plane, the
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waterplane moments S, and S, are zero. This eliminates four of the nine nonzero
coefficients of the C matrix. Thus the components of the gravity-buoyancy force
and moment, applicable for small perturbations from equilibrium of bodies with
port-starboard symmetry, are:

Zg.p = —pgAwp § + pgSx 6 = —pgAwp(C— xcrb) (2.352)
Ko.s = ~pg[Vo(zc — zp)*Syy] ¢ (2.35b)
MG.B = _pg[VO(ZG - ZB)-*_Sxx] 9 + png C (235C)

Eq. (2.35a) states that if we displace the body a small amount £ (in the positive
direction, i.e. downward) without a change in trim, there will be an upward
(restoring) force equal to the weight of the (approximate) additional volume
displaced. If in addition a pitch perturbation is imposed, the magnitude of the
restoring force can be increased or reduced depending on the direction of the pitch
change and the location of the CF. For example, it is obvious that if the origin is at
the stern of a vessel (xcr is positive), the restoring force will be reduced if the bow
is allowed to rise, and increased if the bow is forced downwards, for a given heave
displacement.

Eq. (2.35b) is generally written in terms of a “transverse metacentric height”
GMT :

Kgp=-AGMr¢ (2.36)
where A is the “displacement”
A=pgVy
By comparison of Egs. (2.35b) and (2.36),

S
GMr =zG - 7p + —=* (2.37)
Vo

The quantity (GM1¢ ) can be thought of as the lever arm of the buoyant force
relative to the center of mass.

Similarly, Eq. (2.35¢) can be written in terms of a “longitudinal metacentric
height” GM,,
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GM =76 - 75 + 2% (2.38)
Vo
so that
Mg = -AGM_ 6 + pgAwpxcr § (2.39)

4. Hydrostatic stability

We have discussed the necessary conditions for hydrostatic equilibrium to exist.
Under what conditions will equilibrium persist? To answer this question, we will
examine the behavior of the vessel subsequent to a small perturbation from the
static floating equilibrium condition. The equilibrium condition is said to be stable
if the small disturbance tends to diminish in time; the condition is unstable if the
disturbance grows in time. The intermediate condition is neutral stability, in which
the disturbance persists, neither increasing nor decreasing in time. The small
perturbation equations developed above can be applied in an investigation of
hydrostatic stability; however we will also need the full equations of motion
developed in the previous chapter.

The equations of motion relative to body axes with arbitrary origin, Egs. (1.36)
and (1.40), will be used. The origin will be assumed to lie in the xz plane at the
equilibrium waterline, as in the discussions above. In addition to the assumption of
port-starboard “geometric” symmetry of the hull, we will assume symmetry of the
mass distribution about the xz plane as well; thus

V6= Ly=1,=0 (2.40)

With these assumptions, and neglecting products of the small velocity
perturbations, the equations become

X =m(i +249)

Y=m(\'/—zG1'o+fo)

Z=m(w - x,q) (2.41)
K=1_p+I,i-mzg¥

M=1_q+m(zgi-xgW)

N=[, r+1_ p+mxgv

In addition, we will need the relationship between the rates of change of the
Euler angles and the angular velocity components p, q and r. From Eq. (1.21),
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substituting the angles and 1 for the sines and cosines and neglecting products of the
small angular displacements and velocities, we obtain simply

p=9¢
q=0 (2.42)
r=\

Similarly, from Egs. (1.7) and (1.8), for small perturbations,
u=¢
v=m (2.43)
w=_

We will assume that the body has somehow been displaced from its equilibrium
position, by a small amount (&, 1, £, ¢, 6, v), and examine its subsequent behavior
using Eqgs. (2.41). Inserting the gravity-buoyancy force and moments, Eqs. (2.35a),
(2.36) and (2.39), in Eq. (2.41), and using Egs. (2.42) and (2.43) yields the
following set of simultaneous linear, homogeneous, second-order differential
equations:

mf +256)=0

m(C - XGé)= —PgAwpl + pgA wpxcpd

Iyyé +mzgE - mxgl = ~AGM_ 6 + pgA wpxcrG (2.44)

m(ﬁ -zGh+ XG\T/)= 0
Lix¢ + Ly ¥ - mzgi = ~AGMr¢

L,V + 1,6 +mxgH=0

Note that no other applied forces or moments have been included in the
development of Eqs. (2.44); in fact we will see that other hydrodynamic forces,
associated with the waves which are radiated from the body as it oscillates, do act;
however neglcctin% these effects will not impact our conclusions regarding
hydrostatic stability”.

Note the order in which Eqs. (2.44) are listed: X, Z, M; Y, K, N. The first
three equations involve only &, £ and 6 and their derivatives, and the second three
involve only 1, ¢ and y and their derivatives. Thus the equations for (small) surge,

® These effects are important in predictions of the time history of the motions, however, as we will see in
the next chapter.
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heave and pitch motions are uncoupled from the equations governing (small) sway,
roll and yaw motions for bodies having port-starboard symmetry. This permits us to
solve two sets of three simultancous equations rather than one set of six
simultaneous equations.

The solution of second order linear homogeneous differential equations with
constant coefficients is well known. For example,

E(t) = &ce™ (2.45)

with similar expressions for the other independent variables; the coefficients & are
constants depending on initial conditions. Stability of the motions is determined by
the signs of the exponent factors o,. For the equilibrium condition to be stable, the
o, must all be negative; the condition is unstable if any of the oy is positive. Zero
values indicate neutral stability.

The o, may also be imaginary or complex, corresponding to oscillatory motion.
In the latter case stability is determined by the sign of the real part, and the
imaginary part corresponds to the frequency of the oscillations.

We will first examine the equations governing sway, roll and yaw motions, the
fourth, fifth and sixth of Eqs. (2.44). Substitution of the expressions

n(t)=n,e%; o(t) = 6,e%; y(t) =y, e

into these equations yields three simultaneous equations for the coefficients 1y, ¢y,
and y, which can be written in matrix form as follows:
o’m —c’mzg o’mxg |{n 0

_ 2.46
~o’mz; o1, +AGMr  o’I, (¢ =10 (2-46)

o’mxg o’l o’l, [ly] (0

Eq. (2.46) has nontrivial solutions only if the determinant of the coefficient matrix

vanishes. Setting the determinant equal to zero yields, after some algebra, the
following sixth order “characteristic equation” for the exponent coefficients oy

G4m{02 [TXX I, -1,° ]+ 1,,AGM . }: 0 (2.47)
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Note that this expression is independent of the location of the origin, as one would
expect. There are six solutions; we anticipate three pairs corresponding to the three
“modes of motion” (sway, roll, yaw). In this case four of the solutions are zero
because of the factor 6*. These four solutions can be associated with sway and yaw
motions; in the absence of hydrodynamic damping (which we have neglected) these
modes are obviously neutrally stable.

The remaining two solutions, corresponding to roll motion, are the roots of the
factor in the outer braces in Eq. (2.47):

—1,ACM (2.48)

The product of inertiaizx is much smaller than _and I  for most ships. If we

say that this quantity is negligible in comparison with the product ixxjiz’ Eq. (2.48)
can be written in the simpler form

o~ [ZASMT (2.49)

IXX

Thus real solutions will always represent instability since one of the solutions will
be positive. The best we can hope for is a pair of imaginary solutions corresponding
to oscillatory motion with constant amplitude. Since the displacement and moment
of inertia are positive, the solutions will be imaginary if GMr is positive. Thus the
condition for an equilibrium condition which is not unstable is

GMg >0 (2.50)

Technically this corresponds to neutral stability. However, this differs from the
case of 0=0 in that the oscillatory motions are small (since the initial perturbation
was assumed to be small); thus the body will remain within this small distance of its
initial Jocation. In fact we will see that the presence of damping causes these
motions to decrease in time so Eq. (2.50) represents the condition for stability.
Further, the solution given by Eq. (2.49) represents a good approximation to the
undamped natural frequency of rolling motion®,

The transverse metacentric height, defined in Eq. (2.37), is very sensitive to the
beam of the vessel because of the presence of the waterplane moment S,,. Thus an

©It is an approximation in that the effects of “added inertia” (see Chapter 4) must be included in the
denominator of Eq. (2.49); however this is generally a small effect in the case of roll motion.
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effective means of increasing GM and thus stability is to increase the beam. GM
can also be increased by reducing the height of the center of mass.

The characteristic equation for the surge-heave-pitch motions, described by the
first three of the six Egs. (2.44), is of the form

o {c'A+cB+C} =0
which has two zero roots corresponding to the neutrally-stable surge mode. The
remaining four solutions are the roots of the fourth-order equation in braces, which
is really a quadratic equation in disguise:

AOL2+BOL+C;OL=0'2
Thus there are really only two remaining roots, each of which is repeated since

cz;h/a

It can be shown that the quantity B is always positive, so that the condition for
stability is

AC>0
or, in terms of the coefficients of Eqs. (2.44),
(pgA WP miyy )[pgA wp AGM | — (pgA wp X CF )2 ]> 0
Since each term in the first factor is positive, this is equivalent to
[AGML—pgA WPxCF2]>o (2.51)

We would anticipate the first term from the result for transverse stability, Eq.
(2.50). The presence of the second term may be somewhat surprising; indeed, it is
often omitted in discussions of hydrostatic stability, the tacit assumption being that
xcr = 0. The need for this term is clarified by substitution of Eq. (2.38) in Eq.
2.51):

Pg[vo(zc _ZB)+Sxx _AWPXCF2]>O (2.52)
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The last two terms in braces together cotrespond to the waterplane moment about
an axis through the CF. Thus the second term in Eq. (2.51) is a “correction” to the
waterplane moment for pitch axes which do not pass through the center of flotation.

The waterplane moment S,, is a large positive quantity for relatively slender

bodies like ships so that the criterion of Eq. (2.52) is almost always satisfied for
such vessels.

5. Example: Hydrostatics of a simple barge

As a practical application we will consider the hydrostatics of the simple barge
shown on Figure 2.3 below. The barge has a rectangular cross-section; the bow has

= |
|<-———— LOA =33m >
}45 deg

‘4—— Lx=30 ———_’]

FIGURE 2.3 Profile of simple barge

a 45° rake and the stern is plumb. The following quantities are given:

Length overall  33m
Beam 10m
Depth 3m
Displacement 6.25 MN*

The acceleration of gravity and the density of seawater will be taken to be 9.81 m/s’
and 1025 kg/m’, respectively.

The first task will be to determine the static draft (level trim will be assumed).
For this purpose it is convenient to have a relationship between the draft and the
displaced volume; for this simple configuration we find that

Vo = LgBT + %BT%tana = Lg BT + %BT? (2.53)

4 The Newton (kilonewton, meganewton) will be used as the unit of force as opposed to tonnes or
kilograms to avoid confusion with mass.
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where Lg is the length along the keel, 30m in the present case; « is the rake angle
and B and T are the beam and draft. The displaced volume corresponding to the
given displacement is

Vo = 6.25%x10%(1025x9.81) = 621.6m’

Plugging this and the numerical values in the table above into Eq. (2.53) yields a
quadratic equation for the equilibrium draft,

5T +300T—621.6=0=>T=2.00 or—62.0 m

Obviously the latter root is to be rejected so that the equilibrium draft is 2m in salt
water.

The center of the displaced volume, which is the center of buoyancy, can now
be determined. We will set up a body-fixed coordinate system with the origin at the
static waterline, 15m forward of the stern (at the center of the rectangular portion of
the profile). The location of the center of mass of the displaced fluid is

xp = [(30x10x2)(0)+(Vex2x10x2)(15+2/3)] / 621.6 = 0.504m
zg = [(30x10x2)(1)+(¥ex2x10x2)(2/3)] / 621.6 = 0.987m

The condition for hydrostatic equilibrium, Eq. (2.19), determines the longitudinal
coordinate of the center of mass,

Xg = Xg = 0.504m

The location of the cargo and/or ballast must be adjusted to achieve this LCG
position if level trim is desired.

The maximum permissible height of the center of mass is determined by the
stability condition, Eq. (2.50). Using the definition of the transverse metacentric
height, Eq. (2.37), the condition for transverse stability can be written as

26— 75 + Sy/Ve > 0 (2.54)

The waterplane moment is calculated using Eq. (2.30),

S,, = AHyZdS
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which is the second moment of the waterplane area about the x-axis. For a
rectangular waterplane area it is easily shown that the second moment is

S,y = Lw.BY/12
which in the present example gives a value of
S,y = (32)(10)*/12 = 2667 m*

Plugging this and the center of buoyancy value into the stability condition, Eq.
(2.54), yields

Zg > 0.987 — 2667 / 621.6 = -3.303m
which means that the CG must be Jower than a point 3.303m above the static
waterline. In practice an appropriate margin would be applied to this value to allow
for the effects of other applied moments such as those due to wind and waves as

well as possible uncertainty in the determination of the center of gravity location.

We will next check the longitudinal (pitch) stability using Eq. (2.52). The
second moment of the waterplane about the transverse axis, S,,, is

S« = B Ly /12 = (10)(32)*/12 = 27,307m*

The center of floatation of the barge is at the centroid of the waterplane, 16m from
the ends, or

XcF = 1m

and the waterplane area is (32)(10)=320m’ so that the “correction” to the second
moment of the waterplane area is

—AwpXcp: = —320m*

which is small relative to S,, as is generally the case. At the maximum CG height
for transverse stability, the left-hand side of Eq. (2.52) is

pg(621.6(~3.303 — 0.987) + 27,307 — 320] = 24,320 pg >>0

so that pitch stability is certain.
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CHAPTER 3

CALM WATER BEHAVIOR OF MARINE VEHICLES
WITH FORWARD SPEED: MANEUVERING

In this chapter we will apply the equations developed in Chapter 1 to study the
behavior of marine vehicles moving in calm water. After setting up the equations of
motion, we will examine the various constituents of the hydrodynamic forces and
moments, including “added mass” effects, “steady” forces, forces associated with
resistance and propulsion, control forces, and forces induced by wind and current.
After developing general expressions for these effects, we will look at ways to
estimate the forces and moments for a given surface ship or submersible. Finally,
the equations will be solved to investigate controls-fixed directional stability.

1. Equations of Motion

We will begin by considering a body moving ahead with constant velocity U where
U=Ui+0j+ 0k

with U=Q=Q=0 and ¢ = 0 = y = 0 (“steady level flight”). We will employ
equations of motion with respect to body axes with arbitrary origin, Eqs. (1.36) and
(1.40). As in the previous chapter, we will first consider the motions of the body to
consist of small perturbations, but now the perturbations are relative to steady, level
flight. Thus after the perturbation occurs, we have

U = (Ugtu*)i + vj + wk
(3.1)
Q = pi +qj +rk = i + 6j + Yk

where u* is the longitudinal velocity perturbation; the asterisk is to distinguish it
from u = Uy + u* (since the other velocity and acceleration components are zero in
steady level flight, they all represent perturbations and no asterisk is necessary).
The equations of motion are given by Eqs. (1.36) and (1.40), upon substitution of
(Uptu*) for u:

35
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X= m1'1+wq—vr—xG(q2 +r2)+yG(pq——f)+zG(pr+<j)]
¥ = mfv+ (Uy +u %) - wp -yl +0°)+ 2o ar - )+ xo(ap-+1)
2= ml + vp—(Up + ¥ ~z6lp% + ) x6(1p - @)+ v g +p)

(3.2)

K= Ixxp + Ixy(q —pl‘)+ Ixz(i' + pq)+ Iyz(q2 - r2)+ (Izz - Iyyhr
+ m{YG[W + VP‘(Uo tu *)q]‘ZG[V+(U0 +u*)r - WP]}

M= Iyyq +Iyz(i—qp)+ Iyx (p+qr)+sz (r2 —p2)+ (IXX -1, (3.3)
+m{zG(1'1+wq—rv)—xG[\}v+Vp~(U0 +u*)q]}

N =1+, (p-rq)+ 1L, (q+rp)+ Ixy(pz - q2)+ (Iyy - )pq
+m{xG[\'/+(U0 +u*)r—wp]— yG(ﬁ+wq—rv)}

The applied forces and moments consist of the components given in Eqgs. (2.1). For
the moment we will consider only “gravity-buoyancy” (see Chapter 2), “added
mass”, “steady”, “control”, and “propulsion” effects; aerodynamic forces will be

s

treated in a later section, and wave effects are the subject of Chapter 5.

2. Added Mass and Added Moment of Inertia

According to ideal fluid or potential flow theory, a body moving at steady speed
through an unbounded fluid experiences no force (“D’Alembert’s paradox”); but if
the body is accelerating, it experiences an opposing hydrodynamic force
proportional to the acceleration. This can be thought of as the force necessary to
accelerate the fluid surrounding the body “out of the way”. We will define the
“added mass” or “added moment of inertia” A; as the magnitude of the
hydrodynamic force in direction i due to unit acceleration in direction j. The indices
1 and j range from 1 to 6, corresponding to the surge, sway, heave, roll, pitch and
yaw directions. Thus for example the “surge-induced heave added mass” would be

Z
Ay =-+

The negative sign is required because the added mass force is assumed to oppose a
positive acceleration. The units of A; are mass for i and j ranging from 1 to 3;
moment of inertia for i and j ranging from 4 to 6; and (mass x length) for other
cases. It can be shown that the added mass matrix is symmetrical,
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Aij = AJ',' (3 4)

regardless of the symmetry of the body®. The presence of these off-diagonal
elements implies that the direction of the added mass force is not necessarily
coincident with the direction of the acceleration.

In order to write a general expression for the added mass force relative to body
axes induced by an arbitrary acceleration, it is convenient to define the “added mass
vectors”

Aj = Alj l + AZJJ +A3j k (35)
Aj = A4j i+ A5jj +A5j k (36)

where j ranges from 1 to 6 as before. With this notation it can be shown (Newman
[1977]) that the added mass force and moment can be written in the following form:

6
Fay=-> (U4, +UQxA)) 3.7

[=}

M = -3 (0,4, +UQx 4,+UUxA,) (3.8)

Here Uj represents the (linear or angular) velocity component in direction j.
We will now invoke our assumption of small perturbations and port-starboard
symmetry to simplify these expressions. Plugging the velocity and angular velocity

from Egs. (3.1) into Egs. (3.7) and (3.8), and neglecting products of the
perturbations, we obtain

6
Fai=-2 UA;j-UQxA, (3.9)
j=1

My = —Z[U A;+ UpUj A33]+Az, )] Up(@x 4, +8Ux A,) (3.10)

where

* Strictly speaking, this is true only when free-surface effects can be neglected, which is the case in many
maneuvering problems. It is true in general for a body oscillating at zero forward speed. More on this in
Chapter 6.
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OU = u*i + vj + wk
is the “perturbation velocity vector”; thus U = Ui + 8U.

For bodies with port-starboard symmetry, the flowfield induced by vertical
motions of any cross-section, due to heave or pitch, is symmetrical about the
centerplane. Thus the pressure field is also symmetrical, so that the force on one
half of the section will be a mirror image of that on the opposite side. The
horizontal components are thus oppositely directed so that vertical motions (heave
and pitch) induce no transverse forces. It can then be concluded that

Ap=Au=Axs=Asn=Aq=As5=0,
and, due to the symmetry of the added mass matrix,
Ay =Ai=As = Ay =Ays = Ags = 0.

The same argument could be made for longitudinal motions, which also produce a
symmetrical flowfield; thus

A12 =A21 =AI4 =A4l =A16 =A61 =0.

The number of independent added mass matrix elements, or “added mass
coefficients”, is reduced from 21 in the general case to 12 for bodies with a plane of
symmetry; also, there are no coupling terms between the surge-heave-pitch motions
and the sway-roll-yaw motions, as was the case for the restoring force matrix.

Writing out the components of the force and moment in Egs. (3.9) and (3.10),
and accounting for symmetry as described above, we obtain the following
expressions for the added mass forces and moments of bodies having port-starboard
symmetry, due to small accelerations:

Xam =-Apu—ApWw -A;5q-A; U
Yam = —AnV—Ayup— Ayl - A Ugr+ Ay Ugp (-11)
Zam = A3 - ApWw - Agsq+ Ay Ugg

Kar = =AgaV — Aggp — At + Ag Ut — Ay Uy
Mam =-As0— AW — Assq + Aal(Uoz +2Upu *)+ (A3 = A )Ugw + AsUsq (3-12)
Nam =—AgV = AgDP ~ Agel = (Azz - An)UoV - (A24 + Asn)UoP = AyUor
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Many of the terms in these equations are directly analogous to inertia terms on the
right-hand side of the equations of motion, Egs. (1.36) and (1.40); in fact we will
later exploit this similarity by combining similar terms when we write the complete
equations of motion.

For a submersible having two planes of symmetry (xz and xy), the following
added mass coefficients are zero in addition to those resulting from port-starboard

symmetry:
A=Ay =As5=As5 = Ay =An=Ak=As=0.
leaving A = Agy and Ajs = Asz as the only surviving off-diagonal terms.
Some additional comments are warranted on the following moment terms:

M= (A - A;))Uw
N=—(Aypn - A )Uv

which represent the moment experienced by an elongated body when it moves at an
angle of attack. This moment, called the “Munk moment”, is always destabilizing
for such bodies, tending to rotate them broadside to the flow. It is a consequence of
the potential-flow pressure distribution arising from the flow around the ends of the
body (see Figure 3.1). Note that the moment is present in steady flow, like several
other terms in Egs. (3.11)-(3.12)". The presence of the Munk moment is the
principal reason for the necessity of stabilizing fins on submarine and torpedo hulls.

Low pressure

Figure 3.1 Munk moment

® Thus the added mass force and moment are not necessarily zero in steady flow, because of these terms.
They are grouped with the “added mass forces™ because they are functions of the added mass coefficients
and can be evaluated using potential flow theory.
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2.1 Evaluation of added mass coefficients: Hull

The added mass coefficients, which are dependent on body geometry, can be
calculated using potential flow theory. Analytical solutions are available for
ellipsoids (in terms of elliptic integrals) and for a variety of simple two-dimensional
shapes; in general, numerical methods must be applied to obtain values for actual
hull forms. These techniques require a “digitized” hull model which may not be
readily available (along with the potential flow software); thus, two approximate
methods are widely used: The method of the “equivalent ellipsoid”, and “strip
theory”. The contribution of appendages is generally computed separately and
added to the hull contribution as described in the following section.

The principal motions of surface ships in a vertical plane (heave and pitch) are
oscillatory; steady-state sinkage and trim are generally small. For oscillatory
motions with a free surface, the added mass is a function of the frequency of
oscillation, as will be discussed in the following chapter. The steady or “zero
frequency” added mass is of limited interest in these modes and so for surface ships
the following discussions will focus on the lateral modes.

Solutions for the added mass coefficients of ellipsoids are available in terms of
elliptic integrals. However, if two of the axes are equal (spheroid), the solution can
be expressed in terms of simple functions. In the “equivalent ellipsoid” method,
which actually should be called the “equivalent spheroid” method, one assumes that
the nondimensional added mass coefficients of the hull (normalized based on the
mass or moment of inertia of the fluid displaced by the actual hull) can be
approximated using those of a spheroid having the same waterline length and draft
(for lateral motions) or beam (for vertical motions). For a surface ship it can be
shown using the “method of images” (Newman [1977]) that the flow is equivalent
to that in the lower half-plane about a “double body” consisting of the actual hull
plus its reflection about the waterplane, in an infinite fluid®. The “equivalent
spheroid” in this case represents the double body and thus its added mass will be
twice that of the actual hull.

Because of its symmetry, the only added mass coefficients which are nonzero
for a spheroid are

Al Ay = Asz; Ass = Age

relative to an origin at the center of the spheroid (the roll-induced roll added inertia
A4y is zero because a rolling spheroid creates no flow disturbance). The coupling

© The situation is slightly different in the case of oscillatory (wave-induced) motions, in which case the
method of images is valid only in certain limiting cases.
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coefficients can be approximated, however, by assuming that the lateral added mass
force “acts” at the center of buoyancy of the hull:

Aisu=Asiu~Annzs

Apyn=Apu=-Anuzs (3.13)
Assp=Assu~—As3uXp

Axn=Aspu=AnuXs

where the subscript H denotes hull contribution. The added mass coefficients are
usually expressed in terms of nondimensional quantities k;, k, and k' which are
known as “Lamb’s accession to inertia coefficients™:

A= pVok
Apu,Anu=pVik,
Aun=23"Anu (3.14)
Assu=Loor K + x5’ Ass i
Agen = ILypr k' + Xp Az n
where I;pr is the moment of inertia of the displaced fluid about the i-axis. The
second terms in the added moment of inertia expressions are parallel-axis theorem

corrections to the first terms. The accession to inertia coefficients are functions
only of the eccentricity of the rotated ellipse,

2 2
e=1/1-—b7= 1—;{—2 (3.15)
a

where a and b are the semi-major and semi-minor axes; d and L are the maximum
diameter and length overall. For a prolate spheroid, which is representative of the
hulls of most marine craft, the accession to inertia coefficients are given by

o, Bo , 94(30—0‘0)
ck'= (3.16)
(2—e2l2e2 —(2—e2X[30 —ocO)J

k, = sk, = ;
1 2-0, ? 2-B,

where

o, = 2(1—62){1111(1”]_6} (3.17)

e’ 2 1-e
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and

B, =L2_i1n(l+e) (3.18)

e 2¢° l-e

The behavior of the inertia coefficients with length to diameter ratio is shown
on Figure 3.2.
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Figure 3.2 Lamb’s inertia coefficients for ellipsoids

A second method, known as “strip theory”, involves numerical integration of
two-dimensional results over the length of the hull. The hull is divided into a
number of transverse sections or “strips”, usually at each station shown on the body
plan. The added mass coefficient of each section is estimated using available
analytical solutions for similar sections®. The tacit assumption is that the effects of
longitudinal flow are negligibly small, so that adjacent sections do not interact (i.e.,
the flow is essentially two dimensional at each section). Obviously this assumption
is invalid for longitudinal motions of ship-like bodies, and is questionable near the
ends of the hull for lateral motions. However, strip theory has proved to be an
extremely useful tool, particularly in seakeeping applications which we will discuss

d . . . R

Of course, the added mass of each section can be calculated numerically; however with the availability
of fast computers and three-dimensional potential flow codes, this is at present not much more efficient
(and is less accurate) than a fully three-dimensional calculation.
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in the next chapter. Further, a “three dimensional correction factor” is often
introduced which can (at least partially) account for three-dimensional effects.

In addition to analytical solutions or tabulated numerical results for simple two-
dimensional shapes such as flat plates, circles, ellipses, and rectangles (see Kennard
[1967] for example), analytical results are available for the lateral and rolling
motions of a series of ship-like sections called “Lewis forms” which can be
obtained from a semicircle through “conformal mapping”. The only parameters
required in the mapping are the section half-beam to draft ratio,

H=B(x)/2T(x)
and the section area coefficient,
B =A(x)/Bx)T(x)

The offsets y and z are expressed in terms of these quantities and a parameter 0 as
follows®:

y=[(1 +a) sin® — b sin30][B(x) / 2(1 + a + b)]

(3.19)
z=[(1 - a) cos® +b cos30][B(x)/ 2(1 +a+b)]
where 1/2 > 6 2-n/2. The quantities a and b are given by
a=(b+1)q
(3.20)
EN -2 S
4 4) Pt
b -1
n +p(l-—q2
with
T H-1
PP

The non-dimensional 2-D added mass coefficient A,,'(x) is given by

€ The parameter 0 is physically meaningless; it corresponds to the polar angle of the given point prior to
conformal transformation from a semicircle.
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Ap(x) _(i-a)’ +3b’ (3.21)

Ay '(x) =
') prT(x)?/2  (1-a+b)

which is the ratio of the added mass of the section to the mass of water displaced by
a semicircle which has the same draft. Some Lewis forms are illustrated on Figure
3.3, and the behavior of the added mass coefficient A,,’ for various values of H and
B is shown on Figure 3.4.
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Figure 3.3 Lewis forms with H=0.5
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Figure 3.4 Behavior of Az, with § and H
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Not all combinations of § and H result in realistic ship forms. In particular,
B=1 implies a rectangular section; however, Lewis forms cannot have sharp corners
(angles are preserved in conformal transformations; the original circle has no
angles!). Thus the Lewis form develops “bulges” at section area ratios near 1;
portions of the section contour extend outside of the rectangle defined by the local
waterline beam and draft to “make up” for the area “lost” due to the radius of the
bilge (Figure 3.5a). At small section area ratios, the contour can extend above the
waterline or across the centerplane forming a “loop” (Figure 3.5b). In the former
case the sections are physically possible (albeit unlikely); in the latter case the
sections are physically impossible and should never be used. Examination of the
slope of the section contour at the keel and at the waterline results in the following
criteria for “reasonable” sections:

3n
Z—(2-H) H=1
62{ 32

It is a good idea to plot the sections using Egs. (3.19) to make sure they look
reasonable. Alternative formulations for the sway added mass of rectangular and
triangular sections are given at the end of this section.

0 0
-0.2 -0.2
-0.4 04
-0.6 -0.6
-0.8 0.8
1 -
1.2 -1.2
1.4 14
1.6 -1.6
1.8 -1.8
2 -2
[} 0.2 0.4 08 0.8 1 1.2 -0.2 0 02 0.4 0.6 0.8 1 12
Figure 3.5a Lewis form with H=0.5,=1.0 Figure 3.5b Lewis form with H=0.5,p=0.4

Somewhat more obscure are the results for added roll inertia and sway-induced
roll added inertia (equal to roll-induced sway added mass) for Lewis forms. This
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obscurity is possibly due to the fact that zero-frequency roll motions are of limited
interest; nevertheless these results are a convenient approximation in the case of low
frequency motions. The following zero-frequency results are given by Tasai
[1961}:

8 16
21+b) +—ab(l 202
Ag'(x)e—2u) oy 12 2°(1+b) +9a(+b)+9 (3.22)
* prT(x)* /8 7 (+a+by
ALl (x) 16 a[l—a+%b—ab+%b2J+%b_£b2
Ay = —22e(®) 16 Ay (3.23)
24 ' (%) onT(x)’ /2 3m [(1—a)2+3b2k1~a+b) 2'(X)

Figure 3.6 shows the added roll inertia coefficient as a function of B and H. The
added inertia is zero for H = 1 and § = 0.785 which corresponds to a semicircle.
Notice that the added inertia for H = 1 is less than that for H = 0.5 and H = 1.5

regardless of the value of p.
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Figure 3.6 Roll added inertia coefficient for Lewis forms

As mentioned above, the added mass is obtained by integration of the 2-D
values over the length of the hull:
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1 n
Apu =k, IAzz (x)dx ~ EpﬂkzszzAzz'(xi)Sxi
P

Ly

1 n
Apyn=Agpy = JA24(X)dX zzanTiSAZ‘t'(xi)SXi
P

Ly

1 n
Agyp = J.AM(x)dx ~ E—pﬂz T, A 4 (% B,
i=1

Ly (3.24)
1 = .
Ay =Aann =k, J.Azz(X)XdX zEp"szglTizAzz (Xi)xisxi
Ly i=1
1 o3 ,
Agsn =Agn =-— jA24(X)XdX ~ _EanTi Ay (xi)xiﬁxi
Lwr i=1
1 1 % t
Agen =K' jAzz (x)x*dx zzpnk ZTiZAzz (xi)xizsxi
Ly =1

The subscript “i” in the summations indicates a value at the i strip; the quantities
8x; represent the width of the i strip. The coefficients k, and k’ for the “equivalent
spheroid”, introduced in these expressions by Jacobs [1963], can be regarded as
“three dimensional correction factors” because they force agreement of the strip
theory results with the analytical results in the case of a spheroid.

As will be further discussed in Chapter 5, because of the form of the free
surface boundary condition, the techniques used to obtain these coefficients cannot
be applied for vertical motions at “zero” frequency; these coefficients are seldom
required in the study of maneuvering motions of surface ships, however. For
submersibles, the equivalent ellipsoid method is generally quite adequate for both
horizontal and vertical motions.

Comparison of the expressions for the total added mass force and moment, Egs.
(3.11) and (3.12), with the various prediction equations, Egs. (3.13)-(3.14) and
(3.22), shows that the only added mass coefficient for which no prediction is given
1s the heave-induced surge added mass (or surge-induced heave added mass), A3 =
Aj. These coefficients are expected to be relatively small (they are zero for a
submersible which has xy-plane symmetry) and it is usual to assume that A;; = Aj,
~ 0 (Humphries and Watkinson [1968]).
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The added mass of two dimensional rectangles and triangles’ can be found in
the literature; however the former is not available in closed form and the latter is
expressed In terms of the Gamma function which may be inconvenient. As an
alternative, the following “curve fit” formulations are offered:

Rectangle:
. Ay (x) 0.525 H ~0-0646
Ap'(x)=——2220_ =1+0.544H ;0<H<40 (3.25)
prT(x)?/2
Triangle:
Ax'(x) = YpB(x)T(x) [0.512d + 0.928d%]; 0<d<1.7 (3.26)

= YpB(x)T(x) [d — 0.493] / [2.666-0.849d]; 1.7 <d < 3

where d is the deadrise angle in radians.

2.2 Shallow water effects

The formulas given above pertain to “deep” water, about five times the draft or
deeper. At shallower depths the added mass coefficients generally increase, due to
the fact that the flow induced by the body motion is “restricted” by the bottom and
thus additional force must be applied to the accelerating body to push the
surrounding fluid “out of the way”.

The effect of water depth on the added mass of a 2-D flat plate is shown on
Figure 3.7. By the method of images, the flow induced by lateral motions of a plate
with draft T in water of depth h (at zero or very low frequency) is equivalent to that
induced by a plate of height 2T between walls a distance 2h apart. As shown on
Figure 3.7, the 2-D added mass becomes infinite as T—h; the reason for this is that
since flow around the plate is prevented at zero clearance, and since water is
incompressible, the entire mass of fluid must accelerate with the plate. This is
physically unreasonable in a 3-D world, where the water is “free” to flow
longitudinally around the ends of the body. Thus an adjustment to the 2-D section
added mass must be made before applying strip theory in shallow water.

One way to look at this problem is to say that the “relative lateral inflow
velocity”, the velocity of the water relative to the body in a transverse plane, is
reduced in the real 3-D world relative to the 2-D problem, due to flow around the

“The reference actually presents results for a rhombus moving parallel to a diagonal, which can be
considered as the triangular section and its reflection above the free surface.
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ends of the body. This flow reduction can be expressed in terms of a “blockage
coefficient”. It turns out that the lateral added mass coefficient, accounting for
reduced lateral velocity or blockage effects, is directly related to the blockage
coefficient. A numerical method to determine the blockage coefficient for arbitrary
cross-sections was presented by Taylor [1973].
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Figure 3.7 Effect of water depth on the added mass coefficient of a flat plate

Approximate formulas for the influence of water depth on the added mass
coefficients of typical ship forms for sway and yaw accelerations are given by Clark
et. al. [1982]:

2
AZZH = KO +EK1—?‘ +£K2(Ej

Aot 3 15 T
2 , (3.27)

_‘/16& =K, +£K1E+EK{E)

Agsiim s 't 105 AT

where
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0.0775 0.0110

KO = 1 + f2 T
_ 0.0643 N 0.0724 3 0.0013
: f £2 £3
~0.0342
2 f
and
f=WT-1.

These formulas appear to be applicable down to /T = 1.2.

2.3 Evaluation of added mass coefficients: Appendages

The contribution of appendages such as rudders, skegs and bilge keels to the added
mass and added moment of inertia can be estimated using the formula for the added
mass of a rectangular plate for accelerations perpendicular to the plate:

_praccihy (3.28)

T en

where ¢; and A are the mean chord and planform area of the appendage (“fin”), and
a. is its effective aspect ratio,

a, = by / ¢4, for an isolated fin
a. = 2bs/ ¢y, for a fin located against a ship hull (3.29)
a, = by, / ¢, for a “submarine-type” tail fin

where by is the (geometric) span of the fin. The effective aspect ratio is larger for
fins located against the hull because the hull acts as a “reflection plane”, meaning
that the flow about the fin is equivalent to that about an isolated “double fin”
formed by reflecting the fin about its root chord. Thus more force can be developed
near the reflection plane than near the free end because there can be no flow around
the attached end. For “submarine-type” tail fins, for which the local hull diameter is
comparable in magnitude to the span of a fin, it is appropriate to base the aspect
ratio on the “total semi-span”, by, measured from the hull centerline.
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The contributions of a horizontal (subscript “h”) or vertical (subscript “v”)
appendage to the added mass coefficients A of Egs. (3.11)-(3.12), for a vehicle
with port-starboard symmetry, are summarized below.

Ape=mg,

Ans=Ape=-Anizsy

Asss= Agar= A fXsy

Aszp=mygy (3.30)
Asst= As3¢= —As3 1 Xgn

Aygr= mezs

Assr=Ag; fxfh2

Ass = A Xpy

Here x; and z; are the coordinates of the centroid of the fin. For the roll added
inertia, both horizontal and vertical fins contribute, Surge and surge-induced added
mass coefficients of the appendages are negligible if the appendages are thin (which
is generally the case).

The total added mass of the hull and appendages is then the sum of the
individual contributions, i.e.,

Aj=Aju+ 2 Ayr
where the summation includes all appropriately-oriented fins (see Eqs. 4.30).

The sway and heave added mass of fins which are at angles other than 0° or 90°
to the vertical can be approximated as follows:

Asy~my c0s20;; Asspx my sin’ O (3.31)

where O¢ is the “orientation angle” of the fin relative to the z-axis, positive
clockwise.

2.4 Calculation of Added Mass: Example

To illustrate some of the methods described above, we will calculate some of the
added mass coefficients for a merchant ship. We will examine a case for which
some experimental data are available: Model Ship C described by Motora [1960].
Characteristics are summarized in Table 3.1 below; we have arbitrarily assumed a
scale of 1/100 to obtain the full-scale dimensions.
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TABLE 3.1 Particulars of Ship

L,m 170.0
B, m 22.8
T, m 9.3
Cs 0.565
Cp 0.599
Cum 0.943

Displacement, MT  20,876.

Calculation of the Lamb coefficients is carried out using Eqgs. (3.16-18); the
ship is assumed to be a spheroid with major axis L = 170m and minor axis 2T =2 x
9.3m. The added masses A;;, Ay and Ag are computed using the Lamb
coefficients as shown in Egs. (3.14). Calculation of A¢ requires knowledge of the
moment of inertia of the displaced water, I,pr. It is consistent with this
approximation to use the moment of inertia of the “equivalent” spheroid:

2,42 2,72 2
Lyor —m& +b =—2—p1tab2 a—ﬂ—zianTz[%‘—+T2] (spheroid) (3.32a)

5 3 5 15

but it might be more logical to use the value for an ellipsoid:

a’ +¢? a’+c? 1

2 2 2 . .
I =m =—pnabc =——pnLBTIL" + B“ | (ellipsoid) (3.32b
yyDF 5 39 5 120p ( )( psoid) ( )

To compute the added mass coefficients using strip theory and Lewis forms, we
need the beam, draft and section area at each station. These were obtained by
measurement of a body plan in Motora’s paper; the results are given in Table 3.2.
Figures 3.8a and 3.8b show a comparison of the actual body plan with that
approximated using the Lewis forms, which work fairly well in this case (this would
not be so for some of Motora’s other models, which have fuller sections). Sectional
added mass coefficients A,,’ and A4y’ calculated using Eqgs. (3.21-22) are given in
Table 3.2. The fifth and sixth columns of the table contain the values of A,,'x" and
A,,'x'? which are needed to evaluate Ay and Agg; note that Ay cannot be obtained
using this method. Finally, the sectional results are “integrated” as indicated in Eqs.
(3.24) (a simple trapezoid method was used); note that the 2-D coefficients must be
multiplied by some power of the local draft before carrying out the summations.
The results, along with the results of the Lamb coefficient method and the
experimental data, are given in Table 3.3.

Table 3.3 shows that the agreement between the measurement and the Lewis-
form method is amazingly good for A,; and fair for A4 both are significantly better
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than the simpler Lamb coefficient method. However it must be pointed out that the
data has an associated uncertainty, which is difficult to quantify because the added
mass was not measured directly. Thus the experimental values are not necessarily
the “right answer”, but they are probably pretty close. The error in the predicted A,
is apparently significant, but this is not cause for concern because the difference is
small compared with the “virtual mass” m + A;;.

Table 3.2 Sectional added mass coefficients

Sta B/2T Beta A22' A22x A22'x'? A44'
10.000 0.000 0.000 0.000 0.000 0.000 0.000
9.750 0.160 0.540 0.926 0.440 0.209 0.720
9.600 0.275 0.562 0.900 0.405 0.182 0.630
9.250 0.366 0.548 0.875 0.372 0.158 0.542
9.000 0.448 0.556 0.864 0.346 0.138 0.460
8.500 0.650 0.669 0.903 0.316 0.111 0.241
8.000 0.860 0.679 0.896 0.269 0.081 0.077
7.000 1.136 0.782 0.996 0.199 0.040 0.071
6.000 1.226 0.870 1.142 0.114 0.011 0.224
5.000 1.226 0.921 1.255 0.000 0.000 0.398
4.000 1.226 0.885 1.172 -0.117 0.012 0.258
3.000 1.211 0.774 0.985 -0.197 0.039 0.189
2.000 0.980 0.674 0.886 -0.266 0.080 0.079
1.500 0.799 0.529 0.811 -0.284 0.099 0.226
1.000 0.605 0.410 0.789 -0.315 0.126 0.370
0.750 0.486 0.440 0.814 -0.346 0.147 0.439
0.500 0.404 0.470 0.839 -0.377 0.170 0.506
0.250 0.299 0.500 0.873 -0.414 0.197 0.602
0.000 0.910 0.572 0.822 -0.411 0.206 0.193
-0.125 1.028 0.500 0.783 -0.401 0.206 0.451
-0.250 0.000 0.000 0.000 0.000 0.000 0.000

2 m \\\\\\\\\\‘ '7%/ /// /
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Figure 3.8a Actual body plan (from Motora[ 1960])
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Figure 3.8b Body plan approximated using Lewis forms

Table 3.3 Results of Calculations and Comparison with Data

Lewis Lamb Experiment
(Egs. (3.21-24)) | (Egs. (3.14-16)) | Motora[1960]
Aj/m 0.0238 0.0324
Ay /m 1.028 0.955 1.04
Ay / mL -0.00847 -0.00374

, 0.182
JAgs/mL? =k, 0.256 0.202) 0.236
VA /mB? =k/ 0.107

3. “Steady” forces and moments

“Steady” forces and moments are those hydrodynamic forces and moments which
act on the body as it moves with steady linear or angular velocity, exclusive of
added mass, propulsive, and control forces. These forces and moments are
primarily viscous-fluid effects and are thus difficult (if not impossible) to compute
accurately, even in the simplest case of a ship moving in a straight line at steady
speed. Thus one must resort to semi-empirical or empirical formulations, or
conduct model tests, to determine these quantities.

Again assuming small perturbations about steady, level flight, the steady forces
and moments are generally expressed in the form of a multivariate Taylor series
expansion about the equilibrium condition:



3. Calm Water Behavior of Marine Vehicles: Maneuvering 55

0 0 0 0 0 0
Xg(U+u*, v,w,p,q,1) =X, +(ua+ V—+W—+p— +q—+r5r-)X0

o ow o g (3.33)

where X, = X4(U,0,0,0,0,0) and

8 8 St d 3
U—+ v—-+ .. =Uu + uv + W +
Ju ov du? oudv Judw

with similar expressions for the other components. In Eq. (3.33) the derivatives of
X, should be interpreted as derivatives of X evaluated at the equilibrium condition.
The steady forces and moments are assumed to be functions only of the velocity
components and not the accelerations; the reasons for this are:

e  Purely acceleration-dependent forces and moments are categorized as “added
mass” effects

e Combinations of acceleration and velocity parameters, representing interaction
between viscous and inertial or “potential flow” phenomena, are considered to
be negligibly small as there is no theoretical or empirical justification for their
inclusion (Abkowitz [1964]).

It is sufficient to retain terms in the expansion, Eq. (3.33), through third order;
again, there is no theoretical or empirical justification for inclusion of higher-order
terms, particularly in a “small perturbation” approach. Retaining “only” terms of
third order and lower results in a total of 83 terms in each equation.

The number of terms is considerably reduced by symmetry considerations. For
this and some subsequent discussions it is convenient to refer to the orientation of
the body with respect to the water, which is expressed in terms of an angle of attack,
a, and a drift angle, f3:

(3.34)

o=t X, [3=—sin‘li
u U
A body which has port-starboard symmetry, moving at a drift angle B, would
experience the same axial force as it would at a drift angle —pB. The side force and

yaw moment would be reversed, however, as indicated in Figure 3.9 below.
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Figure 3.9 Forces and moment on body and “mirror image”

zy

Thus we have

X(B)=X(-PB)

Y(B) =-Y(-PB)

N(B) = -N(-B)
or, in terms of the sway velocity,

X(v) =X(-v)

Y(v)=-Y(-v)

N(v) =-N(-v)

That is, the axial force is an even function of the sway velocity, and the side force
and yaw moment are odd functions of the sway velocity. In terms of the Taylor
series expansions, this means that terms such as

a
v—X
v °

which is 0dd in v, must be equal to zero. The same could be said for the linear term
involving the yaw angular velocity r; the axial force increment due to a turn to port
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should be the same as that due to a turn to starboard for a symmetrical ship.
However, the term involving the product vr is still admissible; i.e., we expect

X(v,r) = X(-v,1)

since the two conditions are mirror images. In fact the mirror analogy is quite
useful in thinking about the effects of symmetry: Imagine a 3-D diagram of the
body with vectors indicating the various velocity components and hydrodynamic
forces and moments. Now consider the image of the body viewed in a mirror
placed parallel to the plane of symmetry. The image body must experience the
same magnitude of hydrodynamic force but the directions of the components may
differ from those experienced by the actual body, relative to the actual body’s
reference frame. For example, Xjvace = Xpopy but Yimace = -Yeopy. The signs of
some of the linear and angular velocity components also differ: Upnage = Usopy;
VIMAGE = -Veopy. Thus we cannot have a term such as X = constant-v since this
would imply Xpage = constant-vpyage = -constant-vgopy = -Xgopy. A more
“mathematical” procedure, which is applicable to bodies having any number of
symmetry planes, is described by Neilsen [1960].

Thus it can be shown that the Taylor series expansions through third order
reduce to the following in the case of a body which has port-starboard symmetry:

Xg=ag+aw +2,q+a3v> +a,w? +asp’ +a5q° +a;r> +agvp +agvr
2 2 2 2 2 2
AW HANPE AW TG H AW WY AW FaeQv Fapart (3 35,
+2,5WP” +a1P7q + 2,0 VWE + 2, VI + 8, VWP + 253 WPT + 8,4 VPQ

3 3
Ta,5Tpq+a,W +ay:q

Yg =bv+b,p+byr + b, vw + bsqr + bgvg + b,wr + bgwp + bgpq

+b,ov2p+ by wlp+b,vw? + by;vr + by yw’r + bsvr? + b, vg?

2 2 2 2 2 (3.35b)
+b179 1 +b3gVp” +b1gp T+ bygpq” +bypr + by, vpr + by wpq
+ by vwq + byswar + b26v3 + b27p3 + bzgr3
_ ) 2 2 2 2 2
Zg=cCot oW +Crq+eyve +CuWT +Csp” +Cqq” + CoT7 + CgVp
+ CoPT + CyoVT + € W + €, VAW + ¢ 3w q + CLqviq + ¢ swq? (3.35¢)

2 2 2 2
T CgWIT +Cp,qr™ + CigWp™ +Cigp"q+ CypVWp +Cy WPT + CrVPq

+ Co3PQT + € VWI + Cps VAT + Co6W> + C7q°
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Kg=d)v+d,p+dsr+d,vw +dsqr+dgvq +dowr + dgwp + dgpq
+dovw? +dy vir+d,wir+dsve? +d,vq? +d;svip+ dgwip
+d,797r + dygpq” +dgpr? +dyovp® +dyp’r + dyyvpr + dyywpg

+dy,vwq + daswqr + dagv? +dyyp® + dogr®

Mg = e, +e;W +e,q +e;v2 +e,w? +esp” +e,q° +e,17 + egvp
+€gpr + € Vr + €;;wq + e|2v2w + el3w2q + el4v2q + el5wq2
2 2 2 2
T e gWI” +€17qr° +€1gWp~ +€1gp q + €3 VWP +€5 WPT + €,,VDq

+ €y3pqr + €4 VWI + €55vqr + e26w3 + e27q3

Ng =fijv+f,p+ fr + f,vw + f5qr + fovq + £wr + fywp + fopq
+fov2p + £, wp + f,vw? + £,v%r + £,wr + £ vi? + £ v
+ 1701 + £,3vp” + 1907t + f50pq” + £,pr” + £, vpr + frwpq

+ £,,vwq + Foswar + 6> + 5, + fogr°

(3.35d)

(3.35¢)

(3.359)

For submersibles which have body-of-revolution hulls and cruciform tail fin
arrangements (i.e., all four fins are identical), a further reduction is possible since
hydrodynamic coupling between lateral and vertical motions is then eliminated.

The Taylor series expansions for such bodies are as follows:

Xg=ag+ a3v2 + a4w2 + a5p2 + a6q2 + a7r2 +agvr

+a;gwq + a3 Wpr + ad,4VPq

Yg = byv + bsr + bgwp + bgpq + b, vw? + by vir + by wr
+bysvr? 4+ bigvg® + b,qr + bigvp?® + bygp’r + byvwg

+b,yswar + bz(,v3 + b23r3

2 2 2
Zg =W +Cyq + CgVP +CoPI 4 C1pWV™ + 3w q+Cyv g
+ Clsqu + C|6Wr2 + C]7qT2 =+ clgwpz + c19p2q + Co VWY

3
+ Cos VAT + CrgW™ + C27q3

Kg =d,p +dgvg + dywr + d;sv7p + d,gw?p + d 5pq’
+dygpr? +dyyvpr + dpswpgq

(3.36a)

(3.36b)

(3.36¢)

(3.36d)
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Mg =€,W +€,q +€g VP +E PT + €, WV° + €;3Wwq +e,,v°q
+e;sWq” +e,gWI” +ey7qr> +€,5Wp” +€;9p>q + €, VWI (3.360)

3 3
+€,5Vqr +€,6W~ + €579

Ng =fiv+fir+fywp+fopq + f12VW2 + f13V2r + f14w2r
+£,5ve% + f1vq® + 7% + £1gvp? + f1op2r + fvwq (3.36f)

+ fzswqr + f26V3 + f28r3

The simplification associated with this four-fold symmetry is actually more
significant than is indicated by the equations above, since the yaw and sway
coefficients are (aside from possible sign reversals) equal to the corresponding
coefficients in the heave and pitch equations. This can be seen by noting that a 90
degree rotation of the body about the x-axis would produce no change in the
magnitude of the hydrodynamic force and moment, regardless of the initial
orientation of the body. The relationships between coefficients for lateral- and
vertical-plane motions, for a body having mirror and four-fold rotational symmetry
are shown in Table 3.4 below:

TABLE 3.4 Equivalent Coefficients for body having Four-Fold Rotational
Symmetry and Mirror Symmetry

Lateral (Y, N) Vertical (Z, M)
Subscript Coefficient Of Subscript Coefficient Of

1 v 1 w

3 r 2 -q

8 wp 8 -vp
9 pq 9 pr
12 VWW 12 VYW
13 VI 13 -WW(
14 WWI 14 -vvq
15 vIT 15 wqq
16 vqq 16 WIT
17 qqr 17 -qrr
18 vpp 18 wpp
19 ppr 19 -Ppq
24 vwq 24 -Vwr
25 wqr 25 vIq
26 VvV 26 WWW
28 T 27 qqq
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In the table, a negative sign means that the sign of the coefficient is reversed; thus

but

b1:C1

b3 =-C3

and so on.

Equations (3.35) each contain 27 or 28 terms. In practice many fewer terms are

actually used; some reasons for this are:

For maneuvering simulations of surface ships it is very often not necessary to
consider heave and pitch motions. In addition to eliminating two equations,
this removes many coupling terms in the remaining equations since it is
assumed that w =q=0.

No theoretical or empirical means are available to calculate many of the
second- and third-order terms.

In cases where experimental captive model data is being used to determine the
coefficients, such data can in many cases be well represented using fewer
terms.

Satisfactory results have been obtained without inclusion of many of these
higher-order terms, indicating that their importance is minimal.

A more “practical” set of equations which have been used with some success in

stmulations of submersible motions is given below (Strumpf [1960)):

Xg =2y +agvi +a,w? +ap’ +a,q’ +a,rt +a,vr+awq +a, ,pr (3.37a)

Y = b;v+b,yp+bsr+b,vw +bsqr + bgvq+ by wr + bgwp + bgpq (3.37b)
+b12vw2+b13v2r+b14w2r+b26v3+b27p3+b28r3 '

Ze=Ch+Cyw+e,q+ c3v2 + csz +c7r2 + CgVp +Copr +¢(ovr (3.37¢)
37c
+ Ciwq + C12V2W + CI3W2q + C14V2q + C15Wq2 + C26W3 + C27q3
Ky =dv+d,p+dsr +dyvw +dsqr + dgvq + dowr + dgwp + dgpg
+diovw? +dy v+ dpwir+dpve® +dyvg? +dysvip+dwip  (3.37d)

+ d17q2r + dlqu2 + dl9pr2 + d26V3 + dz7P3 + d28r3
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2
Mg =¢;+e,w+e,q+ €37 +e5p” + €51 + egVp + EgPr + €, VT (3.37¢)

2 2 2 2 3
+e”wq+elzv W+ 3W q+e,, vV q+e,5wq +€,W +¢€57q

Ng = fiv+5,p+ fir+f,vw + fogr + f,vq + £5wr + fwp + f5pq
2 2 2 2 3 3 3 (3.371)
+E,vw v T+ £, Wor+ vt +£5,v7 +5,p7 + fyr

The “simplified” roll moment equation (3.37d) has nearly as many terms as the
original version, Eq. (3.35d). In fact, there are more terms in Eq. (3.35d) than are
given by Strumpf [1960]. The reason for this is that in the reference, the roll
moment is expressed as a function of the local velocity components at the tail; the
hull is assumed to be a body of revolution so that all roll moments (aside from a
small viscous component) arise from lift forces on the tail fins. The italicized terms
in Eq. (3.37d) have been derived from these “tail fin” terms.

The “Taylor series” approach was favored by early researchers in
manecuverability. Another method soon followed, based on the so-called “cross-
flow drag” principle. In this perhaps more physically motivated approach, it is
argued that many of the nonlinear force and moment terms arise from a transverse
drag force on the body and thus should be proportional to the square of the relevant
velocity component (“crossflow” component). For example, the dependence of side
force on sway velocity should be of the form

Y(v)=a;v+a’
as opposed to
Y(v)=aywv+ av’

For the case of bodies having port-starboard symmetry, we have argued above
that the coefficient of the term proportional to v* should be zero. The proper
symmetry can be preserved, however, by replacing v’ with vlv|. Mathematical
purists argue that such terms cannot be part of a Taylor series expansion about v=0.
However, this method has the advantage that at least some of the coefficients can be
calculated or estimated based on theory. A possible drawback is that while the first
derivative of

byv+ b’
at the origin is unquestionably equal to b, the first derivative of

byv + byvjv|
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is undefined at the origin. This may be significant when attempting to determine
the slope at the origin by fitting experimental data, for example.

A set of expressions for the hydrodynamic forces and moments which include
these “square absolute” terms is given below (Gertler and Hagen[1967]):

Xg =2y + 3,7 +3,W? +34q° + 3,0 +8gVr +3)gwq +3;,pr (3.382)

Y = Bluv+gzup+g3ur+g4vw+Esqr+56vq+g7wr+58wp+59pq

- . - (3.38b)
+b15v‘r|+b26v‘v|+b27p|p|
~ ~ ~ ~ 2~ 2~ 2~ 2~
ZS=co+c1Auw+clBulwl+cqu+c3v +C4w” +Csp” +Cyr” +CgVp (3.380)
38¢c
+59pr+5mvr+515w‘ql+?:'26wlwl
KS:Eluv+52up+a3m+a4w+asqr+56vq+57wr+58wp+59pq (3.38)
+ d26V|V’ +dy plp’
Mg =¢, +€1Auw+€lBuIW|+Ezuq+'€3v2+€4W2 +Ep? +8,r2 +vp (3.380)
38e
+EyPr + €1 VI + €5 [W]q + €6 W|W| + €1,q|q|
Ng =ﬁuv+?2up+F3ur+ﬂvw+F5qr+F6vq+F7wr+F8Wp+?9pq (3.38)

+ i3 Ve + By VIV + Eygrl]

The subscripts of the coefficients in Egs. (3.38) are consistent with corresponding
terms in the previous expressions, Egs. (3.35) — (3.37), however a tilde has been
added since in general the coefficients are not expected to be equal to those in the
previous equations, particularly in cases where the terms have different forms (e.g.,
“v? vs, “uv”, “v vs. “v[v[”, etc.). Note the presence of two terms involving u and
w in the Z and M equations.

Equations (3.37) and (3.38) were developed for use in submarine simulations
and thus contain many terms which are probably unnecessary for surface ships,
particularly for cases in which the vertical motions are negligible. A simpler set of
equations for surface ships is presented in the Society of Naval Architects and
Marine Engineers’ (SNAME) Design Workbook on Ship Maneuverability:
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Xg = ag +a,v2 + 4,17 +agvr (3.39a)
Ys = f)lUV + B3Ur+ 1;13|v‘r + Blsvrz + 626v|vl + l;zgr|r| (3.39b)
Ng = f‘lUv + ﬁUr + f13|v|r + ﬁsvr2 + f26v|v| + f28r|r| (3.39¢)

The main reason for including this set of equations is that the Design Workbook
also contains empirical formulas to compute the coefficients; many of these
formulas will be given below.

Which form of the equations to use has been the subject of much debate over
the years. Good fits to experimental force and moment data can generally be
obtained with either form. When attempting to predict the coefficients without data,
however, use of the “cubic” representation presents difficulties, since as alluded to
above there are at present no reliable methods, theoretical or empirical, to predict
the third-order coefficients for even the simplest of hull forms (including body-of-
revolution submersible hulls).

4. Evaluation of steady force and moment coefficients: Hull

Because the steady force and moment coefficients are dominated by viscous effects,
they cannot be computed using the relatively simple potential-flow methods which
were applied in the evaluation of the added-mass coefficients. Computational fluid
dynamics (CFD) codes which incorporate viscous effects are not yet capable of
producing sufficiently accurate results; thus we are at present limited to
experimental data and semi-empirical formulations which are based on simple
theory.

In this and the following sections, we make the assumption that the
hydrodynamic force and moment coefficients are constant for any particular hull
configuration and water depth. That is, we will neglect any influence of the
previous history of the motion of the vessel on the subsequent forces and moments
it experiences. This is sometimes referred to as a “quasi-static” approach since the
coefficients can be obtained from static (steady-state) tests or theories. Possible
sources of “memory effects” include vorticity shed from the hull and/or appendages,
which might occur at large angles of attack; however, these effects are probably
small during most standard maneuvers. Memory effects are important when
considering wave-induced motions, which we will discuss in Chapter 5.
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4.1  Linear coefficients

The coefficients of the linear terms in the steady side force and moment expressions
for Y, Z, M and N are sometimes referred to as “stability derivatives” since they
govern the coursekeeping stability of the vessel, which we will discuss later.
Various semi-empirical methods exist for their determination, none of which is
particularly accurate. The best way to determine these and the other coefficients is
by use of the results of model tests, in which the forces and moments are measured
for a range of values of angles of attack and/or drift, and pitch and/or yaw angular
velocities.

Some of the earliest attempts to analytically determine the coefficients were
based on low aspect ratio wing theory or on “slender body theory”. In the former
case, the hull (and its image above the free surface, for surface craft) is imagined to

behave as a wing at an angle of attack. The side force or “lift” coefficient is related
to the aspect ratio and the angle of attack:

C, =L ARa
2
where the aspect ratio AR is related to the length and draft of the ship (and its
image):
AR = span’/ area =2T /L

Thus the side force on the hull could be expressed as

y=Llouz(erf 22y ¥
2 2LA U

so that

It is conventional to normalize all forces and moments on the basis of the quantities
1
Loun2or Lput?
2 2

for forces and moments respectively, and to normalize velocity components based
on U. If this is done, the dimensionless side force rate coefficient becomes
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b,'=~n— (3.40)

The longitudinal distribution of the force is proportional to the rate of change of
the span (Newman [1977]); thus, for ship-like forms having essentially constant
draft (“span™), the lift force is concentrated at the leading edge. Thus the yawing
moment associated with the lift force, about an axis located amidships, would be

1 T2

g =N, =N _Ly U(LT)££ fl=—lno (3.41)
v 2 T

Slender body theory, can also be used to obtain these results, as outlined by

Newman [1977]; the following coefficients of the yaw angular velocity can also be

obtained in a straightforward manner:

oY 1 ) 1 T?

b, =Y =——=—npUT?; by'=—n—- 3.42
3 r Y 41tp 3 > L2 ( )
. N 1 A T

f3 _Nr —‘é?——‘gﬂpUT L, f3 =—Z7IL—2 (343)

It should not come as a great surprise that these simple formulas do not work too
well. Clarke et. al. [1982] have obtained the following modified formulas based on
regression analysis of captive model available data for displacement ship forms:

. (1Y B
blH TI{L) (1+0.40CB T)
TY B B
bay'= n(—) [0.5 225+ o.oso—]
L L T (3.44)

2
le'= —H(I) (05 + 2.4—T~
L L

2
fyy'= —T[(I (0.25+ 0.0392—0.56E
L T L

Here the subscript “H” denotes the contribution of the hull, and the coefficients are
normalized as indicated in Eqgs. (3.40)-(3.43) above. While these formulas are an
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improvement over the predictions of slender body theory, the associated residual
errors are considerable and so they should be considered as “ballpark
approximations” only.

In addition it must be pointed out that the expressions in Eqs. (3.44) for bs, f|
and f; include “added mass” effects. Recall that the equations for added mass forces
and moments, Egs. (3.11) and (3.12), included some terms proportional to velocity.
The expressions above, which are based on measured forces and moments, include
all contributions to the hydrodynamic forces and moments which are linearly
proportional to v or r (unfortunately it is not possible to isolate the “added mass
effects” such as the Munk moment, from the viscous or steady-flow effects, in a
standard towing tank test). For this reason the coefficients are shown in boldface, to
emphasize that they contain both contributions. To be consistent, however, what we
really need in this section are expressions for only the viscous (“non-potential
flow”) contributions.

One method to compute the “real fluid” moment coefficient f; is to assume that
it is due to the side force acting at a longitudinal location x,:

' 1 XP

For the side force coefficient bs, since the yaw angular velocity induces a local sway
velocity x,r at the location x,, , it could be argued that the side force induced by yaw
angular velocity is just

Y(r) =b; xpr
so that
t ' XP

In these expressions, X, is taken as the coordinate of the center of area of the hull
profile (Jacobs[1963]). Equations (3.45) and (3.46) are to be used in place of the
corresponding expressions in Egs. (3.44), if added mass effects are being accounted
for separately.

For submersibles which have body-of-revolution hulls, slender body theory
yields the result that the lift coefficient is equal to 2, based on the “base area” of the
hull. This implies that the lift or side force on a hull with a pointed tail is zero,
which is not consistent with observations. Thus some investigators have attempted
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to define an “effective base area” determined based, for example, on the cross-
section area in the plane of axial flow separation. These expressions do not work
very well, as shown on Figure 3.10 below; one reason for this is that none of these
expressions accounts for the effect of the length to diameter ratio.

2
X
15 t X
X
X X .
1 * x + S KX X
X X
+ ¥ Dﬁ( A
;% +Xx
X xx
05 | X
x  Strumpf [1979]
* Peterson [1980]
+ Landweber/Johnson [1951]
O Egq.(3.47)
0 .
0 0.5 1 1.5 2

Figure 3.10 Comparison of predicted vs. experimental side force coefficient byy'
NOTE: the side force rate in the figure is normalized based on maximum cross-sectional area

The available data shows that the side force coefficient increases in magnitude
with length to diameter ratio. Also, the “afterbody slope” should be an important
parameter in fixing the location of axial separation, which determines the “effective
base area”. Based on an analysis of the data shown on Figure 3.10 above, the
author proposes the following formulation which contains the effect of slenderness
and which also reflects a dependence on the “average afterbody slope” d/Lg:

byy'= — ( “?4 j[AB '+0.586exp(— 4d/Lg )+0.00086(L/d)* +0. 2794(d/LB)] (3.47)

for

0<Ap' <02
25<L/id<13
13<Lyg/d<8
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where d is the maximum hull diameter, and Lg is the “afterbody length” from the
end of the parallel midbody or point of maximum diameter to the aft end of the hull;
Ap' is the actual base area divided by the maximum cross-section area of the hull.
The quantity in square brackets can be regarded as the effective base area, as a
fraction of the maximum section area. Figure 3.10 shows that this formulation fits
the available data better than the other available formulations.

The other linear yaw and sway coefficients can be calculated from b,y' and Xy,
the coordinate of the effective base (i.e., the coordinate of the point on the afterbody
where the cross-sectional area is equal to the effective base area, normalized based
on the hull length L), as follows:

b3H' ~ 0
fiy' =bu' Xbe'2 (3.48)
B3’ = by’ Xee'

The first of these formulas is based on the observation that the viscous
contribution to the yaw-induced side force is negligibly small.

For body-of-revolution hulls, Eqgs. (3.47) and (3.48) can also be used to
determine the corresponding coefficients for vertical (lift) force and pitching
moment; see Table 3.4.

The dimensionless linear coefficients or stability derivatives are generally
assumed to be independent of velocity (that is, the hydrodynamic forces and
moments are proportional to the square of the velocity). This is a good assumption
provided that there are no significant changes in the “hydrodynamic configuration”
over the speed range of interest. “Hydrodynamic configuration” refers here to the
underwater hull geometry as well as the location of gross flow features such as
regions of separated flow. Thus the use of constant dimensionless values is justified
for displacement ships which do not experience significant trim and draft changes
with changing speed. High speed craft, particularly dynamically supported craft
such as planing boats, generally undergo significant vertical motions and trim
changes through the speed range and so a single set of coefficients is not adequate.
One way to account for speed effects is to apply empirical correction factors,
generally based on model test data, which are functions of Froude number. Semi-
empirical expressions for the linear sway, roll and yaw coefficients of planing craft
will be presented in Chapter 6.
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4.2 Nonlinear coefficients

Regrettably, no methods are available for the reliable prediction of most of the
coefficients of the nonlinear steady force and moment terms. Methods do exist for
some of the nonlinear terms in the “square absolute” formulation, which are based
on the concept of “crossflow drag” which was mentioned above. In this approach,
the effects of a sway velocity v are taken to be equivalent to a “crossflow” having
this velocity flowing past a fixed hull (regardless of the magnitude of the
longitudinal velocity component, u). The transverse drag on the hull due to the
crossflow could be written as

D = %pv?A Cp,

where A is a reference area (usually the underwater profile area) and Cp, is a
“crossflow drag coefficient”. The following empirical formula is applicable to
surface ships (Panel H-10, SNAME [1993]):

Cpe = 1.10 + 0.0045L/T — 0.10B/T + 0.016(B/T)? (3.49)

where the reference area is just the product of the length and draft, LT. This, then,
could be used to calculate the coefficient of v* in the side force equation (the

SNAME simplified version), b.:

626 = ‘CDc(T/L) (3.50)

The negative sign is of course a consequence of the fact that the crossflow drag is in
the opposite direction of the velocity v (the use of v|v| rather than v* in Egs. (3.39)
ensures that this is true regardless of the sign of v).

The crossflow drag concept could be used to determine other coefficients: For
example, the moment coefficient flﬁ could be obtained by integrating the sectional
crossflow drag coefficient (determined using 2-D cylinder data), multiplied by the
lever arm x, along the length of the hull (in fact, 1326 could be determined using this

method as well). Simpler formulas, applicable for hulls having Cg > 0.70, are
presented by Panel H-10, SNAME [1993]:
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b13'=4b28

A C

b15'=— Dc IJ
25 \L

b5 "= 0.25

~ BHYIT
'=401+003 1.5-Cp = | |—
£, {0 +oo[ Cy THL

fis'=0.667f
f,6'=~0.75f,

- T
f,5'=—0.02Cp, (I)CB

(3.51)

53'=—12§7'
2 272
57’=0.070(EJ (I) 1+0.08(}:)
L L B
é9'=CBA22|

A similar “crossflow drag” approach has been taken for submersible hulls,
except that here the total force is obtained by integration of two-dimensional values
over the length of the hull:

D =Ypv?n j 21(x)C p, (x)dx (3.52)

The “local” drag coefficient Cpe(x) is that for a circular cylinder (if the hull cross-
section is circular) with diameter 2r(x). The factor 1 is supposed to correct for
finite length. It is well known that the drag coefficient of a circular cylinder is a
function of the Reynolds number; in connection with the present application,
investigators have traditionally defined a “crossflow Reynolds number” Re.:

Re,=2rv/v

However, such a definition does not make sense physically; it implies that the
characteristics of the flow in a transverse (“crossflow”) plane are independent of the
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longitudinal velocity component®. Thus it is not clear how Cp. should be evaluated.
Allen [1949] originally gave a value of Cp, = 1.2; Kelly [1954] states that this value
is applicable for laminar flow and recommends a value of 0.35 for turbulent
boundary layers (presumably applicable to full-scale submersibles). Thus the
crossflow drag is written as

D =Y%pv*(0.35M)Ap (3.53)

(for turbulent flow) where Ap is the lateral projected area. The experimental data
for the coefficient 1 presented by Allen [1949] are well represented by the
following formula

n = 0.5308 + 0.05050 In(L/d) + 0.007697 [In(L/d)]* (3.54)

in the range 1 < L/d € 40. Thus for submersibles which have body-of-revolution
hulls, we have

By = Gy = —0-3511(AP/L2) (3.55)

Interestingly, Kelly used Eq. (3.49) in conjunction with data for the drag of a
cylinder started impulsively from rest”, to derive an expression for the crossflow
drag which is proportional to the cube of the sway velocity and thus compatible
with the “Taylor series” equations, Egs. (3.37). This treatment is somewhat
dubious, however'.

5.  Contribution of Appendages

The contribution of appendages to the steady forces and moments can be calculated
based on the well-established lift curve slope of finite aspect ratio wings:

_ dCLf _ 1.87
A® dog _[1+2.8/a} (3-56)

& At low drift angles, for example, one could have a situation in which the axial boundary layer is
turbulent due to a large u-velocity component, but subcritical (laminar boundary layer) flow in the
crossflow plane based on the crossflow Reynolds number. This does not seem reasonable.

" Kelly envisioned a “plane lamina” of fluid moving along the hull with velocity u; the fluid in the lamina
flows across the hull with velocity v, beginning “impulsively” at the nose.

' Kelly’s odd-polynomial fit of the crossflow drag coefficient does not match the data particularly well; in
addition, the drag of the impulsively-started cylinder was not actually measured in the original
investigation [ref: Schwabe] but rather deduced from photographs of reflective particles sprinkled on the
surface of a tank through which a surface-piercing cylinder was towed.
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(Lewandowski [1989]) where a is the aspect ratio. The lift coefficient is normalized
based on the planform area of the fin.

When the fin is mounted on a hull, the additional lift on the hull + fin
configuration due to the presence of the fin is greater than that predicted by Eq.
(3.56) for two reasons:

e  The presence of the hull modifies the flow over the fin
e  The presence of the fin modifies the flow over the hull

The presence of the hull affects the flow over the fin in two ways. First, the
“lift distribution”, or spanwise distribution of the lift on the fin, must of course go to
zero at the tips; the distribution is roughly elliptical for conventional wing shapes’ .
However if the fin is attached to a body, the lift does not have to taper to zero at the
“root”, or line of attachment to the body. In the limiting case in which the hull is an
infinite wall, it can be shown that the wall acts as a “reflection plane” so that the lift
distribution is the same as that on a fin which has twice the span, formed by
“reflecting” the fin about the root. This is the motivation for the definition of
“effective aspect ratio” as twice the geometric value. Second, the flow velocity
around a curved hull differs from the free-stream value: For example, recall that for
flow about a two-dimensional circular cylinder (which is similar to the flow about a
cylindrical submersible hull at a high angle of attack), the velocity around the sides
reaches twice the free stream value. Both of these factors tend to increase the lift of
the fin on the hull as compared with the lift of the isolated fin.

It is not surprising that the fin also affects the flow over the hull; as stated
above, the lift distribution on the fin does not drop to zero at the junction with the
hull, so that there is some “spillover” of fin-generated lift onto the hull. This also
has the effect of increasing the lift on the assembly relative to that on the isolated
components.

For slender submersible configurations, these effects can be calculated using
slender body (potential flow) theory. The additional lift (or side force) generated by
the addition of n identical fins (at the same longitudinal location, equally spaced
around the hull) can be written as follows:

dCr

dOtf

=KyA(2a) (3.57)

where Ky is the fin-hull interference factor, which is the ratio of the additional lift
produced by adding the fins to the hull, to the lift produced by the fins in isolation;

¥ 1t can be shown that the elliptical distribution of lift results in minimum induced drag.
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and A is the “isolated fin” lift curve slope, computed by means of Eq. (3.56), using
double the geometric aspect ratio of a single fin. In the case of two fins, this is
equivalent to removing the fins from the hull and joining them together at the root;
the aspect ratio of this “joined together” wing is inserted in Eq. (3.56) and its
planform area is the reference area for the lift coefficient.

If it is assumed that the hull diameter is constant at the fin location, Kg; can be
expressed as a function only of the ratio of the maximum semi-span, by, to the local
hull radius ry:

2 3.58
Km=(1+%),n=2 (3.38)

Ky=——"—,n2
B -y
where
A= bfc / It

The fin force is computed using the “lift curve slope”, Eq. (3.57), multiplied by the
local angle of attack, o, which by definition lies in a plane perpendicular to the fin
(any one of the fins, for n > 3). The force is normal to the inflow velocity vector in
this perpendicular plane. Note that for n=1 and n=2, the force is zero if o lies in a
plane parallel to the fin; for n > 3, the force is the same for o in either plane.

Unfortunately the lift curve slope of the isolated tail fins cannot be computed by
use of Eq. (3.56) forn =3 or n = 5 (it works for n = 4 because the pair of fins in the
plane of oy theoretically generates no force). No general result similar to Eq. (3.56)
is available for such configurations; however slender body theory, applicable to
small aspect ratios, yields the following result:

A= §“(b{;—"rf)2, a <<l (3.59)
167 A,

In fact, since the interference factors given by Egs. (3.58) were derived using
slender body theory, strictly speaking they should be applicable only to slender (low
aspect ratio) configurations. However, it turns out that the ratio of additional lift
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due to the fin to the lift of the isolated fin is not sensitive to the fin aspect ratio,
which is why the Kgy factors were defined in this way (Nielsen [1960]). “The
method has been tested successfully for large numbers of [missile] wing-body
combinations...”, slender and non-slender.

For surface ships we generally do not go to the trouble of computing
interference factors, but rather just make use of the lift curve slope, Eq. (3.56), and
the effective aspect ratio defined in Egs. (3.30):

dC;

dog

Ala,) (3.60)

Using the relationship between the hull drift angle and the lateral velocity
component (see eq. (3.34)),

v=-UsinB; v'=v/U=-sinB~ -

and normalizing in the usual way, we can obtain an expression for the contribution
of the fin(s) to the side force coefficient b;:

__Cim &T(ﬁ)%
by'= do, (U 2\ 58 (3.61)

(a corresponding expression is obtained for ¢,/ by substituting the hull angle of
attack o for the drift angle B). The first quantity in parentheses represents a velocity
correction for cases in which the local velocity differs from the free stream velocity,
due, for example, to the effects of propeller wash or the body boundary layer®, as
mentioned above. The last factor is a corresponding correction to the local angle of
attack. For surface ships, this is sometimes referred to as a “flow straightening
factor” and given the symbol y; an approximate value is

_ooy 1
= Tiec,

(3.62)

for conventional ship forms; this effect is generally ignored for submersibles.

The fins also contribute to the axial force; the most important contribution is
due to “induced drag” or “drag due to lift” (there is also a contribution at zero
incidence called “profile drag” which is largely due to friction; this will be assumed

* The potential-flow effects of the hull on the local velocity are accounted for in Kes as discussed above.
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to be part of the total hull resistance to be discussed below). The induced drag
arises because the hydrodynamic pressure-induced force on a fin (of finite span,
which is a characteristic of most real fins!) is not normal to the inflow velocity but
contains a component in the direction of the flow. In theory this component, the
induced drag, is proportionai to the square of the lift. In terms of lift and drag
coefficients,

2 2.2
Cpr = Cur (1+k)= Aoy (1+k) (3.63)
Ta ma

where k is a correction term to account for non-elliptical lift distributions and other
factors; k = O for an isolated elliptical wing. Thus we can obtain an expression for

the coefficient asf:
(A Y 14k Y U VS A Y g Y
azp = — I\l |== = (3.64)
dog na, A\ U L° A OB

Technically, the lift coefficient of the fins in the presence of the hull should be
used; this interaction can be approximated by using the effective aspect ratio of the
fins. The correction term k is generally small and thus can be neglected.

These formulas can also be used to obtain the fin force contributions due to
rotations p, q and r: The local geometric angle of attack of an appendage on a hull
undergoing a horizontal turn with radius R at a drift angle f§ is

Be =B—tan“[—xﬁ3§B—J (3.65)

R -x;sinfB

which, for small drift angles, can be approximated by
B zB—?=B-xf'r'z—v'—xf'r' (3.66)

Thus we find that
baf = x¢bif 5 dsf = x7dif 5 B¢ = x¢fif (3.67)
In the vertical plane the expression analogous to Eq. (3.66) is

o & W-X¢'q' (3.68)
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so that
ay = -Xfaif ; Cof = -XfCyf ; €2 = -Xferf (3.69)

In a similar fashion, roll angular velocity induces a local sway or heave
velocity:

Vi = -zfp'; Wf = yfp'
and so

baf = z¢bud; dof = z0dyg; £ = -2/fi¢ (3.70)

This method can be used to find the fin contribution to the second-order derivatives
in the X-equation:

_ 1,12 2
asf = ax'zf + ayfyy

2
agf = Xf" asf
ar = Xf'2 asf (3.71)
aof = 2Xfasf

ajof = -2 Xfasf
where a,f comes from an expression analogous to Eq. (3.61).

Moments induced by the presence of the fins are determined by multiplying the
forces by appropriate lever arms:

fif = x/byr'; Bif = X(bsf=x"byf

€1f = -XfCif ; €2f = -X¢Cof = Xy201f (3.72)
— B [ _ [ ]

dif =-2{byf; daf = -zfbsf = -x{z¢byg

Actually, the behavior of the fin lift force is more complicated than is indicated
by Eq. (3.56). The lift coefficient does not increase linearly with angle of attack
indefinitely; a point is reached at which the flow separates from the low-pressure
side of the fin, resulting in a loss of lift known as “stall”. Thus the fin has a
maximum lift coefficient, C;pax , Which is a function of the section shape and in
general increases with increasing Reynolds number, at least through Re = 10’
Figure 3.11 shows some experimental data for the NACA 00xx symmetrical foils
(the last two digits designate the foil thickness as a percentage of the chord length).
Prior to reaching its maximum lift coefficient, the lift curve typically bends as
shown on Figure 3.12; the loss of lift may be gradual or abrupt depending on
whether the stall originates at the trailing edge or the nose. Stalling can be
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accounted for in the hydrodynamic force and moment expressions by including a
cubic term in the expression for fin lift:

Com = A(ae)af "“bO‘f3

Unfortunately there is no satisfactory method to estimate the coefficient b; it
should be determined by examination of data (at the appropriate Reynolds number).
This coefficient would then constitute the fin contribution to the rate of change of,
say, side force with drift velocity cubed, by.
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Figure 3.11 Maximum lift coefficient of NACA 00xx foil sections vs. Reynolds number
(from Jacobs and Sherman [1936])

6. Shallow Water Effects

As was the case for the added mass coefficients, the water depth also affects the
steady-flow forces and moments. Again a conservative rule of thumb for surface
craft is that when the water depth is less than about five times the draft of the vessel,
the effects of finite depth should be accounted for. In the case of submersibles,
corrections should be made when the distance to the bottom or the submergence
depth is less than five hull diameters.
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Figure 3.12 Behavior of lift with angle of attack (from Abbot and von Doenhoff [1959])

Once again, the only reliable way to determine these effects is through testing;
Roseman [1987], for example, presents hydrodynamic coefficients for a series of
full-form merchant ships at various water depths down to 1.2xdraft. Lacking such
data, the following approximate formulas for the effect of water depth on the four
stability derivatives could be used to obtain “ball park” estimates down to a depth to
draft ratio of about 1.2 (Clark et. al.[1982]) :

b’

lm

2
_K0+K1‘_+K ( \J
by’ 2 B, E
by st T
: (3.73)
i 2 B
—-=Ko+<K 1B Kz =
£ 30T T
2

L*=1<0+1KB+11<; B
2T 3 T

:K0+

where the subscript oo indicates infinite depth, and the coefficients K are given
under Eq. (3.27) on page 50.

In general the hydrodynamic coefficients increase in magnitude with decreasing
depth, as a consequence of the fact that the water finds it “more difficult” to flow
past the hull in shallow water. The consequences of this will be discussed below.
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7. Resistance and Thrust

7.1 Resistance

Resistance is the steady hydrodynamic force in the negative x-direction (or, more
accurately, in the direction of the incident flow velocity), and thrust is the
propulsive force applied by the propellers, pumpjets, or waterjets to balance the
resistance in order to move the vessel at the desired speed. The ability to predict the
resistance of a vessel is of critical importance throughout the various stages of
design, and, possibly for this reason, the prediction techniques are more advanced
than those for the other steady hydrodynamic force and moment components',
Indeed, there are many books devoted to the subject of resistance and/or propulsion
alone, and our treatment will be brief as the primary focus here is on maneuvering
and seakeeping.

Ship resistance has traditionally been broken down into viscous and
wavemaking components. The viscous components include friction drag and form
or pressure drag; wavemaking resistance represents the applied force necessary to
produce the familiar ship-wave pattern, essentially a potential flow phenomenon.
Dimensional analysis can be applied to show that the viscous component is
primarily a function of the Reynolds number while the wavemaking component is
principally a function of the Froude number. This results in a predicament for
experimenters: In order to be able to scale up the results of a model test, the model
and full-scale flows must be dynamically similar (in addition to geometrically
similar), meaning that the values of the Reynolds and Froude numbers must be the
same for the ship and the model. For this to be true, the following equality must
hold:

8m _}\‘3_53_

2 2
Vi vy

where subscripts m and s denote model and ship, v is the kinematic viscosity of the
fluid, and A is the scale ratio, Ly / L, Since for practical reasons, the scale ratio is
generally substantially greater than 1, and we don’t have too much control over the
acceleration of gravity (that is, g = g,), this requires that the fluid that the model is
tested in have a viscosity which is considerably lower than that of water (by a factor
of A%, in fact). Such a fluid is not readily available.

' We emphasize relatively more advanced. Even the most advanced CFD techniques are at present
unable to produce predictions of resistance which are of sufficient accuracy to be used to design a ship.
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All is not lost with regard to the utility of model test data, however. In the
1860’s, William Froude suggested that the frictional resistance and wavemaking
resistance components could be separated. Nowadays we express “Froude’s
hypothesis™ as follows:

Cr(Re, Fn) = Lz = Cp(Re) + Cy (Fn) (3.74)
1pU’s

where R is resistance, S is the wetted surface area, Cr and Cy denote frictional and

“residuary” resistance coefficients, and Re and Fn are the Reynolds and Froude

numbers. The residuary component contains wavemaking and pressure or form

drag; technically, the latter should be a function primarily of Reynolds number.

However, it turns out that the form drag is essentially constant with Reynolds

number (provided that the character of the flow and the location of the separation

line do not change) and thus can be lumped with the wavemaking component. The
advantage of this is that the frictional component can be estimated using flat-plate
resistance data; thus, one could determine the ship resistance coefficient as follows:

I. Run a scale model at a speed corresponding to the full-scale Froude number,
measure its resistance R,,, and compute the model resistance coefficient Cry.

2. Subtract the model frictional resistance coefficient (Cr at the model Reynolds
number) from this value to yield the model residuary resistance coefficient
CRM~

3. Since the model was tested at the full-scale Froude number, Cgg = Cgrp.

4. Add the ship frictional resistance coefficient (Cr at the full-scale Reynolds
number) to Cy to obtain Crs.

Tests of geometrically similar models have indicated that Froude’s hypothesis is an
effective means to correlate the resistance of models of widely differing lengths
(Newman [1977]).

How is the frictional resistance coefficient obtained? A widely-used expression
was established by Schoenherr [1932], who fitted a theoretical turbulent friction
formulation to a collection of experimental flat-plate resistance data to obtain:

0.242

NN

This formulation is also known as the “ATTC line” because it was adopted by the
American Towing Tank Conference as the standard frictional resistance formula in
1947. However, some geosim data suggest that the form drag coefficient is not
really constant, but increases with decreasing Reynolds number; as a result, the
Schoenherr formula may not represent all of the viscous effects, particularly at

=1log,,(ReCy) (3.75)
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lower Reynolds numbers. In 1957, the International Towing Tank Conference
(ITTC) adopted an alternative formulation, which has a steeper slope than the
ATTC line:

0.075

= 3.76)
F (
logm(Re— 2)z

which was designated as a “model-ship correlation line” as opposed to a friction
line; it is not supposed to represent frictional resistance (although it is often misused
for this purpose™) but rather as a means of correlating model and ship resistance, as
the designation implies.

It turns out that even with this “improved” correlation line, the resistance of
full-scale ships, deduced from trials measurements, is generally greater than that
determined from model data by the method outlined above. This is due in part to
roughness and fouling which inevitably exist on the ship but not on the model; in
addition, differences can arise because of small differences between the ship and
model geometries, and various effects not specifically accounted for in the
extrapolation procedure. The difference between the resistance deduced from the
trial data and that predicted from the model test is accounted for by addition of a
“correlation allowance coefficient” C, to the latter. The correlation allowance has
been found to increase with ship roughness and to decrease with ship length.
Specific formulations for predicting C, differ at the various model testing basins
around the world, due to differences in their extrapolation techniques and test
methods.

If test data for the specific configuration being considered are not available, one
could make use of systematic series data, if the hull is similar enough and if its
particulars fall within the bounds of the series parameters. The various series are
described in Principles of Naval Architecture (Van Mannen, and Van Oossanen
[1989]), for example. Alternatively, collections of data such as the SNAME
Resistance Data Sheets (SNAME, undated) could be used, again if one of the ships
in the database is similar enough to the design being considered. Finally, an
empirical formula such as that described by Holtrop [1984] can be employed.
Holtrop’s method is based on multiple regression analysis of test data for various
types of ships, consisting mostly of tankers, cargo ships, fishing vessels and tugs; a
series of high-speed displacement forms known as Series 64 was later added to the
database. This method is widely used in preliminary design studies. Also included
are formulas for wake fraction and thrust deduction fraction, which we will make
use of later; these formulas are given in Appendix A.

w

Although the ITTC line was not intended to represent flat-plate friction, Granville [ ] derived a very
similar formula for the frictional resistance of a flat plate in turbulent flow.
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Various methods to account for the drag of fins (including rudders, skegs, bilge
keels, and propeller shaft brackets) exist in the literature. Since their drag arises
almost exclusively from friction at zero angle of attack”, we could compute the
frictional resistance coefficient for each fin, using a Reynolds number based on the
chord of the fin and the Schoenherr friction formulation (Eq. (3.75)), and multiply
by the appropriate wetted surface area. The total hull resistance then becomes

R = Y%pU’S-CT + ZYpUS;CFy (3.77)

where S is the hull wetted surface area, exclusive of fins, CT pertains to the bare
hull, and Sy and CFy; are the wetted surface area and frictional resistance coefficient
of the i" fin; CFy is calculated based on the fin Reynolds number®.

The resistance of other types of appendages such as exposed shafts and sonar
domes may be considerable. These generally have a significant form drag and may
also contribute to wavemaking resistance. There is no simple way to deal with such
appendages; the best procedure (lacking test data for the actual configuration being
considered) would be to look for data from ships having similar appendage
arrangements.

The aerodynamic drag on the above-water hull and superstructure in general
cannot be neglected. While aerodynamic forces and moments are accounted for
separately in Equations (2.1), the drag due to the relative wind velocity due to the
ships motion, called “still-air drag”, is traditionally included with the hydrodynamic
drag in the determination of ship resistance. The aerodynamic drag in “still air” is
expressed as

Rua =Cpaa '%PAUZAT -Cy (3.78)

where Cpay is an aerodynamic drag coefficient, p, is the density of air (1.221 kg/m’
or 0.00237 slugs/ft’ under “standard” conditions), At is the transverse projected
area above the waterline, and C, is a heading coefficient which would in this case
represent the effect of a drift angle. For the present purposes it is sufficiently
accurate to take C, = 1.0. Grant and Wilson [1976] recommend values of 0.75, 0.70
and 0.45 for cargo ships and tankers, combatant ships, and aircraft carriers,
respectively.

Once the hydrodynamic and aerodynamic resistance has been obtained, the
coefficient ay' can be calculated:

" The “induced drag” due to angle of attack is accounted for in the fin axial force terms, e.g. Eq. (3.61).
° Another refinement we could make would be to use a “local fin velocity” U; in Eq. (3.74) and in
computation of the fin Reynolds number; to account for such effects as the hull wake and propeller wash.
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_RW+R,\(U)

(3.79)
pU?L2

aO(u)' = 1
2

It is emphasized that the coefficient is not constant, but a function of the velocity °.

7.2 Thrust

The thrust is the force supplied by the propulsion system, designated Fp in Equation
(2.1). The thrust must be slightly greater than the resistance of the vessel at a given
speed. This is because there is a high pressure region near the stern of the vessel
which produces a forward-directed force on the afterbody; the presence of the
propeller typically reduces the pressure on the afterbody thus increasing the total
resistance. This “augment of resistance” is commonly expressed as a reduction of
the available thrust,

T-R=tT or T1-t)=R (3.80)

where T is thrust and t is the thrust deduction fraction; the quantity (1 - t) is referred
to as the “thrust deduction factor”. The thrust deduction fraction, along with the
wake fraction w and other propeller-hull interaction coefficients, are usually
determined in model self-propulsion tests. In preliminary design, these coefficients
can be estimated based on data from previous tests of similar vessels; they can also
be approximated using Holtrop’s regression formulas, given in Appendix A.
Information on values of t and w for body-of-revolution submersible hulls can also
be found in Appendix A.

The thrust produced by a propeller of a given geometry is a function of its
speed of advance Uy, and its rotational speed n (we will use the symbol n to denote
speed of rotation in revolutions per second, and N to denote rotational speed in
rotations per minute; the sign of n is positive for the direction of rotation
corresponding to ahead motion). Dimensional arguments can be used to show that
the thrust coefficient Ky is a function only of the advance ratio J (if there is no
cavitation):

K :————-—:f J:—A 3.81
T pn2D4 ( nD) ( )

P The water temperature also has a non-negligible effect on the frictional component of resistance. For
example, the frictional resistance of a 120m ship moving at 15 knots is 4% less in 28°C water (typical of,
say, the Gulf of Mexico) than in water at the “standard” temperature of 15°C.
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where D is the diameter of the propeller. Similarly, the torque coefficient, Kq, is
also a function only of the advance ratio:

Ko()= epn?T (3.82)

It can be shown that the local angle of attack of a propeller blade section located a
distance r from the center of the propeller, in “homogeneous flow”, is,
approximately

1 Pt Ya (3.83)

2nr 2nnrm;

o ~tan~

where n; is the “ideal” propeller efficiency (without viscosity). This indicates that
the local angle of attack at the blade tips is zero when

I~ T]1P/D

The thrust and torque coefficients are determined in “open water tests” of
model propellers. Designers often make use of available methodical series charts as
described by van Mannen and van Oossanen [1989]. One of the best-known series
is the B-series of MARIN. The B-series covers a wide range of blade numbers (two
to 7), blade area ratios (0.30 to 1.05), and pitch-to-diameter ratios. A representative
plot of the behavior of the thrust and torque coefficients with advance ratio is shown
on Figure 3.13 below. It can be seen that the thrust goes to zero when J ~ P/D and
that the torque is zero at a slightly higher value of J. This corresponds to
“windmilling” of the propeller; the associated negative thrust reflects the drag of the
propeller.

A regression analysis has been undertaken of the B-series data (van Lammeren
et. al. [1969]), resulting in expressions for K and Kq as cubic functions of the
advance ratio; the coefficients are polynomial functions of the number of blades,
pitch to diameter ratio, and blade area ratio. These functions are convenient in
preliminary design, or to obtain rough estimates of thrust and torque for propellers
which are similar to the B-series. The expressions and coefficients are presented in
Appendix B.

Using Appendix B, or by fitting a curve to open water data, we can obtain an
expression of the following form for the propeller thrust coefficient:

Kr=to+1J+ 0,7+ 1P (3.84)
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which can be written as

U,’D
T= p[nzD"’ro +U, nD%t, + UAzDz‘r2 21, (3.85)
n

The sharp-eyed reader will have noticed that Eq. (3.85) causes some practical
difficulties at zero shaft speed. This is purely an artifice of the use of a cubic in J
(Eq. (3.83)) and thus is not indicative of a real physical phenomenon (we expect the
“thrust”, actually representing drag in this case, to be well-behaved near n=0,
corresponding to a locked shaft). This problem can be circumvented by using a
quadratic expression in place of Eq. (3.83):

Ki=1 +1J+1, (3.86)
Unfortunately the coefficients ;" are not available in the literature, but a quadratic

fit obviously can be easily obtained after generating data using Eq. (3.84). In fact
you will find that such a procedure results in the following relationships:

To ~ To +0.13431;
7, ~ 1 — 1.171815 (3.87)
1, ~ 1, + 2.1001,

which is based on the range 0 <J < 1.4 4,
As was mentioned above, the hull resistance is “augmented” by the pressure

field induced by the propeller. Thus the “net thrust” is reduced by the factor (1 —t)
as shown in Eq. (3.80), due to the presence of the hull. So we can write

Xp=2(1 —t))T; cos(gy) (3.88)
where the summation is over the number of propellers; T is computed using Eq.

(3.85) with Uy = u(1 — w). ¢ is the inclination of the propeller shaft relative to the
keel (positive sense upward). Thus the vertical component would be

Zp=-3(1 — t)T; sin(e;) (3.89)

This component is usually negligible for conventional displacements but significant
in small craft, which often have shaft angles exceeding 10°,

% The quadratic curve is generally somewhat flatter than the cubic representation in the vicinity of J=0;
thus this quadratic expression should only be used for J > 0.1. Alternative quadratic fits could be derived
which fit better near J=0, but one might as well use the original cubic.
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Figure 3.13 Behavior of Kr, Kq and efficiency with advance ratio

There is also a side force on the propeller, due to the asymmetry of the inflow:
The flow velocity is usually greater at the bottom of the propeller than at the top
because of the hull wake. As a result, the blades are at a larger angle of attack and
so produce more thrust (and torque) when they are above the hub. The result is a
transverse force directed to port on a right-hand propeller (which rotates clockwise,
looking forward at the propeller). This effect is small, however, and is
overwhelmed by the force induced by the propeller wash on the rudder (at zero
rudder deflection) which will be addressed in the next section. Presumably the
thrust vectors are parallel to the xz plane; if this is not the case, a contribution to the
side force similar to that given by Eq. (3.86) would arise.

If the thrust line does not pass through the pitch axis, a pitching moment will be
induced:

Mp = Xpr - Zpo (390)
where (xp, yp, Zp) are the coordinates of the propeller.
The rolling moment induced by the propeller comes primarily from the

propeller torque, which can be calculated using an expression similar to Eqs. (3.84)
and (3.86):
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U,’D’?
Q= p[nzDSKO +U,nD%, + U, "D, + An K3J

(3.91)

~ p(n?‘DSK0 *4+U,nD%, * +U, Dk, *)

The coefficients Ko, K;, Ko, and «; for the B-series propellers are given in Appendix
B; o*, k1*, and k,* are generated from them using Eq. (3.87). Thus, by analogy to
Eqgs. (3.88) and (3.89), we have

Kp = -2+Q; cos(e;) (3.92)
Np = 2 2Q; sin(g;) (3.93)

where the positive sign is to be used for right-hand propellers and the negative sign
for left-hand propellers. The latter quantity is negligibly small in most cases of
practical interest.

Additional transverse forces and moments are generated when the propeller is
in oblique flow, i.e., when the hull is at an angle of attack. It can be shown (Glauert
{1935]) that the side force on a propeller which is inclined to the direction of motion
can be represented as

K dK
F, = pUZADZf(—Jg—%d—JQ)ap (3.94)

where o, is the flow angle at the propeller. The factor f accounts for the
“distribution of torque along the blades”; a value of

f=13

is appropriate for marine propellers; the formula holds for both right- and left-hand
propellers. Thus we can write

K, 1dK
Y, (v,1) = -1.3pUy(1-w)’ D2 —2 - L0 Iy 4 5 1) (3.95a)
I 2 P
N (v.)=x,Y, (v,1) (3.95b)

where x, is the longitudinal coordinate of the propeller and y is the flow
straightening factor (see Eq. (3.62)). Similar formulas can be obtained for Z,(w,q)
and My(w.q).
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7.3 Propeller Shaft Speed

The equations above show that we need to know the propeller speed (rpm) in order
to accurately simulate the thrust (and so the longitudinal motions) of a vessel. How
is the shaft speed determined? For straight-ahead motion at steady speed U, Eqgs.
(3.80) and (3.85) could be solved for the equilibrium shaft speed nz. A simple
approach would be to assume that n = ng for the duration of the simulation.
However, depending on the type of engine control system which is in use on the
vessel being simulated, the shaft speed may drop by 20% or more of its initial value
in a high-speed turn at maximum rudder deflection. Thus we need another
equation, for propeller shaft torque:

2n(l, + Ap )i = kgQe - Qp - Q (3.96)

where Ip is the moment of inertia of the propeller and shafting; Ap is its
hydrodynamic added moment of inertia; Qg is the main engine torque; kg is the
reduction gear ratio; Qr is frictional torque; and Q is the propeller torque, Eq.
(3.91). The factor of 2n is required because the shaft speed n is (by convention)
expressed in Hz. Each of the quantities on the right-hand side is in general a
function of the propeller speed as well as other factors, as will be discussed below.
The added inertia is generally assumed to be about 30% of the propeller’s moment
of inertia (Norrbin [1971]), although it is probably a function of propeller pitch as
well as the rate of change of RPM.

An in-depth treatment of the dynamic simulation of the various types of engines
and the associated control systems used in marine craft is outside of the scope of
this book. However the following simplified representations may be adequate for
many applications.

Our engine model must at a minimum account for two effects: First, it must tell
us how the engine torque changes in response to changes in loading, which would
occur during maneuvers because of changes in the axial force, for example.
Second, the engine model must account for changes in demand due to changes in
the throttle setting.

At constant throttle setting, the engine torque could be represented by:

p
Qe —[lJ (3.97)

Qo n,

where the exponent p is determined by the type of powerplant. For diesel engines,
the torque is essentially constant, determined by the fuel rack setting; thus p = 0.
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For turbines, the power is essentially constant, governed by the steam inlet pressure
or by the fuel flow rate for steam and gas turbines, respectively. A constant RPM
could be achieved by setting Qg equal to (Q + Qg); in this case, however, there is no
need for the torque equation in the first place!

When a speed change is ordered, the engine torque does not change
instantaneously. One reason for this is that the fuel flow rate does not change
instantly; it may take 5 seconds or more to reach the full-ahead rate from idle (Rubis
[1972]). Thus for a gas turbine the engine torque may be substantially less than its
final equilibrium value during the “transient” stage of a speed change. For example,
the transient torque of the GE LM 2500 gas turbines described by Rubis {1972] can
be represented as follows:

~ QEO QEC 3.98
Qg = Qgc + 1+ (y4.4)° (3.98)

where Qgc is the “command” value of the torque, corresponding to the ordered
speed, and Qpy is the engine torque prior to the command. This empirical
relationship was derived based on simulation results for changes from idle to a
substantial ahead speed, and should be regarded as a gross approximation in other
scenarios. Accurate simulation of speed changes obviously requires detailed
knowledge of the particular engine and control system; the constants 4.4 and 6 in
Eq. (3.98) are applicable only to the GE LM 2500.

The frictional torque Qr accounts for any losses between the point where Qg is
measured and the propeller. Thus it may account for gear and shaft transmission
losses. The shaft transmission losses are generally assumed to be about 2 to 3
percent of the engine torque (Van Mannen and Van Oossanen [1989]). Losses
associated with reduction gears may be somewhat larger; for the gas turbine system
discussed above,

Qr = 5880n (ft-1b) = (0.01n)ks Qg max (3.99)
for shaft speeds between 35 and 285 RPM (0.583 and 4.75 Hz); Qg may is the single-
engine torque limit.

7.4 Other Operating Regions
The discussions of propeller thrust and torque in the previous sections have focused
on situations in which both the ship speed and shaft speed correspond to ahead

motions. However, other combinations of shaft speed and ship speed are of course
possible. The “normal” situation of ahead speed (u > 0) and ahead RPM (n > 0)
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corresponds to what is called the “first quadrant” of the propeller operating region.
The four quadrants are identified in the table below:

Quadrant u n
1 >0 | >0
2 >0 | <0
3 <0 | <0
4 <0 [ >0

In quadrants other than the first, the representation of propeller characteristics in
terms of Kr, Kq as functions of J is unsatisfactory since, for one thing, J is not
unique; it also does not behave well when n = 0. Thus it is customary to express
four-quadrant propeller characteristics in terms of the alternative coefficients Cr and
Co, expressed as functions of the propeller’s “hydrodynamic pitch angle” Bp:

U
=tan™! A 3.100
Py = tan (0,77mDJ (3.100)

T

C (3.101)

T =
é plU2 +(0.77mD)? ]g D2

Cq = Q (3.102)
%p[Uf\ +(0.77nD)? ]§D3

Based on four-quadrant tests, van Lammeren et.al. [1969] have developed 20-term
Fourier series representations for C(B;) and Co(B,) for the B-series propellers; the
Fourier coefficients in the series can be found in that reference.

7.5  Waterjets

An increasing number of craft are being equipped with waterjet propulsion systems.
These are particularly advantageous in applications requiring shallow drafts as there
is no propeller protruding below the keel; also, the power requirements may be
lower than for systems employing conventional propellers at speeds over 25 knots
(Allison [1993]).

The net thrust produced by the jet is a function of the mass flow rate through
the jet, and the difference between the jet and craft velocities:
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T=pQ(U;-u)=pU;A;(U; -u) (3.103)

where O is the volumetric flow rate. For maneuvers at constant throttle, the jet
speed can be taken as constant; thus, from the initial equilibrium straight-course
values (denoted by subscript 0),

T R
—2=U"-U;Uy »—= (3.104)

where the last (approximate) equality is based on an assumption that the thrust
deduction t ~ 0. This quadratic equation can be solved for the jet velocity if the jet
area A; is known; it can generally be assumed that the jet area is about equal to the
nozzle (jet outlet) area. The subsequent behavior of thrust with velocity can now be
computed using Eq. (3.103) with the jet velocity obtained from Eq. (3.104).

A more comprehensive model of the propulsion system, including engine
dynamics such as described in Section 4.3 above, requires knowledge of the
behavior of the torque of the jet/pump system with RPM and speed. Such data does
not seem to be available in the literature but possibly could be provided by the
waterjet manufacturer. Alternatively, if data on power vs. speed and RPM are
available, and the propulsive efficiency is known or can be estimated, the torque can
be computed using the following relationship:

P, =27Qn=TU/n, (3.105)

The propulsive efficiency is generally a function of both speed and RPM. Allison
[1993] shows how the propulsive efficiency can be estimated for waterjet-equipped
craft.

8. Control Forces and Moments

Control forces and moments consist of those generated by control surfaces, usually
a rudder, but could also be produced by changing the direction of the thrust vector,
as with Z-drives, “azipods”, and waterjets. Also included are forces and moments
produced by “auxiliary maneuvering devices” such as thrusters.
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8.1 Rudders

The forces and moments due to ship rudders can be fairly accurately predicted using
the formulas given above for appendage contributions to the hull forces and
moments. There are two important differences, however: First of all, the effects of
the propeller wash are more pronounced when the rudder is deflected (assuming of
course that it is located in the propeller wash) than when the whole ship is at an
angle of attack. Secondly, depending on the shape of the hull and the type of
rudder, a gap may open up between the top of the rudder and the hull when the
rudder is deflected; this results in loss of the “reflection plane” effect of the hull as
fluid may “leak” through the gap.

A simple approximation for the velocity in the propeller race is available from
“momentum theory”, in which the propeller is regarded as a thin disk which imparts
momentum to the fluid which passes through it (Van Mannen and Van Oossanen
[1989]). Using the theory it can be shown that the ratio of the “outflow” velocity aft
of the propeller, which we will designate as U, for “velocity at the rudder”, to the
“inflow velocity” Uy, is

K
- he 3R (3.106)

A m J2

which we can calculate using Eq. (3.84) or (3.87). It can be seen that the ratio goes
to 1 for large J, and gets very large as J goes to zero.

The rudder lift is given by:
1 2
L, =EpU,ArA6r (3.107)

where , is the rudder deflection, which is positive clockwise looking down at the
rudder, and A is the lift curve slope based on the effective aspect ratio of the rudder,
equal to the geometric aspect ratio if there is a gap between the rudder and the hull
when the rudder is deflected. The rudder induced drag can be obtained from Egq.
(3.63):

A%S,
D, == pUZA, 2
2 na,

(3.108)

where a, is the effective aspect ratio of the rudder. Note that Eqs. (3.107) and
(3.108) pertain to the additional forces produced by the rudder when deflected; the
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contribution of the rudder at zero deflection is contained in the appendage
contribution to the steady forces, e.g. Eqs (3.61) and (3.64)."

Relative to the standard coordinate system, then, the forces and moments
induced by the rudder deflection can be expressed as

Xr = 'Dr
Y. =L (3.109)
Kr = 'LrZr

Nl’ = Ll'xl' + Dl'yl'

where (X..y,z;) are the coordinates of the center of force, which can be assumed to
be on the quarter-chord line at midspan. For multiple rudders, the individual
contributions are summed.

For submersibles, the control surfaces are usually located forward of the
propeller. Thus for such vehicles, U, = U, in Eqgs. (3.107) and (3.108). The lift
curve slope is based on the effective aspect ratio defined in Eq. (3.29) for each
appendage. Equations for the lift (heave force) and pitching moment induced by the
elevators are analogous to the expressions in for side force and yaw moment in Eqgs.
(3.109) above. Note that it is not appropriate to use the fin-hull interference factors
discussed in Section 3.2 for the rudder force, because those factors require the hull
and fins to be at the same angle of attack.

The formulas given above pertain to all-moveable control surfaces. For flapped
rudders or elevators, which are common on torpedoes, the lift expression, Eq.
(3.107), must be modified as follows:

L, :%prA,AS, £(0y,) (3.110)

where
£(8,) =[2(n -6y, )+2sin0, J/2x (3.111)

is a factor based on 2-dimensional wing theory (Keuthe and Schetzer[1959]), and

" There is an inconsistency here in that the effect of the gap between the hull and the rudder, which is
nonzero only when the rudder is deflected, is not usually considered in the contribution of the rudder to
the steady forces. These effects are probably not too significant, but could easily be incorporated in Eqs.
(3.58) and (3.61).
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0, =cos'1[1—2x—h] (3.112)

c
Here xj, is the location of the hinge measured from the leading edge of the rudder or
elevator, and c is the total chord.

8.2  Propeller-Rudder-Hull Interaction

As was alluded to above, the flow over the rudder induced by the propeller is not
uniform in space. For a right-handed propeller, the flow angle at the rudder above
the propeller centerline is fairly uniform and the flow approaches the rudder from
the port side. Below the propeller centerline, on the other hand, the flow
approaches from the starboard side and the angle is generally smaller than is the
case for the top of the rudder; the net effect is a positive angle of attack at the rudder
(Shiba [1960]). This effect is generally accounted for by inclusion of an additional
term in the Y and N equations for ships with an odd number of propellers (the
effects will cancel for pairs of contra-rotating propellers):

Y, = Y* YpU A/ (3.113a)
N, = N*¥. VU AL (3.113b)

where subscript “pr” indicates asymmetrical propeller/rudder interaction. A

suggested “first approximation” for the coefficients Y*' and N*' is (Panel H-10,
SNAME [1993]):

Y*' % [#Pry — #PLu]A/35 (3.114a)
N* ~ [#Pry — #PLu]A(%, /L)/35 (3.114b)

where #Pgy, #Pry is the number of right-handed and left-handed propellers which
are located forward of the rudders (propellers which do not have rudders in their
wash are not counted here, and in fact would generate a small opposing force and
moment).

The presence of the operating propeller also affects the flow over the afterbody
of the hull; thus you might expect that the hull hydrodynamic forces and moments
would be functions of the propeller speed. These effects are usually expressed in
terms of the “propulsion ratio” n, where

n=n/ng (3.115)
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and n, is the equilibrium propeller speed. The propeller/hull interaction-induced
force and moment for surface ships can be expressed as follows:

Yip = Y2pL2u(m-D[Y' v + Y'rrL] (3.116a)
Ny, = %pLPu(m-1)[N',qv + N'rL] (3.116b)

where the subscript “hp” denotes hull-propeller interaction. These effects are due
primarily to interactions between the propeller and rudder.  Approximate
relationships for surface ships are (Panel H-10, SNAME [1993]):

Y',, =(0.8-0.1C; B/T)AA, /12
y', =-0.65Y",
N'yp=Y',, %, /L
Ny =Y x, /L

(3.117)

In a hard turning maneuver, the value of n is typically near 2, and the contribution
of these terms can be significant (15% to 50% of the hull damping hydrodynamic
forces according to Panel H-10, SNAME [1993]). For submarines and torpedoes,
the control surfaces are usually located forward of the propeller and thus not
exposed to the propeller wash. Although these terms are included in the “standard
equations of motion for submarine simulation” (Gertler and Hagen [1967]), that
reference states that “for the moderate changes in ahead speed involved in most
normal maneuvers, all of the (n-1) terms usually can be neglected”.

8.3 Vectored Thrust

An increasing number of marine vehicles are now being equipped with omni-
directional thrusters such as Z-drives, “Azipods”, and cycloidal propellers. These
systems are particularly well-suited for applications requiring a high degree of
maneuverability at low speeds, such as on tugboats, ferries, and in dynamic
positioning systems. The advantage of these systems is that large control forces
acting in virtually any direction can be made available quickly, even at zero speed
(when the forces produced by conventional rudders, proportional to U, is small).
The price one pays is increased mechanical complexity of the propulsion system.

In addition to these azimuthing thrusters, waterjets can also be considered as
thrust-vectoring devices, as they are usually equipped with steering buckets or
deflecting nozzles which produce control forces by diverting the jet velocity vector.
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8.3.1  Azimuthing thrusters

The characteristics of azimuthing thrusters can be expressed in terms of the thrust
coefficient Cr defined in Eq. (3.101):

T=C; % plu2 +(0.7mmD)? ]% D?

Xp =Tcosap (3.118)
Yp =Tsinop

where Cp is now a function of the thruster deflection angle & as well as the
hydrodynamic pitch angle B, defined in Eq. (3.100) and the drift angle of the ship.
The thrust angle o is shown on Figure 3.14. Experimental data on the behavior of
Cr and og as functions of drift angle, B, and & for a typical Z-drive unit are
presented in the form of polar plots by Bradner and Renilson [1998]; sources of
more extensive test results can be found in their paper.

K
Figure 3.14 Azimuthing thruster definitions

Interactions between thrusters on twin-screw vessels are expected to be
significant at large thruster angles when the race or wake of one unit impinges on
the other. These effects are generally confined to the “downstream” unit and almost
always reduce its thrust relative to the open water result. Some interaction data is
shown by Bradner and Renilson [1998], who also present a semi-empirical
mathematical model to predict the interaction effects.
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8.3.2  Waterjets

The control force generated by deflecting the thruster jet is proportional to the gross
thrust of the unit (Allison [1993]). The change in axial force and the lateral force
induced by deflecting the jet are given by*:

X, =Tg{l-cosd

' G(, cosd) (3.119)
Y, =T; sind

The gross thrust is the total thrust produced by the waterjet, without exclusion of the

momentum drag of the water passing through the jet:

Tg =pQU; =pA;U; (3.120)

Thus the control force is considerable compared with that produced by a
conventional rudder. The gross thrust is typically 2.5 times larger than the net thrust
which propels the vehicle (Allison [1993]). So the side force induced by a 10°
deflection amounts to over 40% of the (net) thrust, with a less than 4% reduction of
forward thrust. The yaw and roll moments are obtained by multiplying the side
force by the appropriate lever arms as in Egs. (3.109).

8.4 Control Forces and Moments

A variety of auxiliary thrust-producing devices is available to improve
maneuverability. A common configuration consists of a propeller mounted in a
transversely-oriented tunnel located near the bow of the vessel (called a “bow
thruster”; stern thrusters may also be employed). Because the propeller operates in
a transverse tunnel, its advance coefficient is nearly zero, and thus we would expect
its thrust to be nearly proportional to the product of the bollard thrust coefficient and
the square of the RPM; see Eq. (3.85). Manufacturer’s data usually includes
maximum thrust and the associated RPM; thus for fixed-pitch thrusters the thruster
force vs. thruster propeller shaft speed at zero vessel speed can be established:

2

n

TT(nT)zTTMAX[n 1 ] (3.121)
TMAX

* The subscript “r” is used here to keep the change in axial force, a function of the gross thrust, distinct
from the net thrust, Egs. (3.88) and (3.103).
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We emphasize that this relationship applies only to zero vessel speed. Bow thruster
effectiveness is reduced significantly at low ahead speeds; for example, a 50%
reduction of the thruster-induced turning moment was measured on a model of a
large tanker as its speed was increased from zero to 4 knots; the moment increased
again at higher speeds (Norrby and Ridley [1980]). This reduction is due to the
behavior of the thruster jet at speed and its interaction with the hull (see Figure
3.15). At low speeds, a low pressure region is induced on the outflow side of the
bow; the yaw moment induced by this reduced pressure region opposes the moment
due to the thruster. At higher ship speeds, the jet-induced low-pressure region
extends for the full length of the hull, and so the associated yaw moment is small.

REQUCED -
PRESSURE
REGIONS

Figure 3.15 Behavior of thruster jet with forward speed
(from Chislett and Bjorheden [1966])

The reduction of side force and yaw moment with ahead speed, from the tanker
tests referred to above, is shown on Figure 3.16. In the figure the ratio of the force
and moment (about amidships) to the respective value at zero ahead speed is
expressed as a function of the ratio of the jet velocity to the speed of the ship.
Using Eq. (3.120), the jet velocity can be obtained from the thruster force. Then,

U
Y =T —
T Tgl(Uj]

Ky =-Yrzg (3.122)

U
N =T¢x P
T T ng[Uj]
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Lacking data for the actual configuration being considered, the curves on Figure
3.16 can be used to approximate the speed-induced force and moment reduction
factors g; and g,. The following expressions adequately represent these functions in
the range of velocity ratios shown on Figure 3.16:

U
gl[g]:gz[i}w, 0sL <o

-4917—

U

gl L =153 U 40309 +0.042, 0.1<— <16 (3:123)
U, U, U

j j

-4.466— 2
2, Y i179e Y0399 L 145020269, 0.1<— <16
Uj Uj Uj; U;

Descriptions and characteristics of other types of auxiliary thrusters can be found in
Wilson and von Kerczek [1979].

04 ¢ G=076ms]
. tfams
A 150ms
— Eq (4.120)

° 02 o4 06 o8 1 12 14 18 ] 0.2 04 0§ o8 1 12 14 15

Uy uiy

Figure 3.16 Speed effect coefficients g; and g, (data from Chislett and Bjorheden [1966])

9.  Wind and Current Effects

This section is meant to serve as a brief introduction to the basic effects of wind and
current and to show how these can be incorporated into maneuvering simulations.
Thus only steady, uniform wind and currents will be discussed; a simplified
extension to more complex situations is straightforward, however, involving
integration of sectional forces along the length of the hull.
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91 Wind

If the wind speed and direction are given by U, and y, (corresponding to the
direction the wind is blowing from, relative to the fixed X axis), the velocity
components of the vessel relative to the air are:

u, =u+Uy, cos(y, —W)

v, =v-U, sin( —-y)
ASRYA Y (3.124)

_ 2 2
U, =+4u,” +v,

v, =tan (v, /u,)
where the lowercase “a” denotes quantities relative to the moving vessel.

The aerodynamic force and moment components can be expressed as follows:

1
Xy = ;pAUaZATACXA (‘Va)

Ya =§pAU32ALACYA(Wa) (3.125)
Ny =YA(\Va)xA(‘Va)

where Cxs and Cya are aerodynamic force coefficients, normalized based on
transverse and lateral above-water projected areas Ata and Apa, and X, is the
longitudinal center of the aerodynamic force. Typical ranges of values of these
quantities for several ship types are shown on Figure 3.17 (Martin [1980]). The
aerodynamic force coefficients and center of force are best determined from wind
tunnel tests; lacking such data, the quantities could be estimated based on Figure
3.17.

92 Current

The hydrodynamic forces and moments discussed above obviously depend on the
velocity of the vessel relative to the water. Thus in the presence of a current, all of
the formulas for computing the hydrodynamic forces and moments are valid if the
velocities are taken to be relative to the water. However, keep in mind that this
holds only for the hydrodynamic forces and moments; the inertia terms on the right-
hand side of the equations of motion (e.g., Egs. (3.2)) are functions of the body
velocity as defined in Egs. (1.1) and (1.2) and are thus unaffected by the presence of
the current.
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Figure 3.17 Aerodynamic force coefficients for typical ships (from Martin [1980}) Reprinted with
permission of the Society of Naval Architects and Marine Engineere (SNAME).

The current is generally specified by a speed and direction. If the current speed
and direction are given by Uc and wc (where yc denotes the orientation of the

current vector relative to the & axis'), the horizontal-plane velocity components
relative to the water are:

u,, =u=Ug coslyc -v)

3.126
vy =v-Ucsin(we -v) (3120

These values are to be used in all formulas for computation of hydrodynamic forces
and moments, e.g., Egs. (3.11-3.12), (3.35-3.38), etc.

10. Solution of the Equations of Motion

10.1 General case: Numerical integration

Using the information provided in Sections 1 - 6 above, we are now in a position to
write down the six components of the equation of motion of our vessel, Eqs. (3.2-

' We are assuming that the current vector lies in a horizontal plane; however, the formulas are easily
generalized to 3 dimensions (for submersibles) if another orientation angle is specified.
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3.3), complete with expressions for the applied forces and moments. If control
surface deflections and propeller shaft speed are considered to be given, the six
equations contain 18 unknowns, namely the six components of acceleration,
velocity, and position of the vessel. So we need 12 more equations in order to solve
the system! However, this is not a big deal...the acceleration and velocity
components are related to the velocity and position components, respectively, by
simple first-order ordinary differential equations, so we can easily obtain 12 more
equations without introducing additional unknowns:

u u u
— =<V -—{Vi=V
dt dt .
z w w w
(3.127)
) 1 sin¢tan® cosdtan® |[p p p
d . .
d_te =10  cos¢ —sin ¢ ap3197=14
W 0 sindsecO® cosésecd||r T I

where you will recall that ¢, 6, and y are the Euler angles which specify the
orientation of the body axes (see Section 2 of Chapter 1). Since we began this
chapter with the assumption of small perturbations from equilibrium (which
justified the truncation of the Taylor-series representation of the hydrodynamic
forces and moments), the relationship between the rates of change of the Euler
angles and the angular velocity components can be written as

¢ |1 90 6 |[p
% 0:=10 1 -d|iq (3.128)
W 0 ¢ 1 ||r

There are a variety of methods which can be used to solve these equations. The
most common practice (at least in applications in which the equations must be
solved in real time) is to recast the six equations of motion into six coupled
equations for the acceleration components. First, collect all terms in Eqgs. (3.2-3.3)
involving accelerations:

F* - G; = ((M+A]{a});, i=1,2...6 (3.129)

where F*; represents the i™ component of the total applied force or moment,
exclusive of the component of the added mass force which is proportional to a;; G;
represents the collection of all inertia terms, exclusive of terms involving
accelerations, for direction i; [M] is the vessel inertia or “mass™ matrix, consisting
of all coefficients of accelerations in Eqs. (3.2-3.3); [A] is the added mass matrix;
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and {a} is the 6-component acceleration vector. It will be useful to write out the
mass matrix, as we will be making use of it throughout the remainder of the book:

m 0 0 0 mzg -myg

0 m -Mzg 0 mxg

4] -MZg myc L Ixy Ik
mzg 0 -MXg Iyx Iy Iyz
-myc | mxg 0 I Ly L,

Now, solve Egs. (3.128) for the accelerations a;:
{a} =M + A]'{F* - G} (3.131)

The quantity on the right-hand side of Eq. (3.127) is a function of the six velocity
and six displacement components.

Now Egs. (3.131) and (3.127) can be written as a set of 12 coupled first-order
ordinary differential equations:

S

&)

dat

fa}=M+A]" -G}

{u}

(3.132)

where {x} and {v} represent vectors of the 6 displacement and velocity
components. These equations can be solved using one of the many available
solution algorithms for systems of ordinary differential equations.

Actually, {x} is not really what we want: The quantities in Egs. (3.132) are
expressed with respect to the moving body axes. Displacements relative to such
axes are not very meaningful. What we really need are trajectories relative to the
earth-fixed axes. This is best accomplished by solving the first of Egs. (3.132) for
the velocity components relative to body axes, then transforming to fixed axes
before performing the second set of integrations. Thus we should replace Egs.
(3.132) with



104 The Dynamics of Marine Craft

&)=l (3.132a)
L=

where
El=Entd0w),

[T] is the 3x3 transformation matrix defined in Eq. (1.8), and

b= e

is a 1x6 column vector of the transformed velocity components.

The simplest integration method is the Euler algorithm, which approximates the
values of {u} and {&} at time step n by “integrating” Eqs. (3.132a) assuming that
the right-hand sides are constant for the duration of the time step (and in fact equal
to their values at the beginning of the time step):

{u}an = {u}a + M+ Al {F*, - Gp}At
(3.133)
{E} a1t = {E}n + [THujaAt

where At is the length of a time step. Thus the velocity and position of the vessel at
time t + At are determined from the “initial” values at time t and the rates of change
of these values at time t. So the Euler integrator is analogous to a two-term Taylor
expansion of the velocity and position about the values at time t.

This latter observation permits us to estimate the “local truncation error”
associated with the Euler method: For example, if x were a function only of time,
the Taylor series expansion for & about t = t, would be

d d?
Enu =E(t+A1)=E, + [dgjn [—de At? +.. (3.134)
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Comparison of Eq. (3.134) to the second of Eqs. (3.133) shows that the local error is
proportional to the square of the step size. The total or global truncation error
would be the sum of the local errors for the duration of the simulation. In a
simulation with N time steps, the global truncation error would be

T

—At? ~ At (3.135)
At

gg ~ NAt? =

where ¢ denotes the global truncation error and T is the total time of the
simulation. Thus the global error is proportional to (or more precisely, “of the order
of”) the step size; for this reason, the Euler method is known as a “first-order
method”. To reduce the error, then, we can reduce the time step size”. There is a
penalty, though, since the number of calculations we must do per unit time goes up
in proportion to the step size. This is an important consideration in applications
such training simulators in which the calculations must be accomplished in real
time, since there is a limit on how many computations a computer can carry out in
any real time step.

Another factor which must be considered is numerical stability. Stability is
determined by the behavior of a system after it receives a small perturbation, as in
our discussion of hydrostatic stability in the previous chapter. In the present case
we must ask what happens if our numerical solution is “perturbed” at time step n.
Since the calculated position at time step n+1 depends on its value at time step n,
the perturbation will “propagate” forward in time. If the perturbation grows in time,
the integrator is numerically unstable. Numerical stability is a function of the
characteristics of the physical system and of the integration step size; if the time
step is too big, the solution can “blow up” even if the actual system is perfectly well
behaved.

If the system of equations, Eqs. (3.129a) is linearized by neglecting terms
involving products of the velocity and displacement perturbation components, the
general solution is of the form

{&®)} = {&o}e” (3.136)

This should look familiar; it is the same as the solution we encountered in Section 4
of Chapter 2 on Hydrostatic Stability (see Eq. (2.45)). The difference is that now
we have some applied forces and moments. As in Chapter 2, we will substitute the
solution, Eq. (3.136), into the equations, Egs. (3.132), to obtain the characteristic
equation for o. For this system of 12 first-order equations, we anticipate 12
solutions which may consist of real values and pairs of complex conjugates. These

* However, at very small step sizes, roundoff errors may become significant; see[Ref].
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values are sometimes referred to as the eigenvalues of the system’. In Chapter 2 we
found that hydrostatic stability is determined by the sign of the real parts of the
eigenvalues associated with Eqs. (2.47). In the next section we will see that
directional stability is related to the eigenvalues in Eq. (3.136).

The reason for bringing all of this up in the present section is that the stability
of a numerical integration algorithm applied to the linearized equations discussed
above is a function of the product of the eigenvalues and the integration time step.
For example, it can be shown that the Euler algorithm is numerically stable if

oAt + 1] <1 (3.137)

for all values of o. If o is real (as for supercritical damping, for example), Eq.
(3.137) says simply that

2 <GAt<0 (3.138)

which indicates that the integrator is stable only if the system is stable (¢ < 0) since
At must be positive (so for example the Euler integrator could not be used to
simulate the motions of a vessel whose GM does not satisfy Eq. (2.50)). For
example, if the largest eigenvalue was -2.0 sec™, the largest permissible time step
would be 1 second. However, for pure imaginary values of ¢ (e.g., zero damping),
Eq. (3.137) cannot be satisfied at any nonzero step size.

In the general case when o is complex, we can substitute
cAt=a+ib
in Eq. (3.137) and square both sides to obtain
(a+1P +b°<1
which corresponds to the region inside of a circle with unit radius centered at (-1,0)
on a plot of b vs. a (i.e., the “complex cAt plane™) as shown on Figure 3.18. We
anticipate problems for lightly-damped cases with high natural frequencies (values

of a near zero with large values of b) since the value of At will have to be very small
to get (oAt) inside the circle in this case.

¥ In some references the eigenvalues are defined somewhat differently; 1/ and C/o?, where Cis a
constant, are some common variants. The definition depends on how the “characteristic value problem”
is imitially set up.
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There are, of course, many other integration algorithms available, just about all
of which have lower truncation errors and larger stability regions than the Euler
method, at the cost of increased computational effort. A popular alternative is the
“fourth-order Runge-Kutta” (RK-4) algorithm. This method uses not only the slope
of the function at the beginning of the time step, but also two estimates of the slope
at the middle and an estimate of the slope at the end of the time step, to obtain a
better estimate of the value of the function at the end of the time step. The resulting
global truncation error is of the order of At* which is why RK-4 is called a “fourth-
order” method. The penalty is that the right-hand side of Eqgs. (3.133) must be
evaluated four times per time step. So in order to justify this computational
expense, the truncation error for RK-4 using a time step At must be less than that for
Euler using a time step At/4, provided that Euler is stable”.

3 /_\
RK—4/
2
1 Euler
2 /
L o
g k
-1
) \\
3 \/
-3 2 -1 0 1

Re(cAt)

Figure 3.18 “Stability map” of Euler and RK-4 integrators

¥ RK-4 is just one member of the Runge-Kutta “family”; the algorithm can be extended to any order.
However, 4" order seems to strike a good balance between computational effort and accuracy in many
cases of practical interest.
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The stability region of the RK-4 algorithm is also shown on Figure 3.18. It can
be seen that the region is quite a bit larger than that of the Euler method, particularly
near the imaginary axis; so this method is particularly advantageous for the “high
frequency lightly-damped” case which is a problem for the Euler method (in fact,
the RK-4 stability region extends slightly over into the right half-plane, indicating
that it could produce reliable results for some unstable systems).

The Euler and RK-4 algorithms are both explicit in that they rely only on data
from the current time step to make predictions for the next time step (other explicit
methods, such as the “Adams-Bashforth predictors”, use data from previous time
steps as well). Even better from a stability standpoint are the implicit “corrector”
algorithms, which call for data at future time steps and thus require iteration to
arrive at the solution. These methods are unconditionally stable, but the added
expense of the iterations in addition to multiple evaluations per time step usually
cannot be tolerated in real-time simulations.

There are also a number of methods which employ a variable time step size; the
step size is progressively reduced until the estimated local truncation error falls
below a limit prescribed by the user. In fact, variable step size can be employed in
conjunction with the RK-4 algorithm. However, as with the implicit methods, the
additional computing time may be a problem for real-time simulators. In addition,
such simulators are generally designed to operate at a constant integration rate
because of hardware requirements (for example, displays are updated at constant
rates). So, the RK-4 algorithm, and even the Euler method, continue to be used in
real-time simulations.

10.2  Solution of the Linearized Equations; Stability

The equations of motion, Eqs. (3.2-3.3), are obviously nonlinear because the inertia
terms involve products of the velocity components. There are also nonlinearities in
the expressions for the added mass forces, Egs. (3.11-3.12), the steady forces, Egs.
(3.35), and even in the gravity-buoyancy forces derived in the previous chapter.
These equations must be solved numerically as described in the previous section.

However, if the velocity components (besides ug) are sufficiently small, the
terms involving products of the velocity components (u*v,w,p,qr) can be
neglected. The resulting set of linear equations can be solved analytically as
mentioned above. Much of the early literature on vessel maneuvering and control
theory dealt exclusively with these linear equations of motion, since computers were
not yet available to solve the fully nonlinear equations. Although use of the linear
equations is not recommended for general maneuvering simulations, they are still
useful for examination of directional stability.
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The concept of stability was discussed in the previous chapter in the context of
hydrostatic equilibrium. In the present case we are concerned with the fate of small
disturbances to the vessel in steady, level flight. In particular, we will examine
controls-fixed directional stability, in which control forces are assumed to be zero.
A vessel is said to possess controls-fixed directional stability if all velocity
perturbations tend to decay in time; i.e., u*=v=w=p=q=1—0 as t—>. Note that this
does not imply that the vessel returns to the original heading subsequent to the
disturbance; in general it will not, without the intervention of human or automatic
control. However, the stable vessel will return to a straight course, whereas an
unstable vessel will continue to turn at an increasing rate. Use of the linearized
equations to examine stability is justified because the disturbances are small by
definition®.

The equations of motion were presented above as Egs. (3.2) and (3.3). Actually
these equations show only the right-hand sides, or inertial terms, in the equations;
we are now in a position to insert the applied forces and moments on the left-hand
sides. To simplify matters somewhat we will assume that the vessel has port-
starboard symmetry, both geometrically and in mass distribution, so that yg = Iy, =
I,, = 0. Then, inserting the gravity-buoyancy forces, Egs. (2.27) and (2.32) (which
are applicable to surface ships and neutrally-buoyant submersibles), the added mass
forces, Egs. (3.11) and (3.12), and the steady forces, Egs. (3.35a-f) in Egs. (3.2) and
(3.3), and neglecting terms involving products of the velocity perturbations
(u*,v,w,p,q,1), we eventually obtain:

ag+aw+a,q+Xp + X,
=(m+ A )i+ Apw +(mzg +A5)a+AyUgg

bv+byp+bir+Yp+Y, (3.139)
=(m+A22)"’+(' mzg +A24)p+(me +A26)':+(m+A11)U0r_A31U0p

Co+CW + 30— pgAwpG + pgA wpXcrO + Zp + Z,

= Agpli+(m+ Az W+ (- mxg + Az - (m+ A )Uoq

* Of course if the vessel is unstable, the disturbances will not remain small and thus simulations based on
the linearized equations will at some point become invalid; however the conclusion that the vessel is
unstable is completely valid. We should also mention that nonlinearities may mitigate the effects of
instability, e.g. we would not expect perturbations to become infinitely large because of viscous effects.
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d;v+d,p+d,r—pgVoGMq0 + Kp + K,
= (_ mzg + A42)V + (Ixx + A44)f’ + (Ixz + A46)f + A5 Ugv - (mZG + 1"‘51)Uor
(Asy = Aj Uow + e, + W + €,q — pgV o GM 0 + pgA wpX el + My + M,

3.140
= Agu+(-mxg +Ag )W +(Iyy +Ass g+ mzgu+ (mxg - Asgs)Ugq ( )

- A31(U02 +2Uu *)
(Ay = Ay )Ugv + fiv + fop + fyr + Np + N,
= (Mg + Ag v+ (T, + Agy )+ (I + Ags )t + (Ags + A5 JUgp + (mxg + Ay Uor

As is customary, we have grouped the added mass terms with the corresponding
mass terms on the right-hand sides, except for the unique Munk moment terms
discussed in Section 2 above. For the moment we have not filled in the expressions
for the propulsive and rudder forces and moments, and we will neglect propeller-
rudder interactions.

Notice that something interesting has happened to the equations (besides the
fact that they have become much simpler than their nonlinear counterparts!): The
X, Z and M expressions involve only surge, heave and pitch motions, velocities and
accelerations; and the Y, K and N expressions involve only sway, roll and yaw
displacements, velocities and accelerations. That is, as a consequence of port-
starboard symmetry and neglecting higher-order terms, the surge-heave-pitch
motions have become uncoupled from the sway-roll-yaw motions (aside from any
coupling “hidden” in the propulsion and rudder terms)! This is significant in that it
halves the order of the characteristic equation (although there are now two
characteristic equations).

10.2.1 Horizontal-plane motions

For examination of the maneuverability of surface ships, we are concerned
primarily (if not exclusively) with the quantities &, 1, y, u, v, and r. It is customary
to set the other velocity and displacement components (and the corresponding
accelerations) equal to zero, and to consider only the X, Y and N equations, which
amounts to neglecting the coupling of surge and roll with heave and pitch, and sway
and yaw, respectively. Under these conditions, the linear equations reduce to the
following:

ag+ Xp + X, =(m+A“)t'1
bv+byr+Yp+Y, = (m+A22)\"+(me +A26)f+(m+A“)U0r (3.141)
(A = Asy)Ugv+fv+fr+ Np + N,

= (mXG +A62)V+(Izz +A66)]:+(me +A26)U0r
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We can further simplify these expressions by neglecting the propulsor-induced
side force and yaw moment, which are generally small anyway. Setting the rudder
forces and moment equal to zero yields the controls-fixed linearized surge-sway-
yaw equations:

ay +Xp =(m +A“)L'1
byv+byr=(m+ Ay, V+ (mxg + Ay i+ (m+ A, JUgr (3.141a)
(Aj = Ay )Ugv+fiv + fir = (mxg +Ag)o + (I, + Ags i +(mxg + A )Uor
It is apparent that the surge equation is not coupled with the sway and yaw
equations. The surge equation is, however, deceptively simple, since the drag term
a, is a complicated function of the velocity u. However in the immediate vicinity of
u=Uj, we can say
a9 =~ app T amu* (3 142)
which is consistent with the linearization of the other terms; ap and a,, represent the
value and slope of the axial force vs. speed curve at u = U, Similarly, we can
express the propulsive force as
Xp = Xpo + Xpu* (3.143)
at constant shaft speed’, and Xy, and the slopes Xp, and Xp, are functions of the
equilibrium values U, and n,. Substituting Egs. (3.142-3.143) in the first of Egs.
(3.141a) we obtain:

(m+A, Ju*—(ag, +Xp Ju*=0 (3.144)

where we have used the fact that for equilibrium, agy + Xpy = 0, and that
d
u=—(U, +u*)=u*.
LUy 40
The solution of Eq. (3.144) is just

+X
u*=u*, exp 3—0—1—}31—’[ (3.145)
0 m+A
1

¥ Shaft speed perturbations could also be considered; in this case we would also need to include the
(linearized) shaft torque equation, Eq. (3.93).
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The denominator of the exponential factor is positive; the slope of the axial force vs.
speed, ag;, is almost always negative (i.e., the slope of resistance vs. speed is almost
always positive). In addition, at constant RPM the propulsive force generally
decreases with increasing speed, so Xp, is generally negative. Therefore the
coefficient of t in the exponential is almost always negative, which is the condition
for stability; that is, the perturbation u* decreases exponentially in time. Thus
nearly all vessels are stable in surge”.

As we saw in Chapter 2, the general solution of the coupled linear yaw and
sway equations is:

v=v,e; r=re% (3.146)

where v, and r, are arbitrary constants corresponding to the initial values of the
perturbation components. Rewriting the linearized sway/yaw equations as

B,v+B,r+B;v+B,r=0

. . (3.147)
Fv+Fr+Fv+Fr=0

and inserting Egs. (3.146) yields a pair of simultaneous equations in v, and ry:

(csF1 +F3)vk +(c5F2 +F4)rk =0
Since vy and 1, are arbitrary, these equations must hold for all possible choices.
This is possible only if the determinant of the matrix of coefficients of {v,Iy} is
zero, which yields the characteristic equation for the exponent :

Ac’+Bo+C=0 (3.148)

where

“ Possible exceptions include planing and semi-planing vessels, whose resistance vs. speed curves may
contain a local maximum or “hump™; this is associated with the behavior of the trim angle, so that the
(nonlinear) coupling of surge with heave and pitch has an important effect in this case.
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A =BF, - BoF; = (m + Ag Nz + Ags )~ (mx g + Asg (mxg + A2 )

B = B;F + BiF;, - B,F - B:K
= (— b1XIZZ + A66)+ (m + AZZX(mXG + A26)U0 - f3] (3.149)
- [(m+A11)U0 — b3 fmxg + Ag ) (mxc; +A26)[— (An —Azz)Uo —fl]

C = B;F;, - B4F
= (- by )f(mxg + Axs)Uo - 3]~ [(m+A11)U0 -bs[-(An - An)Uo - fi]

As stated above and in Chapter 2, the criterion for stability is that the
characteristic values ¢ (usually referred to as the “stability indices”) have negative
real parts. In the present case it is not very difficult to determine the characteristic
values by solving the characteristic equation, Eq. (3.148). However in a more
general case the characteristic equation could be as high as 12™ order (if all possible
couplings are present)! In such a case it is not practical or even necessary to
actually determine the characteristic values if one is only interested in whether or
not the system is stable. A necessary condition for every root of a polynomial
equation to have a nonpositive real part is that all coefficients of the characteristic
equation must have the same sign. It can be shown that this is also a sufficient
condition for quadratic equations like Eq. (3.148) (Wylie [1960]). For higher-order
characteristic equations, stability can be determined using the “Routh-Hurwitz
stability criterion”; details are provided in Appendix C.

It can be shown that the coefficients A and B are always positive. First let us
examine A. The quantities (m+A;,) and (I,,+Ags) are both large positive numbers;

typically,
(m + All) =~ Zm’ (Izz+ A66) ~18 Izz

The second term in A represents coupling between sway and yaw, i.e., the yaw
moment produced by acceleration in sway and vice-versa. This is generally small
since the center of hydrodynamic and inertial force for sway acceleration is usually
near the geometric center of the vessel (or, the contribution of bow to the side force
produced during yaw acceleration is nearly equal and opposite to the contribution of
the stern). Thus the first term in A overwhelms the second and A is positive.

With regard to B, the coefficient b is a large negative quantity, representing the
rate of change of side force with sway velocity; it is the negative of the horizontal-
plane “lift curve slope” dY/dp of the vessel. We have already seen that (I, + Agg) is
a large positive quantity; thus, the first term in B is large and positive. In the second
term, the coefficient f; represents the yaw moment induced by yaw angular velocity,
which is negative. We have seen that the factor (m + Aj,) is large and positive; the
term (mXg + Aj) may be positive or negative but is relatively small as stated
previously. Thus the second term in B is also positive. The third and fourth terms
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involve factors which represent sway-yaw coupling, such as (mxg + Ay), b; (side
force induced by yaw angular velocity), and f; (yaw moment induced by sway
velocity), which are expected to be smali as argued above. These terms may be
positive or negative, but in any case they are dominated by the first two positive
terms. Therefore B is a positive quantity.

Determination of controls-fixed directional stability in the horizontal plane thus
boils down to a determination of the sign of C: If it is positive (like A and B), the
vessel is stable. For stability*:

(b f(mxG + Aze)Uo = 5]~ [(m+ Ap)Uo - bs[- (A1 — An)Uo - f1]> 0 (3.150)

We have pointed out that the coefficient b, is always negative; so moving the center
of mass forward (increasing xg) makes the first term more positive and thus
improves stability, as you might expect.

It is convenient to put Eq. (3.150) in nondimensional form. This is
accomplished by dividing the first and second factors in the first term by “2pUyL?
and Y%pU,L*, and the first and second factors in the second term by %pU,L’. The
result is as follows:

C= (— bl')[(m‘XG‘+A26')— fa']‘ [(m'+A“’)— bs'I‘ (An"'Azz ')‘ fl'] >0 (3.151)

where the steady force and moment coefficients are normalized as indicated in Egs.
(3.40-3.43), and

L m ' X ] A Ll A ' A
m=173 % Z—LQ; An 21_1'1?; An 21—223; Ag'= 1 264 (3.152)
EpL EpL EpL -pL

(Notice that the three-dimensional added mass factors A" are normalized based on
the length, whereas their two-dimensional counterparts A;(x)' are normalized based
on the draft; see Eqgs. (3.21-3.23)). Eq. (3.151) shows that the horizontal-plane
controls-fixed directional stability of a vessel is independent of its speed, if it can be
assumed that the coefficients themselves are independent of speed. As discussed
previously, this is not a bad assumption for most displacement ships at low speeds
and for submersibles.

The other coefficients in the characteristic equation can also be normalized:

“ Eq. (3.150) looks a little different than the stability criterion given in other texts; this is because the
added mass terms Ajs, Ajy and (Ay; - Az)Up (the Munk moment) are usually combined with f3, bs, and f;,
respectively; see Eq. (3.156) below.
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A'= ('+A 5, NI, +Age )~ (XA m' x 6 +Ag )
B'= (- b MI,, +A g )+ (m+ Ay Nm'xg +As )~ 5] (3.153)
~ [+ A )= by Am'xg + Age) - (m'xg + A M- (A=A )= £

which like C' are not explicitly dependent on speed. The following definitions
should be obvious but we will list them anyway:

L, =2 Ag'=— % (3.154)

The solution of the normalized characteristic equation yields the nondimensional
characteristic values or stability indices,

o= (3.155)
Ug

10.2.2 Example: Controls-Fixed Stability for Horizontal-Plane Motions

As an example we will consider the ship examined in Section 2.4 above.
Characteristics appear in Table 3.1. The linear steady-flow force and moment
coefficients will be approximated using Egs. (3.44). To apply these coefficients,
however, we must keep in mind the associated caveat that was mentioned in Section
3.1.1: The empirical expressions account for the total hydrodynamic force (or
moment) which is linearly proportional to a given velocity component. Thus they
include both the added mass and the steady force effects. To make use of these
expressions, then, Eq. (3.151) should be written as follows:

C'= (- b)Ym'xg ']~ [m-by [~ '] > 0 (3.156)
The coefficients calculated according to Egs. (3.44) are presented in Table 3.5. The
value of x5 was computed by numerical integration of the section area curve.
Plugging into Eq. (3.156), we obtain the result shown in the table,
C'=9.86x10°>0,

so that the ship is stable.

The coefficients A and B may also be computed; the results are also included in
Table 3.5. Solution of the characteristic equation yields the stability roots:
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o, =-0.177; o;'=-3.12

The roots are real, indicating exponential decay (“supercritical damping” for yaw
and sway). The solution associated with &,' damps out very quickly, falling to less
than 1% of its initial value at t' = tUy/L = 1.5, or the time taken for the ship to move
1.5 ship lengths. The solution associated with o', however, is much more lightly
damped, falling to 1% of its initial value at t' = 26.

TABLE 3.5 Coefficients for controls-fixed stability example

by -0.014611
b’ 0.003771
fi’ -0.005935
' -0.002543
m' 0.008291
XG' -0.00392

A 1.78E-05
B' 5.88E-05
C' 9.86E-06

It should be pointed out that controls-fixed directional instability is not
necessarily a bad thing: A high degree of directional stability implies that a vessel
will be difficult to steer, which is undesirable in some situations. Many large ships
such as tankers are unstable. These ships can be operated safely by well-trained
helmsmen or with the aid of automatic control systems. The designer should ensure
that his vessel will not be excessively unstable (uncontrollable) by comparing the
stability index (the stability root with the largest algebraic value) to that of similar
vessels which are known to posses good maneuvering characteristics.

It is also worth mentioning that the linearized sway and yaw equations, the
second and third of Egs. (3.141), have other uses besides evaluation of stability. If
the rudder force and moment are retained, and the accelerations are set equal to
zero, we can obtain expressions for the values of v and r in a steady turn
corresponding to a given rudder angle. However, since nonlinear terms have been
discarded, accurate predictions for all but the most gradual turns (rudder deflections
of about 10° or less) cannot be expected based on these expressions. With this
caveat in mind, we can easily compute the steady drift and yaw angular velocities.
First, to conform more closely to the popular nomenclature, we will express the
linear components of the rudder force and moment as
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Y, = (% pU, L2 )YS'S
1 203 Wy o
N, —(EpUO L )Ns 5

The dimensionless coefficients can be determined using Eqgs. (3.107) and (3.109).
The steady drift and yaw angular velocities are:

(3.157)

v'= UL = {N5'[o, ~(m+A, )] Yy [f3 (o' x 6 +A 5 )3/ C

0 (3.158)

L . ' ' i ' ' '
r'=~[rj_= {Ys [(An -Ay )+f1 ]_NS b, }S/C

0

Note the appearance of C' in the denominator, which implies that both the drift
velocity (and so the drift angle) and the angular velocity increase as C approaches
zero. Thus the marginally stable vessel turns well (large yaw rate for a given rudder
deflection) at the expense of a large drift angle, which generally leads to larger
speed loss in the turn. This latter effect cannot be determined using the linearized
equations as it involves the “vv” and “vr” terms in the X equation; the degree of
speed loss also depends on the type of powerplant (so we must consider the torque
equation also). Equations (3.158) are not applicable to unstable vessels, which do
not approach the steady-state solution because the transients increase in time.

The directional stability of a ship is determined during trials by execution of the
“spiral maneuver”. In a spiral maneuver, the rudder is first given a large deflection
(say -25 degrees), and held in this position until a constant yaw angular velocity is
achieved. The angular velocity is recorded, and the rudder deflection is then
reduced, by 5 degrees for example (smaller increments are necessary at smaller
deflections), and again held until the yaw angular velocity is constant. The
procedure is repeated down to zero rudder deflection and continuing in the opposite
direction (up to +25 degrees). Then, the entire procedure is repeated, while
changing the rudder deflection in the opposite direction (+25 degrees to -25 degrees
in our example). Typical results for stable and unstable ships are shown on Figure
3.19. The second of Eqgs. (3.158) gives the predicted r' - & curve in the linear range.

Figure 3.19 shows that the ' - § curve for unstable ships exhibits a “hysterisis
loop”; that is, below a certain rudder angle, there are two equilibrium angular
velocities which have opposite sign. Which solution is actually obtained depends
on initial conditions; both the increasing and decreasing sequences of rudder
deflections are generally necessary in the spiral test in order to define the loop. In
particular, note that the unstable ship cannot proceed on a straight course at zero
rudder deflection, which is an unstable equilibrium condition.
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Figure 3.19 Spiral maneuver results for stable shipA and unstable ships B and C (from Panel H-10,
SNAME [1993]. Reprinted with permission of the Society of Naval Architects and
Marine Engineers)

10.2.3  Vertical-plane motions of submersibles

We will next examine the controls-fixed directional stability of a neutrally buoyant
submersible in a vertical plane. The vehicle will be assumed to be in hydrostatic
equilibrium with its longitudinal axis horizontal, so that xg = xg (the form of the
gravity-buoyancy terms in Egs. (3.139) and (3.140) already incorporate this
assumptionbb), and to possess 4-fold rotational symmetry. This last assumption
means that

A31=a1:a2=c0=60=0.
Furthermore, the submersible is assumed to be submerged, so that
Awp=0; Vo= V; GM = 76 - 2 = Zg;

the latter is true since zg = O for a vehicle with 4-fold symmetry.

™ This is not a necessary assumption, and in fact some torpedoes are not neutrally buoyant as we will
discuss later.
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Under these assumptions, the linearized controls-fixed surge-heave-pitch
equations are:

(m+ Ay )i +mzgq=a,+Xp
(m + A33)v'v +(A35 ~me)c1—c,w—[(m +A11)Uo +02]q =0 (3.159)
mzgu +(A53 - mXG)W + (Iyy +A55)fl - [(A33 - An)Uo + el]W

+[(mxg — Ass)Uq - e, Ja+ pgVza=0

where we bave neglected the transverse force and moment on the propeller, Z, and
M,. Despite the assumptions, these equations are still formidable: Since the pitch
dlsplacement is involved, the equations are “really” of 2" order, so that the
characteristic equation is 6" order. It is tempting to simplify the system further by
setting u= 0 and neglecting the surge equation, as was done above for the lateral
plane. However, this is not a valid option in the present case because of the
presence of the mzg q term in the surge equation, representing coupling with pitch.

Neglecting the surge equation will result in erroneous predictions of stability.

In order to solve Eqgs. (3.159), then, we have to deal with the right-hand side of
the surge equation. In equilibrium “steady level flight”,

ao(Uo) + Xp(Uo,no) =0

Strictly speaking, to assess the effects of a velocity perturbation, we must examine
the behavior of the shaft speed, which will involve consideration of the torque
equation and engine dynamics. To simplify matters, we will assume that the shaft
speed remains constant. Then (a, + X,) can be expressed as a function of the
longitudinal velocity perturbation u*;

ap + X, = agou* +agu*? +agu*® + ... & agu* (3.160)

where the latter (approximate) expression is consistent with the linearized
equations.

The salient difference between the heave-pitch equations above and the
linearized yaw-sway equations is the presence of the pitch “restoring moment” term
proportional to 8. This term not only raises the order of the characteristic equation,
but also leads to a fundamental change in behavior due to the fact that, unlike the
other terms in the equations it is independent of speed, as we will see.

The solution of Eqs. (3.159) is of the form

E(t)=E e C(t)=L, e O(t)=0,e” (3.161)
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Substitution of (3.161) in (3.159), and setting the determinant of the matrix of
coefficients of {,, &, Ox} equal to zero, yields a 6™-order characteristic equation as
we mentioned above. However the characteristic equation is now of the form

o’ (Ac* + Bo® + Ca* + Do + E) =0 (3.162)

i.e., there are two trivial solutions corresponding to the neutrally-stable surge and
heave modes. So we really only have to deal with a quartic equation. The
coefficients are:

A= (m +A11)[(m + Assxlyy + Ass)‘ (me - A35)2]— (sz)z(m + Ass)
B = (m + All){(m + A33I(me - AU - e, ]- cl(Iyy + A55)
+(As —me){[(m + An)Uo + Cz]+ [(A33 - AU + el]}}
—ag [(m+ Ass)(lyy + Ass)_ (mxg —A35)2]+ ¢,(mzg

C= —aoo{(m + Agy flmxg — Azs)Uq - e2]—cl(lyy + Ass)}
+(Asy —mxg f(m + Ay U + 2]+ [(Ass ~ AU +e ]}
—(m+ Ay Yo [(mxg - Ass)U — ;] (m+ Ay )pVzg
+[(m+A11)Uo +C21(A33 - AU, +e]]}

D = agofei[(mxg — Ass)Ug — ey |- (m+ AsyJpgVzg

+m+ AU, + e J(A 5~ AU +e - (m+ A eipeVag
E =ayc,pgVzg

(3.163)

or, in the more convenient dimensionless form,

A'= (m'+A11')[(m'+A33'nyy'+A55')— (m'xg "A35')2]‘ (m'zg'F (m'+As;)
B'= (m'+A11'){(m’+A33'I(m'xG‘—A35')— e;,_']— Cl'(lyy'+A55')
(A= Wm+A )+ oo+ (A =Ay )+ e T
- aOO|[(m’+A33'XIyy'+A55')_ (m'xg'-Ass ’)2]“' o'(m'z Y
C'= —ag [+ Ay Y x 6 = Ass) - e |- ' (L,y +A s )} (3.163a)
+(Ag-m'xg Wm+ay)+ ]+ Az -Ar ) +e ]
- (m"“'Au'){Cl'[(m'XG'—Ass')— ez']* 2(m'+A33')V'ZG ’/Fn2
+Hm+a, )+ TAs-Ay )+ e ]
D'= aoo'{cl’[(m'xG "A35')_ ez']_ 2(m’+A33 ')V‘ZG'/FHZ
+[(m+A,)+ o, TAss-AL)+ e']- 2(m'“LAu')Cl'V'ZG'/FH?'
E'= 2a00'cl'V'zG'/Fn2
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where xg and the volume V are normalized based on length and length’,
respectively, and Fn is the Froude number:

Fn=

JiL

Thus coefficients C', D' and E' are speed-dependent.
The Routh-Hurwitz stability criteria (Appendix C) in this case are®:
A, B, C,D',E'>0,B'C'- A'D' >0, and B(C'D' - B'E") - A'D" > 0 (3.164)

The coefficient ¢,, which is the rate of change of Z with w, is always negative (e.g.,
when the submersible is running at a positive angle of attack - nose up - w is
positive but Z is negative...recall that the z-axis is positive downward ). The
coefficient ag is also always negative: Resistance increases and thrust is reduced
when the speed increases. Thus E' is positive when z is positive: the CG must lie
below the CB (which is located at z = Q) for stability. This is also the condition for
transverse (roll) stability. Also notice that E' approaches 0 as the Froude number
increases, implying a loss of stability with increasing speed. In fact, submersibles
(and SWATH hulls) have a maximum speed for controls-fixed directional stability.
It is generally desirable to ensure that this is above the maximum speed of the
vehicle.

10.2.4 Example: Controls-Fixed Directional Stability for Vertical-Plane Motions

To examine how speed and CG height affect directional stability in a vertical
plane®, we will look at the very simple submersible design shown on Figure 3.20.
The hull is a spheroid with a length/diameter ratio of 8.0 (this is not necessarily the
best choice hydrodynamically, but it is convenient for illustration). The total span
of the tail fin is 80% of the hull diameter, and the chord is 4% of the hull length. To
be consistent with the assumptions made in the previous section, we assume neutral
buoyancy with xg = xg. It is convenient to adopt a coordinate system with origin at
the center of the spheroid so that xg = xz = 0.

v

Figure 3.20 Simple submersible configuration

“ There is an additional criterion for 4"-order polynomials, which is redundant in the present case.
% Stability in a vertical plane is sometimes referred to as “longitudinal stability”.
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For the spheroidal hull, the added masses can be computed accurately using the
Lamb formulas, Eqgs. (3.14) — (3.18). Results are shown in Table 3.6. These
formulas make use of the displaced volume of a spheriod,

2
V = nLd*/6; m'= —E(gj
3 L

and the moment of inertia of the displaced fluid, Eq. (3.32a).

The steady side force coefficient of the hull, ¢, is calculated using Eq. (3.47).
From Eq. (3.47), the effective base area turns out to be

Ap. = 0.34A

where A is the maximum cross-sectional area of the hull. The x-coordinate of the
effective base is easily computed using the formulas for an ellipse:

Xpe = -0.812(L/2) = -0.406L

Now the remaining steady hull heave force and pitch moment coefficients can
be computed using Egs. (3.48). Results are included in Table 3.6.

The fin area is just the product of the span and the chord, less the area
“covered” by the hull. Again, this is easily computed for an ellipse, and the
resulting fin planform area is

Ag=0.00268L°

The fin contributions to the added mass coefficients can now be evaluated using
Egs. (3.28) — (3.30), and the contributions to the steady force and moment
coefficients using Egs. (3.61) and (3.69) — (3.72). Results are given in Table 3.6. It
should be mentioned that the contribution of the propeller(s) to the heave force and
pitching moment rates is not always negligible for submersibles.  These
contributions can be computed using Eqgs. (3.95). However in the present case,
using the propeller characteristics given below, it can be shown that the propeller-
induced lift and pitch moment amount to about 1% of the corresponding hull+fin
contributions, so their neglect is justified in this example.
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TABLE 3.6 Hydrodynamic coefficients of submersible

Length / diameter

Fin chord / hull length
Fin span / hull max. diameter

Hull hydrodynamic coefficients:

Ay
A33'
Ass'
Cl'
Cz'

1
€1
Cz'

Fin hydrodynamic coefficients:

dCL/ do

Ay
Assf
cif

| J— '
Cof = €15

1
Cof

8
0.035
0.80

0.0004786
0.015458
0.0006975
-0.008356
0
-0.003393
-0.001378

4.233

0.0001090

2.554E-05
-0.01024
-0.004959
-0.002400

Finally, we need to evaluate the linear “thrust minus drag” coefficient, a,.
Note that all of the other coefficients can be evaluated in purely nondimensional
form; we do not need to specify the absolute size of the vessel to obtain all of the
coefficients except this one®™. We will assume that the vessel is a deep-sea research
vehicle (perhaps an AUV) with the characteristics given in Table 3.7.

Table 3.7 Submersible characteristics

Hull length, m

Hull max. diameter, m

Fin chord, m
Fin span, m
Speed range, kt

6.10
0.762
0.213
0.610
0-6

The rates of change of resistance and thrust with u can be calculated
analytically but it is more straightforward to compute the values for a small range of

“ This is because we are tacitly ignoring possible Reynolds-number effects on the other coefficients.
This is acceptable for consideration of small perturbations provided that the coefficients are appropriate
for the Reynolds number corresponding to U,.
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speeds centered on the desired equilibrium value and to fit a line to the data (this
works regardless of the particular expressions used in the computation of resistance
and thrust). Hull resistance is computed using the Schoenherr formula, Eq. (3.75),
and a form drag coefficient of 0.0051 based on frontal area, which is assumed to be
independent of speed [ref]:

oy = -¥4pU*S(Cr + 0.0051S/A)

Here S is the wetted surface area of the hull, which for a prolate spheroid is given
by

S-= Zn(bz +3b e) (3.164a)
e
so that
-1
g=3 _ppfd,sinel ,cd L4 (3.164b)
L? L e L d

where d is the maximum hull diameter. The eccentricity e was defined in Eq.
(3.15).

The contribution of the tail fins to resistance is estimated based on the
Schoenherr frictional resistance, calculated using a Reynolds number based on their
chord length.

Propeller performance (Ky vs. J) can be estimated based on the B-series fits (see
Appendix B). The thrust deduction and wake fractions are estimated using the
information given in Appendix A. The equilibrium propeller speed can be found by
setting the total axial force (at steady speed Uy) equal to zero:

ap+X,=a+(1-9)T=0
from which we obtain
Ny =422 RPM; ny ~ 7.03 Hz
at Uy = 5 knots. We can now vary the speed u at constant RPM and plot the total
axial force; see Figure 3.21. Note that we have plotted the force against the change

in velocity relative to the equilibrium value (i.e., u*). The slope of this curve at

u-Uy=u*=0
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is the value of ag,. A linear fit yields

a9 = -229.6 N/(nv/s) or ay’ = -0.00468.

60

40 4

20

(BN

‘w\

Axial force, N

40 .| Force = -220.64u + 591.01 \'\
' Re =0.9999 \
-60 L \%
22 23 24 25 28 27 28 29
Speed, m's

Figure 3.21 Total axial force vs. speed at N = 430 RPM

To examine a range of speeds we need to repeat this procedure at each speed.
Carrying out the calculations at various speeds between 0 and 6 knots, and fitting a
curve to the results, yields the following relationship:

a0 ~ 0.001422 Fn - 0.005160, 0 < Fn < 0.40.

We are now ready to evaluate the coefficients A', B', C', D' and E' using Egs.
(3.163a), for any given values of the CG height and Froude number. This is
conveniently done in a spreadsheet. These results together with the stability criteria,
Eqs. (3.164), can be used to draw a “map” of stable combinations of z; and Fn; see
Figure 3.22. The figure shows that for any choice of CG distance (below the center
of the hull), there is a maximum speed for directional stability; this maximum speed
increases with increasing zcg. At the design speed of 5 knots, which corresponds to
a Froude number of 0.333, Figure 3.22 shows that the minimum CG distance below
the centerline is 0.05d or about 0.04m.
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Figure 3.22 Stable combinations of Froude number and zg for example submersible

The effect of varying tail fin geometry could also be examined in this fashion.
For example, it is desirable to minimize the tail fin size to reduce resistance. The
procedure outlined above could easily be applied to find the minimum tail fin size
for directional stability at a given speed and CG height. This procedure could also
be applied to examine the effects of changing the longitudinal location of the CG;
however, because of the assumption that xg = xp, this would involve changes in the
hull form (to move the CB) which in general would affect many of the other
coefficients. The result is that the stability region (e.g., Figure 3.22) can be
substantially expanded by moving the CG forward.

Many texts ignore the surge equation and the longitudinal velocity perturbations
in their presentations on directional stability in the vertical plane. Egs. (3.159) show
that this is valid only when zg = 0, which would considerably limit the applicability
of the results. If coupling with surge is neglected, it can be shown that the most
critical of the Routh-Hurwitz stability criteria is satisfied if

—cl'(m'xG'—A35 '—ez')—(m'+A“'+c2'XA33 '—A“'+e1')> 0and z5'>0 (3.165)

which is independent of speed. The first of Egs. (3.165) is none other than the
criterion for directional stability in the horizontal plane, Eq. (3.151), written in
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terms of vertical-plane quantities. In the present example, this criterion is satisfied,
leading to the erroneous conclusion that the configuration is stable at any speed so
long as zg is positive.

10.2.5 Heavy Torpedoes

We mentioned above that the relationships derived in the previous section are not
applicable to cases in which W # B or xg # Xg, €.8., “heavy” torpedoes. In fact,
strictly speaking, we should abandon all of our “small perturbation” equations since
they pertain to expansions about a steady level equilibrium condition. If W # B or
Xg # Xp, the equilibrium condition cannot be “level” because an angle of attack must
be developed to provide a lift force to balance the excess weight or to counteract the
Xg — Xp couple.

What we can do is substitute

u=u,+u*

w=wy +w*

6=0,+0* (3.166)
8 = 8o + Oc*

in the nonlinear surge-heave-pitch equations of motion, where 8. is the elevator
deflection. The quantities with subscript 0 represent the equilibrium values, and the
quantities with asterisks represent perturbations from these equilibrium conditions.
Note that we must use the most general form of the gravity-buoyancy force and
moment, Egs. (2.16) and (2.17), in the development of the equations. Note also that
Eqgs. (3.166) must be substituted in the nonlinear equations before linearizing them,
since the higher-order terms will yield products of equilibrium values and
perturbations which are of lower order in the perturbations (as we have already
seen: Egs. (3.159) contain products of w and q with Uj).

From this procedure we can obtain two sets of equations: First, by setting
W¥=w*=0*=§*=(

(and also setting all accelerations equal to zero), we obtain equations for the
equilibrium values. This is just the procedure we used in Section 7.2.2 to find the
values of v and r in a steady horizontal turn. Second, we can subtract these
equilibrium values from the original set of equations (involving u, + u*, etc.) to
obtain a set of equations governing the perturbations. The latter set of equations can
then be linearized by neglecting products of the perturbations, and solved by the
methods used above. These equations will involve the equilibrium values g, wy, 6,,
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and §,. Furthermore, for steady horizontal flight, w, and 6, are not independent, but
are related as follows:

wo = tanf (3.167)
The equilibrium heave and pitch equations can be solved for the values of 6, and &:

o - (W'=B'+cy' M5 '+(W'xg'—e,")Z5'
0 [(el'+A33 '_All ')Z'B _M'S cl ’]_W'ZG 'ZS'

(3.168)

oW ey e W B, NWzg )
o

; ; — (3.169)
[(61'+A33"A11')Z'5—M 5 C1 ]—W zg'Zs

where the origin is taken to lie on the longitudinal centerline at the LCB;

. mg _m . pgV 2V

- %puozL2 “Fn2’ %puOZL2 " Fn?

and Zs and M; are the elevator deflection-induced force and moment rates, defined
analogously to Y5 and N in Egs. (3.157)".

Controls-fixed directional stability can be assessed by solving the linearized
perturbation equations, as was done above. This again results in a fourth-order
characteristic equation, formally equivalent to Eq. (3.162); however the expressions
for the coefficients now involve the quantities (W - B), 8y, and ,, as well as some
nonlinear coefficients. Based on the results of a numerical study using coefficients
corresponding to a number of actual torpedo forms, Strumpf [1963] found that a
heavy torpedo satisfying the “fixed-speed” criteria, Eqs. (3.165), and the following
condition on the LCG location:

W'_Bl Wl l_ ? A '_A '

XG'>( )[ zg'-(e,+As'-A, )]’ (3.170)
o'W

will posses controls-fixed directional stability in the vertical plane.

Intuitively we expect the equilibrium trim angle and the corresponding control
surface deflection to increase in magnitude as the speed of the vehicle is reduced,

TStrictly speaking, these equations apply for “small” values of 8, less than about 10 degrees (Strumpf
[1963]).
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until a point is reached where the required lift cannot be generated. Thus the only
type of submersible for which W-B >0 or xg # X3 is a torpedo, which operates at
high speed exclusively.

To illustrate, we will convert our deep-sea research vehicle into a high-speed
torpedo. To compute the force and moment rates of the elevators, we can use the
formulas for the fin contribution to ¢; and e;, without the fin-hull interference
factors (see Section 3.2). We will examine a range of weight-to-buoyancy ratios up
to W/B = 1.3, at speeds up to 63 knots (Fn = 5). Setting zg/d = 0.054 (zg' = 0.007)
in accordance with the minimum value derived in the previous section, Eq. (3.170)
yields

X > 0.076L

at W/B = 1.3 and Fn = 5. Taking xg = 0.8L, the equilibrium trim angle can be
computed using Eq. (3.168). The results are shown on Figure 3.23. At low speeds,

8,~Fn? as Fn—0
The theory should not be applied in cases in which 0, is greater than 5 or 6 degrees

(Fn < ~1.5 in the example), since nonlinear behavior becomes important at higher
angles.

£
s

w
I

Trim angle, deg

2

Figure 3.23 Equilibrium trim angle as a function of weight/buoyancy and Froude number
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APPENDIX A

PREDICTION OF WAKE FRACTION AND THRUST DEDUCTION

The following formulas applicable for displacement ships were developed by
Holtrop [1984].

Single screw ships with conventional stern arrangement:

W= CQCZOCV %—[0050776 + 093405(}1 1 CV :I + 027915C20 L—(I—B—C_l_) +C19Cop
~“p1 P

D

0.2624
(EJ0.28956( IBT J
L

t=0.25014

+0.0015C,,
(1-Cp +0.0225LCB)?01762 stem

Single-screw ships, open stern:
w= 03CB + IOCVCB -0.1

t=40.10

Twin-screw ships:

w=0.3095Cg +10Cy Cp —0.23—2 ; t= 0.325Cy - 0.1885—2—

VBT VBT

where
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__BS B
LDT,~ Ty
7B/TA -25 B
Cg=0—F—"—~, —
LD(B/T, —3)" Ty

Cg =Cg, Cg < 28

<5

Cg

>5

Cg =32~ 6 , €8>28
Cg — 4
e =a Ia
D D

Ta Y T
c”=o,0833333[31*) +1.33333, —DA>2

0y = 012997 _ 011056
095-Cp 0.95-Cp

0y = 018567
1.3571-Cy

Cap =1+0.015C e

Cp =1.45Cp —0.315-0.0225LCB

Cp <07

—-0.71276 + 0.38648Cp, Cp >0.7

and Cy is the “viscous resistance coefficient”:
CV = (1+kX:F +CA

Also,
L Waterline length
LCB  Fwd amidships, %L
Ta Draft at AP
D Propeller diameter
And
Afterbody form Cstem
Pram with gondola =25
V shaped sections -10
Normal section shape 0
U-shaped sections with Hogner stern 10
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For submersible hulls consisting of bodies of revolution, Jackson [1992] has
presented curves of (1-w) and (1-t) as functions of the propeller diameter to hull
diameter ratio and K2 where

K2=6-2.4Cs-3.6Cys,

Here Cys¢ and C,, are the wetted surface area coefficients of the forebody and
afterbody,

Sf,a
Ttde,a

wsf,a =

where f and a denote forebody and afterbody, respectively; this is the portion of the
hull forward or aft of the point of maximum diameter d, not including parallel
midbody if any. Jackson’s curves are well represented by the following formulas:

0.01382 +0.0084062 +1.6732—2

Bhihdebbtadl 1 —_—
"E—K2 d]’E—K2
d d

(1-1)=0.6324 _0.002817 ) 6044322 413872 D

d
JE-x2 4= -K2
d d

where D is the propeller diameter. These formulas are applicable in the range

(1-w)=0.3674+

3sL/d-K2<11
0.3<D/d<0.6



This page intentionally left blank



APPENDIX B

COEFFICIENTS IN Kt and Ko POLYNOMIALS

Following are the coefficients determined by regression analysis of the B-series
Kr and Kg data (van Lammeren et. al. [1969]). The expressions are of the
following form:

P Ag)
K1,Kq =chtquS('ﬁ) (XE—) z"

where J is the advance ratio, P/D is the pitch to diameter ratio, Ag/A, is the
expanded area ratio, and z is the number of blades; Cg,, are the empirical
coefficients.
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KT s t u v KQ s t u \
Cstuv P (®/D) (AE/A0® 7 Cstuv I (/D) (AE/A0)" 7'
8.80496E-03 0 0 0 0 3.79368E-03 0 0 0 0
-2.04554E-01 1 0 0 0 8.86523E-03 2 0 0 0
1.66351E-01 0 1 0 0 -3.22410E-02 1 1 0 0
1.58114E-01 0 2 0 0 3.44778E-03 0 2 0 0
-1.47581E-01 2 0 1 0 -4.08810E-02 0 1 1 0
-4.81497E-01 1 1 1 0 -1.08009E-01 1 1 1 0
4.15437E-01 0 2 1 0 -8.85381E-02 2 1 1 0
1.44043E-02 0 0 0 1 1.88561E-01 0 2 1 0
-5.30054B-02 2 0 0 i -3.70871E-03 1 0 0 1
1.43481E-02 0 1 0 1 5.13696E-03 0 1 0 1
6.06826E-02 1 1 0 1 2.09449E-02 1 1 0 1
-1.25894E-02 0 0 1 1 474319E-03 2 1 0 1
1.09689E-02 1 0 1 1 -7.23408E-03 2 0 1 1
-1.33698E-01 © 3 0 0 4.38388E-03 1 1 1 1
6.38407E-03 0 6 0 0 -2.69403E-02 0 2 1 1
-1.32718E-03 2 6 0 0 5.58082E-02 3 0 1 0
1.68496E-01 3 0 1 0 1.61886E-02 0 3 1 0
-5.07214E-02 © 0 2 0 3.18086E-03 1 3 1 0
8.54559E-02 2 0 2 0 1.58960E-02 0 0 2 0
-5.04475E-02 3 0 2 0 4.71729E-02 1 0 2 0
1.04650E-02 1 6 2 0 1.96283E-02 3 0 2 0
-6.48272E-03 2 6 2 0 -5.02782E-02 0 1 2 0
-8.41728E-03 0 3 0 1 -3.00550E-02 3 1 2 0
1.68424E-02 1 3 0 1 4.17122B02 2 2 2 0
-1.02296E-03 3 3 0 1 -3.97722E-02 0 3 2 0
-3.17791E-02 0 3 1 1 -3.50024E-03 0 6 2 0
1.86040E-02 1 0 2 1 -1.06854E-02 3 0 0 1
-4.10798E-03 0 2 2 1 1.10903E-03 3 3 0 1
-6.06848E-04 0 0 0 2 -3.13912E-04 0 6 0 1
-4.98190E-03 1 0 0 2 3.59850E-03 3 0 1 1
2.59830E-03 2 0 0 2 -1.42121E-03 0 6 1 1
-5.60528E-04 3 0 0 2 -3.83637E-03 1 0 2 1
-1.63652E-03 1 2 0 2 1.26803E-02 0 2 2 1
-3.28787E-04 1 6 0 2 -3.18278E-03 2 3 2 1
1.16502E-04 2 6 0 2 3.34268E-03 0 6 2 1
6.90904E-04 0 0 1 2 -1.83491E-03 1 1 0 2
421749E-03 0 3 1 2 1.12451E-04 3 2 0 2
5.65229E-05 3 6 1 2 -2.97228E-05 3 6 0 2
-1.46564E-03 0 3 2 2 2.69551E-04 1 0 1 2
8.32650E-04 2 0 1 2
1.55334E-03 0 2 1 2
3.02683E-04 0 6 1 2
-1.84300E-04 © 0 2 2
-4.25399E-04 0 3 2 2
8.69243E-05 3 3 2 2
-4.65900E-04 0 6 2 2
1 6 2 2

5.54194E-05




APPENDIX C

ROUTH-HURWITZ STABILITY CRITERION®

For a characteristic polynomial equation of the form
P(6) = Aoc" + Ac™ + A6" 2+ .. A0+ A =0
a necessary condition for stability is that all coefficents have the same sign. Let all

of the coefficients be positive (which can be achieved by multiplying through by -1
if necessary) and construct the n determinants:

A Ay A, Ay O
D) =Ay; D2=A Az; D3=A3 Ay Ay}
As Ay A;

A, Ag 0 0 0

Ay Ay AL Ay 0

A1 Agnz Az Agng Ans Ajg o Ay

Note that in forming the determinants, positions corresponding to A’s having
negative subscripts, or to A’s with subscripts greater than n, are filled with 0’s.
Then a necessary and sufficient condition that each root of P(c)=0 have a negative
real part is that each D be positive.

“ From Wylie [1960]
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CHAPTER 4

WATER WAVES

In this chapter we will review the basic results from water wave theory which are
necessary to develop the wave-induced forces to be discussed in the next chapter.
For a more thorough treatment of the theory, the reader is referred to the many
excellent texts on the subject, e.g., Mei [1989]; Sumer and Fredsee [1997].

1. A Simple Sinusoidal Wave

When energy is imparted to a body of water, by the action of wind and other
atmospheric effects, or by the motion of bodies such as ships, surface waves are
created. The form of these waves is determined by the physical properties of the
water, the principle of conservation of mass (or “continuity”), and by Newton’s
laws of motion (conservation of momentum). When the latter are applied to a “fluid
clement”, we obtain the “Navier-Stokes equations” which, together with the
continuity equation, govern the velocity and pressure fields in the water. These
nonlinear partial differential equations are difficult to solve in general. However, if
we assume that the effects of viscosity are negligibly small compared with
gravitational effects, the equations can be simplified considerably. Unfortunately
this does not justify neglecting viscous effects; but it turns out that the results
obtained for inviscid fluids are sufficiently accurate to produce useful results in
many (if not most) cases of practical interest.

If we assume that the flow is irrotational in addition to being inviscid®, it
follows that the velocity field in the water can be expressed as the gradient of a
scalar field called the “velocity potential”. For incompressible flows (we can safely
neglect compressibility in the current application) it can be shown that the
continuity equation reduces to the Laplace equation for the velocity potential. The
Laplace equation is linear, meaning that the sum of any solutions is also a solution.
Once the velocity potential is known, the pressure exerted by the water can be

* “Irrotational flow” means that the curl of the velocity vector is equal to zero everywhere in the water.
The motion of an inviscid fluid acted on only by conservative forces (gravity), which started from rest,
must always be irrotational; thus this assumption could be regarded as superfluous.
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determined using the Navier-Stokes equations. By integrating the pressure on the
surface of a body we can obtain the hydrodynamic forces and moments which act
on the body, which is our ultimate goal.

To conform with virtually all of the existing literature on the subject, we will
adopt a special new coordinate system for the following discussion of water wave
theory: & 7, { where & 7 lie in the undisturbed free surface, and ¢ is positive
upwards. Thus the sea bottom is located at ¢'= -h, where h is the water depth. This
is opposite to the sense of the fixed vertical coordinate £ introduced in Chapter 1;
however, we feel that introduction of the new coordinate system avoids more
confusion than it might potentially create.

If we write the Navier-Stokes equations for an inviscid fluid in terms of the
velocity potential, the resulting equation can be integrated to obtain the celebrated
Bernoulli equation:

p+pg§+p%+%pV-V=C (4.1)

where p is the pressure in the fluid, ¢ is the velocity potential, and V is the fluid
velocity vector. The quantity C is a constant of integration that is a function only of
time; it corresponds to a “reference” pressure level and can be set equal to any
convenient value, such as atmospheric pressure. Since we are interested here only
in hydrodynamic pressure (the integrated effect of the atmospheric pressure is zero),
we will take C = 0, with the understanding that the pressures we obtain will be
relative to the ambient atmospheric pressure (i.e., gage pressure).

The governing equation in the fluid domain is linear in the velocity potential
and fairly easy to deal with. However, we still must address boundary conditions.
At impermeable boundaries, such as the ocean floor or the hull of a ship, this is
straightforward: The component of the fluid velocity which is normal to the
boundary must be equal to the corresponding component of the velocity of the
boundary itself. In other words, the fluid is not allowed to pass through the
boundary. Expressed mathematically, this is

V:n E%=U'n on the boundary 4.2)

where n is the unit normal vector on the boundary (taken to point out of the fluid
domain). This is called a “kinematic” boundary condition, because it involves a
prescribed velocity. Notice that we can’t say anything about the component of V
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which is tangent to the boundary; we gave up this ability when we assumed inviscid
flow.

What about the boundary condition on the water surface? Here we must
impose both a kinematic condition, that the normal component of the fluid velocity
must match that of the surface, and a dynamic condition, that the pressure on the
surface is equal to a prescribed value (dynamic boundary conditions involve
prescribed pressures or forces on the boundary). The prescribed value in the present
case is atmospheric pressure which (to be consistent with our choice of C above) we
will take to be equal to zero. An added complicated is that we do not know a priori
where the boundary is! This is what sets hydrodynamics apart from the simpler
disciplines of fluid mechanics pursued by mechanical engineers and
aerodynamicists.

If the free surface is described by

g=R&nY),

the kinematic condition on the free surface can be expressed as
D 0
—I\¢ — =|—+V-V - =0 4.3
5 ¢-7) (at ](4 f) (4.3)

on § = f. Here DF/Dt represents the “substantial derivative” of a function F, or the
rate of change of F as we follow a particular fluid particle. Multiplying this out, we
obtain

g+@i+@zf~—?2=00n§=f 4.4
& dEdE onon oL '

The dynamic condition comes from applying the Bernoulli equation, with p = 0, at
the free surface:

gf+%+;v.V=o on¢=f (4.5)

In addition to the complications associated with the fact that they are imposed on a
surface with an unknown location, these free surface boundary conditions are
nonlinear, involving products of derivatives of fand ¢.

The problem can be simplified considerably by linearizing the free surface
boundary condition. To do this it is necessary to assume that the wave slope and the
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wave-induced particle velocities are small quantities, so that products of these
quantities can be neglected. This is not an unreasonable assumption in many cases,
and leads to predictions which are sufficiently accurate for many engineering
applications. Important exceptions will be discussed below.

In addition, we can express the potential and its derivatives in a Taylor series
expansion about the undisturbed free surface level. Using this procedure can be
shown that it is consistent with the assumptions described above to apply the
linearized boundary conditions on the plane {'= 0. So the linearized kinematic and
dynamic free surface boundary conditions are:

F_%_ -

o oc Oon ¢ =0 (4.6)
and

gf+%¢=00n =0 4.7)

respectively.  Eliminating f between Eqs. (4.6) and (4.7) we can obtain the
“combined” free surface boundary condition in the form

2
%+g§—$=0 on §=0 (4.8)

The free surface elevation is obtained from the potential using Eq. (4.7):

-1 @} 4.9
f g[at o (4.9)

The Laplace equation can be solved by the method of “separation of variables” to
obtain the following general solution:

_ Cosh k(h+§)

o [A, sin(k&-ot+a,)+A, sin(kérot+a,)]  (4.10)

¢

which satisfies the kinematic boundary condition at the bottom,

%=Oon £=-h (4.11)
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In Eq. (4.10) we have temporarily adopted a coordinate system which is aligned
with the direction of wave propagation; the quantities k and ® are the wavenumber

and radian frequency, respectively. A, A,, o, and o, are arbitrary constants.
Plugging into Eq. (4.9) we obtain the wave elevation in the form:

flent)= %[A1 cos(k&'-wt+0ot, )+ A, cos(ké'+ot +o, )] 4.12)

Notice that the value of the first cosine term is constant if
&'=(o/kt

Thus the first term corresponds to a plane wave with amplitude wA /g progressing
in the positive £, direction with a phase velocity given by

V,=o/k (4.13)
Similarly, the value of the second term is constant if
g'=-(o/k)t
corresponding to a wave travelling in the -&' direction. Thus Eq. (4.12) represents a
superposition of two waves travelling in opposite directions; we can choose either
by setting the constants A, or A, equal to zero.
Recall that the wave period is related to the frequency as follows:
T =2r/®
Inserting this in Eq. (4.13) and rearranging, we find
V,T =2n/k
which says that the distance traveled by the wave in one period is (2n/k). But we
know that the wave travels one wavelength A in one period; therefore the
wavelength and wavenumber are related:

A=2n/k

It is convenient to express the surface elevation of a wave travelling in the +£,,
direction in the form
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F(&) = Acos(k&' — wt) (4.14)

where A is the wave amplitude. This determines the constant A; = gA/o and the
corresponding velocity potential is

_gA coshk(h+¢) . o .
o= T oo kL sm(k§ o)t) (4.15)

where we have set the arbitrary constant o, representing the phase of the wave,
equal to zero.

The astute reader will have noticed that we have derived Eq. (4.15) without
specifically making use of the free surface condition. Plugging Eq. (4.15) into the
boundary condition, Eq. (4.8), we obtain

0)2

2 —ktanhkh (4.16)
g

which establishes a relationship between the wave frequency (or period) and the
wavenumber (or wavelength). Rearranging again and using Eq. (4.13) yields an
expression for the phase velocity:

(]
v =2
Pk

=2 tanh kh = [{g/k) tanh kh (4.17)
®

Eq. (4.17) shows that waves having different wavenumbers (or different

wavelengths) generally travel at different speeds; for this reason, Eq. (4.16) is called

the dispersion relation.

The dispersion relation indicates that the wavenumber corresponding to a
particular frequency is a function of the water depth. A plot of kh vs. o’h/g is
shown on Figure 4.1. The figure shows that in “deep water” the dispersion relation
reduces to

2
D <k forkh>3orh>\?2 (4.18)
g

(since for kh > 3, tanh(kh)~1). Thus if the water depth is greater than about half the
wavelength, the wave does not “feel” the bottom. In very shallow water, h—0,
tanh(kh)—kh and the dispersion relation reduces to
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%:Vpe gh askh — 0 (4.19)

showing that in the shallow water limit, the waves all have the same phase velocity
regardless of frequency.
4 Ll T T

kh
N

w?h/g
Figure 4.1 Dispersion relation

We will now transform back to our original wave coordinate system in the
horizontal plane, using the transformation

&' = &eosy + msiny

where y is the wave heading angle, measured clockwise from the +¢& axis,
representing the direction in which the waves are moving. Now the velocity
potential takes the form

_ A coshk(h+¢)

sin(k& cosy +k7siny — ot 4.20
T (k& cos y +knsin x — ot) (4.20)

¢

Since the Laplace equation is linear and we have linearized the boundary
conditions, we can form a valid velocity potential by superimposing any number of
simple wave potentials given by Eq. (4.16), and having any desired amplitude,
frequency, and heading. This is the basis of the treatment of irregular waves which
will be examined in detail later in this chapter. Note that due to the linearity of Eq.
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(4.9) relating the wave elevation to the potential, the wave elevation due to the
superimposed waves is just the sum of the elevations of the components.

In “deep water”,

coshk(h+¢) _ ok
coshkh

so that the potential in deep water can be written in the simpler form

¢=&e‘k¢ sin(k& cos y +kzsin x - ot) (4.21)
o

1.1 Particle velocities and trajectories, dynamic pressure
The fluid velocity field is obtained by differentiation of the potential:
V(En s )=u,l+v, J+w K=V (4.22)

where the subscript “w” denotes “wave-induced”. Plugging Eq. (4.21) into Eq.
(4.22), and assuming for the moment that the heading y = 0, we obtain the
horizontal and vertical velocity components:

u, =Ae M cos(ké - ot)
Ifhmli‘(llfh ) (4.23)
w,, =Ao u sin(k§ - c)t)
sinh kh

We can see that the boundary condition on the bottom is satisfied, w,(¢{= —h)=0.

It is perhaps more instructive to examine the particle trajectories. There are
easy to find if we take advantage of the fact that Eqs. (4.23) apply at the mean
position of the particle being examined (we can imagine a Taylor-series expansion
of the velocity about the mean position of the particle; under the assumption of
small velocities and slopes, we can neglect all but the leading term). Thus Egs.
(4.23) can be integrated with respect to time to yield expressions for &t) and £{t) in
terms of the coordinates of the particle’s mean position (£, <y):
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£z =-ASKBC) e o)
, i‘&hkh ) (4.24)
§-4, =A—S—1-n1:—inh—k~;—4°—cos(k§0 —(Dt)

We can eliminate t between Eqs. (4.24) by squaring both sides, doing some algebra,
and adding the two equations together, which yields:

€-¢) . E-GF (4.25)
[A coshk(h+§0):l2 As_'lnh_k(_h_*io)r
~ sinhkh sinh kh

which is the equation of an ellipse. Thus the particles describe elliptical orbits; the
semimajor and semiminor axes are given by the square roots of the denominators of
the first and second terms, respectively.

For large values of the argument, both the hyperbolic sine and hyperbolic
cosine approach half the exponential function:

ex

sinh(x) — -5 cosh(x) — % as x —»> o

Thus in “deep” water, h—o0, Eq. (4.25) reduces to

(E-&) (€0
(Ae"k;" )2 + (Ae'k;: )2 =1 (4.26)

and we see that the semiaxes are equal; i.e., the particle orbits are circular.
Furthermore, the radius of the circle at the surface is equal to A, the wave
amplitude; and, the particle amplitude decreases exponentially with increasing
depth.

In very shallow water, h—0, the hyperbolic sine approaches its argument and
the hyperbolic cosine approaches 1. In this case, the semimajor axis (or the
horizontal particle excursion) increases as 1/(kh), and the semiminor axis (vertical
particle excursion) varies linearly from 0 at the bottom to A at the surface.
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The dynamic pressure induced by the wave is the total pressure less the
hydrostatic contribution. Using the linearized Bernoulli equation, Eq. (4.1), we
obtain

0
Payn =P—PES =—p5¢ (4.27)

Plugging in the expression for the potential, Eq. (4.20), we obtain the wave-induced
dynamic pressure (at zero heading) as

A coshk(h+¢)

= coslké — ot 4.28
Pam = PBA—— - (k¢ - ot) (4.28)

1.2 Standing Waves

When the waves described by Eqs. (4.14) are normally incident on a vertical
impermeable wall, they are reflected and a standing wave pattern emerges. As its
name implies, a standing wave does not travel; it is characterized by a series of
spatially-fixed maxima/minima and nodes (points which are fixed at ¢=0).

The velocity potential associated with the standing waves must satisfy the
kinematic boundary condition of zero velocity normal to the wall. Let’s assume that
the waves are travelling in the +£ direction and that the wall is located in the plane
&=0. The additional boundary condition is then

%=o on £=0 (4.29)

The easiest way to obtain the potential is to exploit superposition. We need to add
another solution which will cancel the u-component of the velocity of the incident
wave at £&=0. This is a wave travelling in the opposite direction, corresponding to
the wave which is reflected from the wall Its potential is obtained from Eq. (4.20)
with x=180°:

_gA coshk(h+§)sin(_k§_mt)=_§é coshk(h+¢)

inlké +wt) (4.30
® coshkh ® cosh kh sm( d (D) ( )

¢

Adding this to the potential for y=0° and applying some trigonometric identities, we
easily obtain the potential for the standing wave system:
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_ 2gA cosh k(h + ()
® cosh kh

o= cos k& sin ot (4.31)

The boundary condition, Eq. (4.29), can be satisfied for arbitrary &, by adding the
appropriate phase to the argument of the cosine in Eq. (4.31). The free surface
elevation is obtained by plugging Eq. (4.31) into Eq. (4.9):

f=2A cos(kd)cos(wt) (4.32)

Thus the amplitude of the standing wave is twice that of the incident wave; the
maxima/minima occur where ké=tnn, n = 0, 1, 2..., or at &+nn/k = +n)/2; ie.,
they are spaced a half-wavelength apart. The nodes are located where cos(k&)=0, or
k&= t(ntl2)n, &= +(n+%)n/k. For the problem we described, the fluid is located in
the region £ < 0 so we would choose the negative signs in these expressions.

1.3 Group Velocity and Wave Energy

As another application of superposition, we will consider the combination of two
waves with very slightly differing wavenumbers and frequencies,

J=Acos(k; &~ot) + Ascos(ka&—m,t) (4.33)
where
0.)2-0)1=80);k2-k1:8k,

and 6w and Ok are assumed to be small quantities. Subsequent analysis will be
greatly facilitated if we employ complex notation:

A cos(ot — 8) = Re{Ae Y (4.34)

where the amplitude on the right-hand side is complex, thus incorporating the phase
angle:

Re{Ac™®'} =Re{(A® +iA")(cos ot - i sinnt)} = ARcoswt + Alsinwt
= |A] cos(wt — §)

where

8 =tan’'(A/AR)
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and the superscripts indicate Real and Imaginary parts. Use of complex notation is
a convenient way of keeping track of phase without having to deal with a multitude
of trigonometric identities. Since we are representing a real function (in this case
the wave elevation), only the real part of the function is of interest. Thus we will
henceforth adopt the generally-accepted convention of dropping the “Re{}”, the real
part being assumed.

Applying complex notation to Eq. (4.33) we obtain

f :Alei(klﬁw—mlt)_,_Azei(kzéw—mzz) :A]ei(klé—wlt)|:1+ﬁei[(kz~k|)§w—(mz—wl)t]
1

(4.35)

:A]ei(kléw—mlt)|:1+Az_ei(8k§w—8mt):|
1

This represents a sinusoidal wave with wavenumber and frequency k; and o, with a
slowly-varying amplitude (“amplitude modulation™) given by the factor in brackets.
An example is shown on Figure 4.2. The wavenumber and frequency of the
envelope or wave group are given by dk and dw, respectively; thus the speed of the
envelope or group velocity V, is given by

Vg = 8w/8k - da/dk as da, 5k—0 (4.306)

— — cos(3t)

U —— ¢os(3t) + cos(3.2t)
-+ cos(3.2t) 4

1 t 1 1

0 10 20 30 40 50

time t

Figure 4.2 Superposition of two sinusoids with slightly different frequencies
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Taking a derivative of the dispersion relation, Eq. (4.16), we obtain the group
velocity in the form
. _9(l+—,kh—j (4.37)
k\2 sinh2kh
You should recognize the first term as the phase velocity of the wave. In deep
water, the second term in the parentheses goes to zero because the hyperbolic sine
increases exponentially for large kh. Thus in deep water,

V, =%V, ash—o (4.38)
In shallow water, the term in parentheses approaches 1, and so we have
Vg —>V,ash—0 (4.39)

So in general the individual waves move faster than the envelope. This can be
observed in a wave tank immediately after starting up the wavemaker: The
individual waves disappear when they reach the leading edge of the envelope.
Similarly, when the wavemaker is stopped, waves seem to spontaneously erupt from
the end of the disturbance. This apparent violation of energy conservation is
circumvented because it turns out that the energy of the wave system moves at the
group velocity. A derivation can be found in Newman [1977].

The kinetic and potential energy per unit volume in the fluid is given by

YapgV? + pgd

Integration of this quantity in the vertical direction results in an expression for the
wave energy per unit arca in a horizontal plane, which is referred to as the “energy
density” E:

s s
E=pJ.%V2d§+pg j;dg (4.40)
-h 0

Notice that we have integrated the potential energy only up to the mean free surface
level. This is because the potential energy for the fluid in the region {=-hto {=0
Is a constant which is not associated with the waves and is thus not of interest in the
present context. Assuming as above that the £-axis is aligned with the direction of
wave propagation, we can substitute V> = u,’+w,,’, with u, and w,, given by Eqgs.
(4.23). Carrying out the integration we obtain
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E=

2.2
% {si:hgokh Eli [2kh cos?(k& — ot )+ cosh kh sinh kh — kh]+ A% cos?(k& - wt)}

(4.41)

where it has been assumed that (h—f) = h since |f] = A is “small”, and Eq. (4.14) has
been used in the last term. We will next integrate Eq. (4.41) from &0 to & to
obtain the energy associated with a single wave, per unit length parallel to the wave
crest. Using

A=2n/k
J‘ cosz(kf—cot)de,g ==
; k
we eventually obtain

A 2 2 2

Agn Afgni pATgn .o
Ed& = + = =LpgAA 4.42
Oj £ ;c{ S } === pe (4.42)

where we have made use of the dispersion relation, Eq. (4.16). Eq. (4.42) shows
that (at least for A << h) the total energy associated with a wave is constant, and
proportional to the square of the wave amplitude. Dividing Eq. (4.42) by the
wavelength, we find the following expression for the wave energy density:

E = VipgA’ (4.43)
which is independent of wave period and length. Strictly speaking, Eq. (4.42) holds
only for the area under an integral number of wavelengths; however, it can easily be
shown that this expression holds in general if E is regarded as the time-averaged
energy density.

1.4 Application: Wave Shoaling

The mean rate of energy flux across a fixed vertical control surface is given by the
product of the energy density and the velocity of energy propagation:

9(1% =V,E (4.44)
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This expression can be used to investigate what happens to a wave as it approaches
a beach. Since the expressions we have obtained thus far are applicable for constant
water depth, we have to assume that the slope of the bottom is small; one
consequence of this is that we can neglect reflected waves. Under this assumption
in steady-state conditions the flux through any two control surfaces is the same; by
equating the flux at the location of interest to that at some reference station
(designated by subscript “0°’) we obtain

A _ Y (4.45)

which is known to coastal engineers as the “shoaling coefficient”. Figure 4.3 shows
an example of the behavior of the shoaling coefficient with the water depth ratio
W/hy, for regular waves which have a 10 second period. The figure shows that as the
depth decreases, the wave amplitude first decreases and then increases. This is
because of the behavior of the group velocity: k increases with decreasing water
depth (the waves get shorter), but the quantity kh decreases with depth. Thus the
phase velocity decreases as the depth is reduced, but the quantity in parentheses in
Eq. (4.37), which is the ratio of V, to V,, increases from 0.5 in deep water to 1.0 as
h—0. The product of V, and (V,/V,) generally has a relative maximum (so the
shoaling coefficient has a relative minimum) for a given wave period at some water
depth.

186 T T T T

15 Wave period 10 sec
Reference water depth 45m

14 -

Shoaling coefficient A/A;

09 1 L I
0.0 0.2 04 06 08 1.0

Relative water depth h/h,

Figure 4.3 Behavior of shoaling coefficient with water depth
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In developing these results we have used the fact that the wave period is
constant as the wave traverses the region of interest. If this were not the case, there
would be a net change in the number of waves between the control surfaces
(eventually leading to no waves or an infinite number of waves in this region) which
in addition to violating the assumption of steady-state, makes no sense physically.
Keep in mind that we have assumed that the wave amplitude is “small”; when the
wave height becomes comparable to the water depth, an alternative theory must be
employed.

2. Forces and Moments

The point of all of this is to permit evaluation of the wave-induced forces on marine
vehicles. If the velocity potential is known, the dynamic pressure is easily obtained
using Eq. (4.27). The forces and moments can then be found by integration over the
body surface; see Eqgs. (2.4) and (2.5) which for convenience will be restated here:

F = [[pnds: M= [[p(pxn}kis (4.46)
S S

where S denotes the submerged surface area. Recall that the positive sense of the
normal vector is info the body.

2.1 Some Analytical Solutions

This is all quite straightforward if the velocity potential is known. We do know
the velocity potential for the incident waves, but of course this does not satisfy the
kinematic boundary condition on the body surface. In general one must resort to
numerical methods to obtain the velocity potential for wave motion in the presence
of reatistic hull shapes. However, we know the potential for one case of practical
interest: wave reflection from an impermeable wall that extends from the surface to
the bottom. The velocity potential, which we found using superposition, is given by
Eq. (4.31). We can use Egs. (4.46) to find the dynamic force and moment on the
wall induced by the waves. Taking the wall to lie in the plane &0, we have

n=1I p x n={_,J; dS = d{ (per unit width)

on the wall. Plugging this and the dynamic pressure (obtained from Egs. (4.27) and
(4.31)) into Eqgs. (4.46), and integrating from {'=-hto {'=0, we easily obtain®

® The contribution of the pressure integral from & = 0 to § = fis of higher order and so can be neglected;
this is consistent with our linearization of the problem.
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X = 2pgA tanh kh cos ot
(4.47)
M= —M——(l —coshkh)cos ot
k? coshkh

per unit length of the wall. The coordinate of the center of pressure is obtained as
follows:

Ccop _ M _1-coshkh (4.48)

h  hX Kkhsinhkh

The ratio of the wave-induced dynamic force amplitude to the hydrostatic force on
the wall is

4% tanh kh
= 4.49
o (4.49)

X

X static

Recall that A is the amplitude of the incident wave; the total amplitude of the wave
measured at the wall is 2A because of the reflected wave. In terms of the “total
waveheight” at the wall, denoted by H,, (where H,, = 2H and H = 2A),

H
—* tanh kh

X __h (4.49)
Xstatic kh

In the deep water limit this ratio approaches zero,

H
X . —V; as h—o o
Xstatic
whereas in shallow water,
H
X —->—2 as kh—>0

X

static

which is (to leading order in H,,) what one would obtain by considering the increase
in static pressure induced by a change in depth of (H,,/2).
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The behavior of X / X and &g, / h with the water depth to wavelength ratio is
shown on Figures 4.4 and 4.5, respectively. Note that although we have defined
“deep water” in Eq. (4.18) as h > A/2, the center of pressure location hasn’t quite
reached the “deep water” limit (h/A ~ 0.8 or 1.0 would be more conservative).

"Deep water”
08 \‘/ 4
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Water depth / wavelength

Figure 4.4 Behavior of wave-induced force to hydrostatic force ratio with h/A
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Figure 4.5 Behavior of center of wave-induced pressure with h/A

Computation of the wave-induced force on other objects is considerably more
complicated. For example, the amplitude of the force (per unit length) on a vertical
wall of finite height d in infinitely deep water is given by Wehausen and Laitone
[1960] as



4. Water Waves 157

I, (kd)+ L, (kd)
kdy/nI,*(kd)+ K, % (kd)

X = pgrnAd (4.50)

where I, and K, are modified Bessel functions of the first and second kind (of order
1), respectively, and L, is a Struve function of imaginary argument’. The force
amplitude is shown as a function of kd on Figure 4.6.
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Figure 4.6 Force on a vertical barrier extending to depth d in “deep” water

A significant difference between this problem and the one we considered above,
aside from the fact that the wall height is now finite, is that both sides of the wall
are now subject to wave-induced pressure. The wave-induced pressure on the back
of the wall is proportional to the transmission coefficient of the barrier, which is the
ratio of the amplitude of the wave which is “transmitted” past the wall to the
amplitude of the incident wave; similarly, the reflection coefficient is the ratio of the
amplitude of the reflected wave to that of the incident wave. The behavior of the
reflection and transmission coefficients with wave length (or frequency) can be
deduced by consideration of the height or depth of the barrier relative to the depth to
which the influence of the wave is felt. In “deep” water, wave-induced velocities
and pressure are proportional to e™; at a depth of 0.75A these quantities have fallen
to 1% of their values at the surface. Thus if the wavelength is very large with
respect to the barrier height d (or, kd << 1), the wave is barely influenced by the
barrier and we would expect it to be almost fully transmitted. In this case the wave

¢ While Bessel functions are available in spreadsheets and mathematical software (such as EXCEL® and
MATHCAD®), the Struve function is not; however it can be computed using the defining series:

L= 3o

[(m+3/2)(m+5/2)

which converges quite quickly for values of the argument which are relevant in the present context.
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pressures on either side of the wall will be equal, and the net force will go to zero,
as in Figure 4.6. On the other hand, very short waves (or, kd >>1) should be
completely reflected, producing negligible force on the back of the barrier.
However, as k gets large, the pressure approaches zero exponentially due to the
factor e™°. So the wave-induced force approaches zero at high frequency. Between
these two limits, then, there must be a maximum; Figure 4.6 shows that it occurs at
kd =1. The behavior of the force for large and small (kd) can be obtained using the
asymptotic expressions for the Bessel functions (see, for example, Hildebrand
(1976]):

X T

Td—~5kd’ kd >0

pe r (4.51)
X W isw

pgAd  kd

The other case of practical interest for which an analytical solution exists is that
of the horizontal force on a vertical circular cylinder extending from the bottom to
the free surface:

tanh kh

X| = dpga — 200K
X " ()

(4.52)

where a is the cylinder radius, H," is a Hankel function of the first kind of order
one, and the prime denotes a derivative with respect to the argument (this is easily
expressible in terms of Bessel functions of the first and second kinds of order one
and two; see, e.g., Gradshteyn and Ryzhik [1980]). A plot of the force amplitude
(normalized based on the projected area of the cylinder) vs. the cylinder diameter to
wavelength ratio is shown on Figure 4.7, for several values of the cylinder diameter
to length (or water depth) ratio. The behavior is qualitatively similar to that of the
force on a wall shown on Figure 4.6; i.e., zero force in both long- and short-wave
limits.

In very long waves the curves on Figure 4.7 approach the asymptote

X 22a = 2nka, long waves (4.53)

pgA(2ah) oT A

whereas in short waves (k—o0) the limit 1s
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X V2

T
pgA(Zah) Jkakh

short waves (4.54)

It is emphasized that these expressions represent the wave-induced force in an
inviscid fluid. Viscous effects may be important, for example, in long period waves
in which the wave-induced velocity field is similar to a slowly-varying current; in
this case we might expect drag forces associated with separation to be considerable.
There is a pragmatic approximation which is commonly used in such cases; since
the force on vertical cylinders is of considerable interest to ocean engineers, this
approximation will be discussed below.
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Figure 4.7 Horizontal wave force on a vertical circular cylinder
The wave force must be determined numerically in other cases of practical interest.

We will deal with methods to determine the wave-induced forces on marine
vehicles in the next chapter.

2.2 Morison’s formula

The X-component of force on a relatively small®, fixed body in a slowly varying
stream with velocity V can be expressed in the form:

dv
Xideal :(pV+A11)E (455)

¢ The stream velocity is assumed to be essentially constant across the body.
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in an ideal fluid; a derivation is given by Newman [1977]. The first term on the
right-hand side arises from the ambient pressure gradient integrated on the body
surface (and thus is not present when considering the force on an accelerating body
in a static fluid), and the second term can be considered as arising from the
disturbance to the flow due to the presence of the body.

In a real fluid, we know that viscous drag forces will also be present; these are
usually expressed in terms of a drag coefficient:

Xyise =5 PV ACy (4.56)

where A is a characteristic area, usually taken to be the projected area normal to the
flow. In cases involving very slowly-varying velocity, we would expect viscous
drag forces to dominate, since the flow is nearly steady; thus the force would be
calculated using Eq. (4.56). On the other hand, if the velocity is varying rapidly,
quasi-steady conditions do not have time to develop, acceleration effects dominate
and the force should be computed using Eq. (4.55).

The ratio of the “viscous force” to the “ideal-fluid force”, from Egs. (4.55) and
(4.56), is:

X | AeVAC, vy
Xideal V1+A 'ﬂ d_VV
p ( “)dt dt

vise _

(4.57)

If the flow is oscillating with frequency ®, we have

— =0V
dt 0

where Vj is the amplitude of the flow velocity. In this case Eq. (4.57) could be
written in the form

Ko VoA Vo VoT _pn (4.58)
X oV,V oL L

ideal

where T is the period of oscillation and L is a characteristic dimension in the
direction of the flow. The last expression in Eq. (4.58) is the definition of the
Keulegan-Carpenter number KC, which can also be defined in terms of the ratio of
the particle orbit length to the body length. Thus the KC number is a measure of the
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relative importance of the viscous and ideal force contributions; as a rough rule of
thumb, when KC > 25, drag forces dominate, and for KC < 5, inertial forces are
dominant.

For intermediate KC numbers, a pragmatic approximation might be to add the
two contributions:

X ~ pV%CM +% pAV[VIC, (4.59)

Here we have expressed V in the drag term as V[V] to ensure the proper direction
of the drag force (i.e., in the direction of the flow), and we have replaced (pV + Ay))
with an inertia coefficient Cy;. Eq. (4.59) is known as Morison’s formula, which is
widely used by ocean engineers to compute the wave-induced force on vertical
circular cylinders such as pilings, platform legs, etc, as well as other structural
members. Due to the presence of the free surface and to the effects of viscosity, the
coefficient of the fluid acceleration is not in general equal to (pV + A)); Cy and Cp
are functions of the KC number, the Reynolds number, and the relative wavelength
ML. In addition, for a vertical cylinder, since the flow velocity varies with depth,
Eq. (4.59) must actually be applied to an infinitesimal horizontal slice of the
cylinder, and integrated over its length®.

It is instructive to examine the behavior of the horizontal wave-induced force
on a horizontal slice of a vertical cylinder in the present context. The force on the
slice is obviously a function of depth; it can be written in the form (Mei [1989])

dX _ 4pgA  coshk(h+¢)
a¢ k‘H‘m'(kaj cosh kh

[Jl'(ka)cos cot—Yl'(ka)sin mt] (4.60)

where J;" and Y, are first derivatives of the Bessel functions. Using Eq. (4.23) and

the dispersion relation, and assuming that the cylinder is located at £ = 0, we can
obtain

1 cosh k(h+ )

u, =Agk m cos ot
®  cos
(4.61)
i = -agk SRERTE) G
cosh kh

¢ Strictly speaking, since both the Reynolds and KC numbers are functions of the velocity, the
coefficients Cy and Cp also vary with distance below the free surface; this variation is usually ignored in
practice.
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which suggests writing Eq. (4.60) in the form

X _ Al + Bu (4.62a)
dg
After a little algebra, we find that
A:ij_ Y, '(ka) ) B=4pm J,'(ka) (4.62b)
2 2 2 2 '
k ‘Hl(l)‘(kai k ‘Hl(l)‘(kaj

Comparison of Eq. (4.62a) with the Morison formula shows that the coefficient A4,
suitably normalized, can be identified as a 2-dimensional inertia coefficient:

_4 4 Y(a) (4.63)

pra’ _n(ka)z ‘Hl(l)‘(kajz

Cu

Here we see that the inertia coefficient is a function only of the quantity ka, which is
equal to m times the ratio of the cylinder diameter to the wavelength.

Equation (4.62a) does not have a drag term (proportional to u’), which isn’t
surprising in an inviscid theory. However, there is a “damping” term, linearly
proportional to the fluid velocity (strictly speaking, damping applies to a force in
phase with the velocity of a moving body; hence the quotes), which accounts for the
energy carried away by the scattered waves. We propose the following two-
dimensional normalized damping coefficient:

c. . B _4/atanhkh 1, (ka)
. -
npa’Jg/a  wlka)’ .Hl‘”'(kaj2

(4.64)

which is a function of relative water depth kh as well as ka. The behavior of the
coefficients Cy,; and Cp with ka is shown on Figure 4.8 below.

This “diffraction theory” has been experimentally confirmed in the range 0.2 <
2a/A < 0.65 (Charkrabarti and Tam [1975]), for small KC numbers. QOutside of this
range, viscous effects are important and may overwhelm these inviscid-flow effects.

There is a large body of experimental data on the drag and inertia coefficients
of circular cylinders as functions of the KC and Reynolds numbers and cylinder
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roughness, in uniform oscillatory flow (e.g., Sarpkaya et.al. [1977]). Most of this
data pertains to “plane oscillatory flow”, i.e., V = Vycosot, and thus does not
account for free surface effects (or the variation of V with £). However, such data is
useful in cases where wave diffraction is negligible; the generally-accepted criterion
for the applicability of the Morison formula using these coefficients is 2a/A < 0.2.

25 T .

Cu Co

0.0 05 1.0 1.5 20 25 3.0
Cylinder diameter / wavelength

Figure 4.8 2-dimensional inertia and damping coefficients for a vertical circular cylinder

We will discuss various methods of approximating the wave-induced force on
marine vehicles in the next chapter.

3. Nonlinear Wave Theory

What happens when the criteria for acceptability of linear wave theory are not met?
In many cases of practical interest, nothing! In other words, many predictions based
on linear theory hold up remarkably well even when the wave slopes are far from
being vanishingly small. However, if the wave height is comparable to the water
depth, nonlinear effects (i.e., the effects of the nonlinear terms in the free surface
boundary conditions) must be considered. We will briefly outline some of the
salient features of nonlinear wave theories below; for more details, the reader is
referred to the many excellent texts on wave theory (e.g., Mei [1989]; Sumer and
Fredsoe [1997)).

3.1 Stokes Theory

No analytical closed-form solution of the Lapalace equation for the velocity
potential,
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Vi =0, (4.65)

subject to the boundary conditions given in Eqs. (4.4), (4.5), and (4.11), exists. So
we must resort to various approximate or numerical methods. Perhaps the earliest
of these was developed by Stokes [1847], who assumed that the potential, surface
elevation, and dynamic pressure could be expressed in the form of a series:

o=ed® +£20® 466D 4 ..
F=egfV4+e2f® e’ f® 4 (4.66)
p—sp(1)+8 p(2) +g p(3)

where € is a “small” parameter related to the wave slope kA; superscripts indicate
the “order” of the various coefficients. The solution procedure involves substituting
Egs. (4.66) into the governing equation and boundary conditions, collecting terms of
common order, and solving the resulting series of problems at each order. The first-
order solution corresponds to the linear theory presented above, as you might
expect.

It can be shown that the second-order contribution to the potential, free surface
profile, and dynamic pressure are given by (Madsen [1977]):

A’e?

@ _3 42 M) kE—ot)+UE 20 4.67
¢ O sinh® kh 2k o)+ ULy 4sinh? kh (*67)
2
@ Ak coshkh (3 ) inh? kh)cos 2(ké - ot 4.68
po Ao Jeos 2(ké - 0t) (4.69)
@ _ kA? 3cosh2k(h+{)_1 Sk —ot)- W )
p ngSinthh {[ Ty cos ( £ (nt) [costh( +§) l]

(4.69)

where U, is a constant. The physical significance of the second and third terms in
the expression for the second order potential, Eq. (4.64), can be assessed by
examination of the average volume flux in the direction of the wave propagation:

T f
%j‘j‘u d¢ =U,h+1 A%0cothkh (4.70)
0 -h



4. Water Waves 165

In a channel of finite length (i.c., with some sort of barrier or beach at the end),
there can be no net volume flux, g¢ = 0, so that there must be a “return current” in
the direction opposite to that of the wave propagation:

cothkh

. (4.71)

U, =—%A2co

On the other hand, in the absence of a barrier, there will be no return current (U, =
0), so that according to Eq. (4.67) there must be an average volume flux (or “mass
transport”) given by

q: :%Azw coth kh 4.72)

in the direction of wave propagation. The associated mean velocity is called the
“Eulerian streaming velocity” because it was determined using the Eulerian
description of the flow field which is implicit in the formulation above (i.e., we
focus on the velocity field as a function of spatial location and time, rather than on
the fate of individual fluid particles).

To find the mass transport velocity of a particular fluid particle, we must adopt
a Lagrangian description of the flow. The resulting mean Lagrangian velocity is
greater than the Eulerian velocity by an amount which is known as the “Stokes
Drift”. The mass transport velocity can be derived by integrating the particle
velocities determined from the first- and second-order potentials given above.
However, the Lagrangian mass transport velocity is strongly influenced by viscosity
(see Mei [1989], Chapter 9, for example); thus the inviscid result should not be
used.

Eq. (4.68) shows that the second-order wave profile is a second harmonic which
has a positive value at the crests and troughs of the first-order solution. Thus the
wave profile to second order is no longer symmetrical; it has higher, sharper peaks
and broader, flatter troughs than the sinusoidal first-order solution, as illustrated on
Figure 4.9 below.

Wave elevation

M| — Firsl ondec + Second onter
S +==+ First orcer

3
Figure 4.9 Comparison of theoretical wave profiles to first- and second-order
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3.2 Limitations of Stokes Theory

The ratio of the second-order contribution to the wave profile to that of the first-
order profile gives an indication of the “accuracy” of the linear theory, e.g., what
we are “missing” by neglecting nonlinear effects:

.f(Z)] _ Ak coshkh
79 s

(3+2sinh? kh) (4.73)

If this ratio is sufficiently small, we may safely neglect second-order effects. In
very deep and very shallow water, the ratio is

(4.74)

In deep water, as we will see shortly, the waveheight-to-length ratio is limited by
breaking; up to this point, Stokes first- or second-order theory is generally adequate.
In shallow water, however, both the wave amplitude and the wave length must be
small relative to the water depth (a severe restriction in shallow water).

As discussed by Madsen [1977], the wave profile to second order contains a
physically unrealistic secondary crest in the trough when the second-order wave
amplitude is greater than A/4. Avoiding such a secondary crest can serve as a limit
to the Stokes second-order theory:

f(z) 2 2
u: > ha 1 Xa g (4.75)
h

For values of A%a/h’ > 13, an alternate theory known as Cnoidal wave theory is
required (Weigel [1964]).

The procedure outlined above can and has been applied to obtain wave profiles
and dynamic pressures to any order; solutions up to 5" order are used in design
wave computations (Conner and Sunder [1991]). In the remainder of this text, it
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will be assumed that the linear theory provides an adequate representation of the
waves.

We have not discussed the effect of nonlinearity on the dispersion relation, Eq.
(4.16). In fact, Eq. (4.16) is correct to second order. By retaining terms to third
order we can derive the third order dispersion relation:

2

O _k tanh kh[l + (ka)? Mﬂl@} (4.76)
g 8sinh * kh

showing that at third order and above, the wave frequency (and thus the phase
velocity) is a function of the wave amplitude as well as its length and the water
depth.

3.3 Wave Breaking

As shown on Figure 4.3, the amplitude of waves approaching a beach from the deep
ocean eventually increases. The steepness of a wave obviously cannot grow
arbitrarily large; at some point the wave will collapse or “break™. Prediction of
wave breaking is well outside of the range of applicability of the theories described
above; the effects of viscosity as well as nonlinearities must be accounted for. For
water of constant depth, the following semi-empirical breaking criterion has been
developed (Miche [1944)):

H 2nth
— | =0.14tanh| —— 4.77
x)B § ( A )B &77

where the subscript “B” indicates “breaking”. This is the wave “slope” (height to
length ratio) at which the velocity of a fluid particle at the crest is just equal to the
phase speed of the wave, accounting for nonlinear effects.

The wavelength at breaking differs from that obtained in linear theory. We can
easily show this for deep water: As h — o, Eq. (4.77) gives

%} =0.14 or kA), =0.44 (4.78)
B

Inserting this in the deep-water version of Eq. (4.76) yields, after some algebra,

}LB = 12}\.0 (479)
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where A, is the deep water wavelength obtained from linear theory.

Various empirical formulations have been developed for the shallow water
breaking criterion on a sloped beach. Madsen [1977] developed the following
expression, which combines some of these with the constant-depth result (Eq.
(4.77)):

E) =O.l4tanh|:(0.8+55 Zih) ] (4.80)
AJs A s

where s is the slope of the beach; the wavelength at breaking may be taken as
approximately 1.2A; where A is the wavelength obtained using linear theory.

4. Spectral Representation of Ocean Waves

Most of our discussion in this chapter thus far has focused on two-dimensional
waves which have a constant amplitude and frequency. Unfortunately, the ocean is
not quite this simple. Ocean waves usually comprise a jumble of lengths, heights,
and directions; they may not even appear to be sinusoidal, containing sharp peaks,
whitecaps, etc. However, linear theory generally provides an adequate description
of waves in the deep ocean. Eq. (4.74) states that linear theory is adequate in deep
water if

H << 0.64;
Y

but Eq. (4.78) tells us that

E<O.l4
A

if the waves are not breaking; in fact, H/A is usually less than 0.1 for deep ocean
waves (Conner and Sunder [1991]). This being the case, we are justified in
attempting to model the seaway as a superposition of simple sinusoidal components,
with various amplitudes, frequencies, and directions:

f(é, 7, t) = ”dA((o, % t)cos(kf cosy+knsiny—wt+ 6(0), x)) (4.81)
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where k is related to o through the dispersion relation, and 3 is a phase angle. The
double integral covers the “frequency-wave angle space”, 0 < ® < o) -1 <Y < 7.
Thus to predict the wave elevation at any location and time, we need to know the
amplitude function dA(w,Y,t) associated with the seaway.

The mean square wave elevation can be obtained by squaring Eq. (4.81) and
integrating with respect to time:

[ T
Fem)== [ e
4]

T

=% I[”dAl(o)l,xl,t)cos(kl.fcosxl +k,77siny, —m1t+6(m1,xl))] (4.82)
0

X ”dAz(mz,xz,t)cos(kz.fcosxz +k,msiny, —m2t+6((02,x2))}1t

where T is a “sufficiently large” time interval (i.e., at least as large as the longest
period associated with the waves). We will now assume that the amplitude function
does not vary over the time interval T (that is, the time interval is selected such that
the amplitude function remains essentially constant). Then, if we change the order
of integration, dA(®,¥,t) can be taken outside of the time integral and we obtain an
expression of the form:

F=% J.J-dAl(oJl,)(])J._[dAz((nz,)(z)“cos(oc1 —th)cos(az —mzt)dt] (4.83)

If T is sufficiently large, the time integral in Eq. (4.83) is zero unless 0, = o,; when
the frequencies are equal the integral is T/2. Thus the mean square wave elevation
becomes simply

7= [flaate. o (4.84)

Comparison with Eq. (4.43) shows that the integrand, multiplied by the quantity
(pg), is the time-averaged energy density of the “differential” wave component with
amplitude dA at frequency ® and heading ¥. Thus the quantity %pg[dA(,x)]* can
be regarded as the contribution of the component waves in a frequency band of
width do and a heading band of width dy, centered at ® and ¥ respectively, to the
total energy of the wave system (or to the “total” mean square wave elevation,
omitting the factor pg).
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In signal processing, the distribution of the mean square of a random process in
the frequency domain is referred to as the mean square spectral density of the
random process, or simply the spectrum of the process. Thus we will define the
wave spectral density function

2= 0] }S/f (o, x Hyxdo (4.85)
0-n

where the subscripts indicate the quantity described by the spectrum (in this case it
is the wave elevation multiplied by itself). Thus

[dA(w,))]* = 2SH(o,y)dydo (4.86)

So, if we can somehow find the spectrum of the waves which is applicable for a
given area and time period, we can use Egs. (4.81) and (4.86) to find the wave
elevation at any point and time which fall within those bounds, provided that the
phases of the various wave components are known. Determination of the phases
would require detailed examination of the entire development of the wave system
from its inception. However, since we are generally interested in vessel
performance in conditions which are #ypical in a given wave environment, as
opposed to re-creating a specific time series, the phases are unimportant and can be
assumed to be randomly distributed in the range 0 < § < 2n. Thus knowledge of the
spectrum is all that is required in order to create a typical time history of the waves.

4.1 Determination of Wave Spectra

4.1.1  Wave spectra from measurements

Wave spectra are most reliably determined from measurements of the waves at the
location and time of interest. Such measurements usually only provide a time
history of the wave elevation at a single point. In order for us to be able to
generalize conclusions drawn from this data to the entire wave field, it is necessary
to assume that the wave field is a stationary and homogeneous random process; that
is, that the wave elevation is random (the random parameter being the phase angle,
as discussed above) and that its statistics do not vary with time or location in the
period and location of interest. Furthermore, we must assume that the statistics we
compute from the single time history or realization of the wave “process” are

‘The notation probably originates from an alternative definition of the spectrum. It can be shown that the
spectrum Sxy is equal to the inverse Fourier transform of the correlation function between X and Y,
which is simply the expected value of the product XY in the time domain.
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equivalent to those we would obtain from an “ensemble” of realizations (i.e., the
wave process is ergodic). What all of this means is that we must assume that the
measured wave time history can be regarded as being “typical” of the given wave
environment. If this is so, we are justified in claiming that the quantities we
compute from it apply to the entire wave field.

The wave spectrum discussed above is a function of both wave frequency and
direction and so is referred to as a “directional” wave spectrum. By integrating over
the wave direction ¥, we can obtain the “frequency spectrum” or “point spectrum”:

Sy (0))= jSﬁ (u), x)dx (4.87)

If the waves can be regarded as “long crested”, e.g., two-dimensional plane waves,
then Eq. (4.87) is a complete description of the wave environment. This is indeed
the case for waves which have been generated by a storm which is remote from the
area of interest, for example. It is referred to as the “point spectrum” because it can
be obtained from data measured at a single point, as we will see below. In fact it is
very difficult to obtain the data necessary to fully quantify the directional wave
spectrum, and theoretical models are lacking. Thus the seas are either assumed to
be long-crested, or the directional spectrum is assumed to be of the simpler form

S 7 (@,1)=8 4 (0)G(x, ©) where [Glo,x)ix =1 (4.88)

i

Several empirical formulations for the spreading function G(w,y) have been
proposed; the simplest of these are the so-called “cosine spreading functions” which
are independent of frequency:

G((n, )()=%cos2 X or G(m,x)z%cos4 Xs X| Sg (4.89)

which are recommended by the International Ship and Offshore Structures
Congress.

There are at least three ways to obtain the wave frequency or point spectrum
from a measured time series: via Fourier transforms, autocorrelation functions, or
analog filtering (Bendat and Piersol [1993]). We will discuss only the first option
here; the others are described in the reference.



172 The Dynamics of Marine Craft

First let’s introduce the Fourier transform of a wave record of finite length T,
regarded as a realization of an ergodic random process:

T

F(£,T)= j F(t)e " dt (4.90)

0

where f is the frequency in Hz (use of this unit of frequency, rather than radians per
second, seems to be traditional in the field of signal processing). The wave
spectrum is defined in terms of the “expected value” of the Fourier transform, which
implies that we must take an average of the Fourier transforms of several records
(which can be obtained by dividing a single record into, say, N records each of
length T)®. The estimated wave spectrum is then

N
sﬂf):%;m(ﬁﬂz (4.91)

where F denotes the Fourier transform of the k™ sub-record and NT is the total
record lengthh. The estimate approaches the exact value of the spectral density as
T—0.

4.1.2  Semi-empirical Formulations of Wave Spectra

The results of the previous section are useful if we happen to have a time history of
the wave elevation at the location and time of interest. However, this is not often
the case. Fortunately, various semi-empirical formulations are available which
apparently constitute an adequate description of typical spectra.

Waves having periods which are of the order of 10 sec are of primary interest to
designers of marine vehicles, because as we will see in the next chapter, their
natural periods of oscillation are typically in this range. These waves are generated
by a combination of the pressure in a turbulent wind field, and the direct shear stress
due to the wind on the water surface. Thus the spectrum of the wind-generated
waves is expected to be a function of the wind velocity and duration. If the duration
of the wind is long enough, an equilibrium will be reached between the energy
being added by the wind and dissipation due to breaking and other effects; at this
point the wave field is called “fully developed”.

£ While the resolution of the computed spectrum is maximized by taking a transform of the entire record,
the random error associated with the approximation to the spectrum, Eq. (4.91), is proportional to 14N,
" We refer here to the one-sided spectral density function, which is defined only for non-negative
frequencies. The definition of the two-sided spectrum, used in the signal processing literature, does not
include the factor of 2, but it has double the range, i.e. -00 <f< 0.
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Phillips [1958] showed that for high frequencies, where wave breaking is the
primary mechanism for energy mechanism, the asymptotic form of the fully
developed wave spectrum is

2
Sy ~i—5;m—>oo (4.92)

Based on a formulation developed by Kidaigorodskii [1962] and extensive
measurements in the North Atlantic Ocean using shipborne wave recorders, Pierson
and Moskowitz [1964] derived the following semi-empirical expression:

4

0.0081g> g
S lw)=—T—exp —0.74 (4.93)
ﬁ( ) ®’ {Uw.sm

where Ujgs is the wind velocity at a height of 19.5m above the sea surface (the
height of the anemometers used on the ships which provided the data). It can easily
be verified that Eq, (4.93), known as the Pierson-Moskowitz spectrum, is consistent
with Eq. (4.92) at high frequencies. The spectra for wind speeds of 20 to 50 knots
are shown on Figure 4.10. Notice that the peak or modal frequency decreases with
increasing wind speed and that the magnitude or energy increases substantially with
wind speed.

Eq. (4.85) tells us that the area under the wave spectrum is equal to the mean
square wave elevation. Thus by integrating Eq. (4.93) we can obtain a relationship
between the wind speed and the mean square wave elevation:

—_— £y 4
S? = [87(0Ho= 0.00274U‘% (4.94)
0 g

Eq. (4.94) could be used to eliminate the wind velocity in Eq. (4.93) and so express
the spectrum as a function only of the mean square wave elevation. However, it is
more common to express the spectrum in terms of a statistic of the wave height as
opposed to the wave elevation. Thus we must digress briefly to explore the
relationship among the mean square wave elevation and the statistics of the wave
heights.
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Figure 4.10 Pierson-Moskowitz spectra for various wind speeds

4.1.3  Statistics of Wave Heights

Designers of marine craft and ocean structures are generally more interested in
statistics of the wave amplitudes or (more commonly) heights than in statistics of
the entire wave train. To explore the statistics of the wave peaks, it is necessary to
know the underlying probability distribution of the wave elevation. Identification of
the probability distribution may sound like a formidable task. Fortunately, however,
the “central limit theorem” applies. This theorem states that under commonly met
conditions, the distribution of a random variable (the wave elevation) which is the
sum of other random variables (the elevation of each wave component) will
approach a normal (Gaussian) distribution as the number of random components
approaches infinity, regardless of the distribution of each component. Thus the
wave elevation is assumed to possess a Gaussian probability distribution.

Before proceeding, it is convenient to define the moments of the spectrum:
o0

m, = Im“S/f(m)im (4.95)
0
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The “zeroth moment” m, is equal to the area under the spectrum, or the mean square
wave elevation. The moments m, and my correspond to the mean square values of
velocity and acceleration of the surface. There are two ways to define an average or
characteristic wave period associated with a given spectrum, and both can be
expressed in terms of the moments:

Average or “visual” period: T = 2TtEli (4.96a)
my

(this corresponds to the “centroid” of the spectrum);

. . ’m
Average time between “zero crossings”: T, =2n -2 (4.96b)
m;
. . . m,
Average time between successive maxima: T, =2n |— (4.96¢)
m,

The last two of these periods are illustrated on Figure 4.11 below.

Figure 4.11 Average wave periods

Figure 4.11 was generated using a superposition of three sinusoids with vastly
different periods and it is apparent that T, < T,. If we were to have chosen more
components, or more widely separated component periods, it would turn out that T,
<< T,. In the opposite limit, if all components had the same frequency, it is obvious
that T, = T, = period of the component waves. Thus the quantity
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T 2 2
£= [1-—% =J1— M (4.97)
T, m,my

(the bandwidth of the spectrum) is a measure of the “frequency dispersion” of the
wave field: For wide-band spectra (“white noise”), e—>1, whereas for narrow band
spectra, dominated by a salient peak, e—>0.

The distribution of peaks of the Gaussian random wave process is given by
(Price and Bishop [1974])

2 2 _ 2 _ 2
£x) = B e /2mes” ( NIZET yooxfamo| gy ol X 176 (4.98)
J2mm, 2m, € | 2m,
where the error function is defined by
X
erf(x)=—= je‘z dz; (4.99)

Jn g

note that erf(0) = 0 and erf(x0) = 1. For narrow-band spectra, in the limit e—0, Eq.
(4.98) reduces to

fx)=—e™/m ¢ 50 (4.100)
myg

which is known as the Rayleigh probability distribution. For wide-band spectra, Eq.
(4.98) reduces to a normal distribution:

fx)= e o (4.101)
1/21tm0

which is symmetrical about x = 0; this means that negative maxima are as likely as
positive maxima and the mean value (average value of the relative maxima) is zero.

We are now in a position to derive statistics of the wave maxima. A statistic
that is commonly used by designers is the “average of the 1/n™ highest peaks”. This
can be determined by finding the centroid of the upper “tail” of the distribution
which has an area of I/n (see Figure 4.12; recall that the total area under the
probability distribution is 1):
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Xya =1 [ xE(x)ix (4.102)

Xi/n

f(x)

in

X
1n
X

Figure 4.12 Determination of the average of the 1/n highest peaks

In order to carry out the integration, we need to find the lower limit; this is
accomplished by requiring that the area to the right of x;, be equal to 1/n:

[ =1 (4.103)
n
Xi/n

Comparison of measured wave statistics and visual estimates of sea severity
indicate that the “average wave height” (double amplitude) estimated by an
experienced observer actually corresponds more closely to the average of the 1/3-
highest waves, i.e., n = 3 in the formulas above (Price and Bishop [1974]). The
average of the 1/3-highest observations is referred to as the “significant value”; the
significant waveheight is widely used to characterize a wave field or sea state.

Available observations and measurements suggest that actual ocean wave
spectra are narrow-banded (see Figure 4.10), and that the Rayleigh distribution is a
good representation (Price and Bishop [1974]) except possibly in severe seas in
water of finite depth where the distribution of the wave elevation may become non-
Gaussian (Ochi [1993]). For the Rayleigh distribution, the integral in Eq. (4.103)
can be evaluated analytically:
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Xy =4/2m, In(n) (4.104)

and by inserting this as the lower limit in the integral in Eq. (4.102) we obtain
(again for the Rayleigh distribution):

Xy = ny/2m, {l,/ln(ni +—‘/2£ ! —erf(,/lnini)]} (4.105)
n
In particular, for n = 3 we obtain

Xy3 =2.04mg (4.100)

The average wave amplitude is given by setting n = 1:
x =1.25m, (4.107)

As indicated above, it is more common in practice to speak of wave heights
than amplitudes. In the narrowband limit for which the Rayleigh distribution is
valid, the wave height is just twice the amplitude or peak value; so Eqs. (4.104) -
(4.107) above can be stated in terms of wave height by simply multiplying by two:

H=25/m,; Hy; =4.0)m, (4.108)

However it must be remembered that if € > 0 the height (peak-to-trough value) is
not necessarily equal to twice the peak value; the heights of the small “ripples” on
Figure 4.11, for example, are generally much less than twice the peak value. In
addition, for spectra which are not narrow-banded, Eq, (4.105) overestimates the
average of the 1/n highest peaks as shown in the table below:

© xp/imo

0 2.00
0.50 1.93
0.75 1.78
1.00 1.00

It is convenient to define the significant waveheight so that it is independent of
the bandwidth of the spectrum; many authors (tacitly or explicitly) define the
significant waveheight as
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H, =4.0ym, (4.109)

thus also avoiding the question of whether the height is actually equal to twice the
peak. We will henceforth adopt Eq. (4.109) as the definition of significant
waveheight, with the caveat that it is not necessarily equal to the average of the 1/3-
highest wave heights.

The expected maximum wave amplitude in N cycles can also be calculated
using the distribution function, Eq. (4.98); see Gran [1992] for example.
Unfortunately a solution is not available in closed-form; however the following
approximation

V1-¢?
Xpax =.|2mg Inf 2-——=——N (4.110)
- [ 1+v1-¢? ]

is accurate for € < 0.9 and N > 100 (Ochi [1973]).

Sea states have traditionally been rated on a numerical scale based the visual
(significant) waveheight, similar to the Beaufort Scale for wind speed. One such
scale that is commonly used is the World Meteorological Organization Sea State
Code, summarized in Table 4.1 below. Also included are the corresponding ranges
and most probable values of the associated modal periods, defined as the period of
the peak of the spectrum, which were determined by analysis of data from a wave
hindcast model applied to the North Atlantic (Bales [1983]).

- Uy’ H,?
f?=000274—23-=m, = 156 (4.111)
g

Solving for Ujss and substituting in Eq. (4.93) yields the Pierson-Mosowitz
spectrum in terms of the significant waveheight:

0.0081g? 2
S (0)=——"—exp| -0.032—£ (4.112)
® H, o*

The modal frequency is given by



Table 4.1 WMO Sea State Code

Significant Modal period |Most Probable
Sea Description Waveht range Maodal Period
State P (m) (sec) (sec)
0 Calm - - -
1 Smooth sea; ripples, no foam 0-0.1 - -
2 Slight sea; small wavelets 0.1-05 33-1238 1.5
3 Moderate sea; large wavelets, crests begin to break 05-1.25 5.0-14.8 7.5
4 Rough sea; moderate waves, many crests break, whitecaps 1.25-25 6.1-15.2 8.8
S Very rough sea; waves heap up, forming foam streaks 25-4.0 83-155 9.7
6 ngh. sea; sea begins to roll, forming very definite foam streaks and 40-6.0 9.8-16.2 12.4
considerable spray
7 Very high sea; very b{g, steep waves with wmd-dnv_en overhanging 6.0-9.0 118 -18.5 15.0
crests, sea surface whitens due to dense coverage with foam
8 Mountainous seas; very high-rolling breaking waves, 00-140 142 -18.6 16.4
sea surface foam-covered
>8 Mountainous seas; air filled with foam, sea surface white with spray >14.0 157 -23.7 20.0

031

a7y auLippy fo sIuuvul YL
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0o =04 |- (4.113)

as can be easily verified by setting the derivative of Eq. (4.112) equal to zero and
solving for the frequency.

Recall that Eq. (4.112) is intended to represent a fully arisen sea. A more
general formulation is defined by two parameters, significant waveheight and modal
frequency:

4 4
1.25 o, 2 (N
S lo)=————H_“exp| -1.25 — 4.114

which is referred to as the Bretschneider or two-parameter spectrum. The
Bretschneider spectrum reduces to the Pierson-Moskowitz formula upon
substitution of Eq. (4.113) for the modal period. This is probably the most widely
used spectral form in use today. The modal frequency should be selected based on
available statistical data on the frequency of occurrence of observed wave periods at
a given significant waveheight in the area of interest. Since such data is usually
expressed in terms of average periods, the following relationship for the
Bretschneider spectrum may be useful:

27

=—=" 4.115
1.2957T ( )

@y

The moments of the Bretschneider spectrum can be computed analytically up to
n = 3; results are tabulated below:

TABLE 4.2 Moments of Bretschneider spectrum

Moment Value
m, H,/16
1
m mowo(%) ¢ F[%] =1.296m,0,
1
my momoz(%jz 1"(%)=1.982m0m02

3
my mym,’ (%)4 I“(%) =4.286m,0,’
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Moments of order 4 and above do not exist (i.e., Eq. (4.95) yields an infinite result’).
This means that the mean square surface acceleration is technically infintely large;
furthermore, the bandwidth as defined by Eq. (4.97) is 1! However, these spectra
are obviously not wide-band and an alternative quantification of the bandwidth is
appropriate in this case (see, e.g., Gran [1992]).

In order to represent a broader range of spectral shapes, particularly those
associated with storms including the presence of swell, Ochi and Hubble [1976]
developed the six-parameter or Ochi-Hubble spectrum. Swell refers to waves
produced by a storm which is remote from the location of interest; swell waves are
less “confused” (more long-crested) and generally of longer period than the sea
which is induced by the continuous action of the wind in the area of interest. The
six-parameter spectrum is actually a superposition of two spectra of identical
mathematical form, characterized by significant waveheight, modal frequency, and
a “shape parameter”, but which may have distinct values for these quantities,
representing the sea and swell. The six-parameter formulation is:

A 2 4

1 ar.+1 )7 1 Hg 4N, +1{ og;

Sy(0)== ( Lo, ) —exp| ————| —2> | | (4.116)
AR j:zl,:z 4 % ) Tly) et 4 (o

The value of the “shape parameter” A controls the sharpness of the peak of each
component; the formulation is equivalent to the Bretschneider spectrum when A = 1.

To provide guidance for selection of the six parameters, Ochi [1978] carried out
a statistical analysis of the parameters of 800 wave spectra obtained from
measurements in the North Atlantic ocean. From this analysis he obtained the
modal value and upper- and lower- values for 95% confidence for each parameter
(he actually only analyzed five parameters, including the razio of significant heights
rather than H;, and H,,). He thus obtained a total of 15 spectra corresponding to the
three values of each of the five parameters (for the other parameters, the mean
values within the respective 95% confidence bands were used in each case). It was
found, however, that the five spectra associated with the modal values of the
parameters were sufficiently similar so as to be adequately represented by the single
spectrum associated with the modal value of H,/Hg; this is called the “most
probable spectrum” (for a given sea severity). Thus the seaway can be described by
a “family” of 11 spectra. Finally, Ochi expressed the values of the 66 parameters as
functions only of the significant waveheight (thus dramatically reducing the number
of parameters!). In practice, each family member is assigned a “weighting factor”

" For whatever its worth, it can be shown that for the Bretschnider spectrum,
my = o¢'H’[0.72 log(Q/ame)- 0.70]
for (3>5w, where Q is the upper limit of integration or “cutoff frequency”.



4. Water Waves 183

representative of its likelihood: The most probable spectrum is assigned a
weighting factor of 0.50, and all other spectra have a weighting factor of 0.05.

The parameters H;, and H, are expressed as functions of the total significant
waveheight. The other parameters are all expressed as exponential functions of the
significant waveheight as follows:

W1, Oggs My, Ay =ae s (4.117)

The values of H,,,/ H,, a and b are tabulated in Table 4.3. The family is plotted on
Figure 4.13 for a significant waveheight of 1.5m (5 ft). We should keep in mind
that these values correspond to the North Atlantic ocean; however, “it was found
that the bounds [of marine craft responses computed using these values] cover the
variation of responses computed using the measured spectra in various locations in
the world...thus, it may be safely concluded that the upper-bound of the response
evaluated [using these values] can be used for design consideration of marine
systems [worldwide]” (Ochi [1993]).

Table 4.3 Parameters of Ochi/Hubble spectrum family

[aF} (0] }\rl }\42
Spectrum Hq/Hg Hq/H; a b a b a b a b
ML 0.84 0.54 0.70 0.046 1.15 0.039 3.00 0 1.54  0.062
1 0.95 0.31 070 0.046 150 0.046 135 0 248  0.102
2 0.65 0.76 0.61 0.039 094 0.036 495 0 248  0.102
3 0.84 0.54 0.93 0.056 1.50 0.046 3.00 0 2.77 0.112
4 0.84 0.54 0.41 0.016 0.88 0.026 2.55 0 1.82 0.089
5 0.90 0.44 0.81 0.052 1.60 0.033 1.80 0 2.95 0.105
6 0.77 0.64 0.54 0.039 0.61 0 4.50 0 1.95 0.082
7 0.73 0.68 0.70 0.046 0.99 0.039 6.40 0 1.78 0.069
8 0.92 0.39 0.70 0.046 137 0039 0.70 0 1.78  0.069
9 0.84 0.54 0.74 0.052 130 0039 265 0 3.90 0.085
10 0.84 0.54 0.62 0.039 103 0030 2.60 0 0.53  0.069

Early observations of developing waves suggested that wave heights do not
grow monotonically in time, generally exhibiting an “overshoot” relative to the final
equilibrium values. If the spatial extent or fetch of the body of water exposed to the
wind is limited, as in the case of a lake or gulf, or for a storm of limited spatial
extent, the wave spectrum will never become fully-developed. The observations
suggest that the spectrum will have a higher peak than the corresponding Pierson-
Moskowitz spectrum for given wind speed. This motivated the undertaking of a
major international program called the Joint North Sea Wave Observation Project
(JONSWAP), in which measurements were made in the North Sea at 13 stations up
to 160 km from the coast under various wave conditions. After analyzing this data,
Hasselmann et al. [1973] proposed the following spectral form:
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Figure 4.13 Ochi-Hubble spectrum family for a significant waveheight of 1.5m

2 4 2
Sﬁ(m)=%expii—i(ﬂ] :lyr; r:exp{—(w_z—woz)J (4.118)

4\ o 2c Wy

which is a “peak-enhanced” Pierson-Moskowitz spectrum; the factors y and o
control the height and width of the peak, respectively. The constants determined by
analysis of the North Sea data are:

U 5 0.22
a=0.076[ 10 J
Fg
y=3.30
2 V3 (4.119)
wp =22 —&
UjoF
B 0.07 v <y
"~ 10.09 © > o

where F is the fetch (in the experiment this was the distance from the lee shore) and
Uy is the mean wind velocity measured at a height of 10m above the surface.
Figure 4.14 shows the evolution with fetch of a JONSWAP spectrum for a wind
speed of 10m/s, and the corresponding Pierson-Moskowitz spectrum from Eq.
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(4.93); the wind velocity at a height z (in meters) can be related to that at 10m
through the velocity profile (Ochi [1993])":

VA
- +/Com In| =
Uz =V 1 pio n{ 1ojj (4.120)

Cpio = 0.0008 + 0.000065U;¢

where Cpjg is a “surface drag coefficient evaluated from wind measurements at a
height of 10m”. Using Eq. (4.120) we obtain

U]945= 1025 U]O

which was used in Eq. (4.93) to compute the P-M spectrum shown on Figure 4.14.
Note that the JONSWAP modal frequency decreases with increasing fetch, and that
the peak of the spectrum increases conspicuously. Eventually a point will be
reached where the sea is “saturated” (no further local energy storage is possible) and
the area of the spectrum will stop growing. Energy is redistributed within the
spectrum due to nonlinear wave-wave interactions, and eventually the equilibrium
P-M spectrum is approached.

1.0

\ JONSWAP, 100 km fetch
15
ki Il
g i \
o 0.6 [ Pierson- I : 4
T Moskowitz_ - \
£
5 ]
Q
= 0al N W
§ / \, f\so km
') :
02} / N
/ \
/ / - 20km
: - - S
0.0 e === ;
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Figure 4.14 Evolution of JONSW AP spectrum with fetch for Uy = 10mv/s

7 Another commonly used formula is the “power-law profile”

2 1/n
U, = U —
10[10)

where n is usually taken to be 7; however, “for naval and ocean engineering, [Eq. (4.120)] appears to be
[more] suitable [having been obtained from] a series of studies of wind characteristics over a sea
surface...(Ochi [1993]).
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It is often more convenient to work with the spectrum expressed as a function
only of significant waveheight and a characteristic wave period (in the design of
marine vehicles these are often specified, whereas the wind and fetch may not be).
Unfortunately there are no analytic expressions for the moments of the JONSWAP
spectrum, which are needed to relate the significant waveheight and the various
periods to the JONSWAP parameters. However, we can obtain approximate values
in terms of the ratio of the area of the spectrum to that of the “underlying P-M
spectrum” (i.e., JONSWAP with y = 1). This ratio can be approximated by

n=(y-1)/6 (4.121)

(Gran [1992]). In addition, it has been found empirically (Gran [1992]) that the
peak enhancement factor y is related to H and og:

~exp(5 75231 fH J (4.122)
(DO s

The parameter o may be approximated by

5
a —
16

H 4
—s 0 (4.123)
g

(n)

Thus, when y = 1, 1 = 0 and the JONSWAP spectrum , Egs. (4.118) and (4.123),
reduces to the Bretschneider form (Eq. (4.114)).

An additional relationship that may be useful is that between the average zero
crossing period and the modal period:

T, =T, /E)fgj (4.124)
+y

4.2 Representation in the Time Domain

Spectral analysis is an extremely convenient method to obtain statistics of the
seaway, and, as we will see in the next chapter, statistics of vessel response in
waves. However, for simulations we need a description of the wave field in the
time domain. Given a measured or assumed spectral form, a time series can be
generated using Eqgs. (4.81) and (4.86), where one usually approximates the double
infegral by a summation over a finite number of wave frequencies and directions.
Thus at a particular location,
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f(t)= ”dA(a), % t)cos(mt - 8((1), X))
233 28 5 (04, % m JA0AY cos(0,t-8(0,, X))

(4.125)

where as before the phase angles are randomly chosen from a uniform distribution
in the range 0 < § < 2n. One should avoid selection of equally-spaced frequencies,
since the resulting time series will then repeat with a period of n/Aw. The required
number of components depends to some degree on the application; a
“qualitative...representation of the behavior [of a ship in waves] it is often sufficient
to consider 20-30...wave components, irregularly chosen within the frequency
region where the spectrum and transfer functions have significant values” (Gran
[1992]). For training simulators and other applications in which high-fidelity
response is not required, as few as 10 wave components is sufficient to provide a
qualitative indication of the response.

5. Long-Term Wave Statistics

The previous section dealt with wave systems whose statistical properties are
essentially constant. This is true only for time periods that are relatively short
compared to the lifetime of a typical vessel or offshore structure. For ships,
specifications are often written in terms of what is expected in a given sea state,
regardless of the probability of occurrence of that sea state. However, to determine,
say, the probability of capsize in the design life of the ship, knowledge of the long-
term distribution of wave heights is required. Similarly, for offshore structures,
design wave conditions are often specified in the form of a “return period” or
“recurrence interval”; a 100-year return period is common. This means that the
structure must withstand the effects of the wave with a height that is expected to be
exceeded once in 100 years. Determination of this design wave height also requires
knowledge of the long-term distribution of wave heights.

5.1 Maximum Waveheight from Occurrence Data

Long-term wave statistics are often presented in the form of occurrence tables.
An example is given in Table 4.4 below. This table pertains to the northern North
Atlantic Ocean, based on the 10-year hindcast data presented by Bales et. al [1981].

This data can be used to predict long-term wave statistics as follows. Returning
to the short term for a moment, recall that the probability density function of wave
peaks for narrow-band spectra is given by the Rayleigh distribution, Eq. (4.100).
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The cumulative distribution F(H), giving the probability that the wave height is less
than or equal to a particular value H, is determined by integration:

H/2 H2
FH)= | f(x)dx:l—exp(—2H 2) (4.126)

] S

Now suppose that a seaway consists of N waves, and that we have managed to
measure all of the wave heights. Now, what is the probability that the heights of all
of these waves are less than or equal to some other value H? It is given by

P(Humax < H) = P(H, < H)P(H, < H)P(H; < H)....P(Hy < H),

where H,,, is the largest measured value. But in the short term, each of these
factors is given by the cumulative probability density function:

P(H; < H) = F(H)

TABLE 4.4 Percentage occurrence of significant wave height and modal period.
Based on 10-year hindcast data (Bales [1981]).

Hs, m

16-18

14-16 01 + 0.1
12-14 01 03 + 0.4
10-12 01 05 03 + 0.9
9-10 + 01 03 06 02 + 1.2
8-9 + 03 12 05 02 22
7-8 03 1.0 13 03 02 + 3.1
6-7 + 01 18 16 14 04 02 + 54
5-8 + 07 40 14 11 06 02 + 8.0
4-5 + 05 37 41 12 08 05 01 + 10.9
3-4 + 09 51 51 40 13 08 05 01 17.8
2-3 + i9 62 60 35 27 12 07 05 + 230
1-2 01 23 48 40 27 20 16 07 07 03 + 19.5
0-1 01 02 19 15 12 12 05 04 02 02 01 7.5

TOTAL 01 03 42 83 123 155 157 189 90 86 49 20 041 + 1000

32 49 63 75 88 97 109 123 139 149 16.4 17.8 20.0 22.7 25.6 TOTAL
Modal wave period, sec

NOTE: + indicates value less than 0.05%

Thus we have

N
P(H e < H)=[FE)]N = l—exp(—2 :22 ) (4.127)

s

for a single sea state, which is the cumulative distribution function for the largest
wave in N observations. Differentiation of this function with respect to H gives the
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associated PDF, the maximum of which corresponds to the most likely extreme
value given (approximately) by Eq. (4.110). The cumulative probability of H,, in
M sea states, then, is just

Ny N, Ny
I'I2 HZ HZ
P(Hmax SH)= 1—exp -2 2 1—€Xp -2 2 1—exp -2 5
Hs,l Hs,Z HS,M

(4.128)

where Ny, is the number of cycles in each sea state, which can be computed from
the tabulated data and the total duration D (e.g., the design life of the structure):

D-p; /100
N, = p%/

1

(4.129)

where p; is the percentage occurrence from Table 4.4, and T, is the associated

average wave period, which can be computed from the tabulated modal period using
the appropriate relationship (e.g., Eq. (4.115) for Bretschneider spectra).

3.2 Maximum Significant Waveheight from Extreme Value Distributions

Observed maximum significant wavehelght data are often fit to an “extreme
value distribution”™. A fundamental result in Extreme Value Theoty, known as the
“Fisher-Tippett theorem”, states that for a large number of observations, the limiting
distribution of maxima of “independent identically-distributed random variables
(suitably normalized)” approaches the generalized extreme value distribution, if the
cumulative distribution converges. This theorem holds regardless of the specific
form of the distribution of the random variables. The generalized extreme value
distribution is

RS
H(x)={*P [”& (4.130)

exp £=0

where 1 and ¢ are “location” and “scale” parameters used to normalize x. The
value of & depends on the behavior of the “tail” of the underlying distribution F(x):

¥ The same techniques could also be applied to observed maximum wave heights; however data on
maximum heights are not as readily available (one reason being that ships usuaily avoid such conditions).
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Typel: “exponential tail”, 1-F(x)~e®: £=0 Gumbei distribution
Type II: “long tail”, 1-F(x) ~x" £>0 Frechet distribution
Type III: “short tail”, finite endpoint £<0 Weibull distribution

The Type 1 distribution is applicable to the case of the largest of N values as N gets
large, with the underlying distribution having the limiting behavior shown above.
The Type II distribution is applicable when the underlying distribution has a lower
limit of zero but is unlimited “to the right”. For Type III, the underlying
distribution has a finite endpoint at

x=x0=u——(% (4.131)

and behaves as follows as x—>x, (Benjamin and Cornell [1970]):

F(x) ~ 1-c(x0 - X) V8, x < xq (4.132)

5.2.1 Weibull distribution

There are also Type I and Type Il distributions applicable to the minimum of N
values as N gets large. For example, the Type III (Weibull) extreme value
distribution for the smallest of N values is:

-1E
H(x)=1—exp‘:—(l+§x—u) } (4.133)
¢

where now the value X, given by Eq. (4.131) is to be regarded as the lower limit of
the underlying distribution. Using Eq. (4.131) to eliminate the first £ in Eq. (4.133),
and substituting

kE—~1—; k>0
3

in the exponent, we obtain the following form of the Weibull distribution of
smallest values:
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k
H(x)=1-exp —[x"x") (4.134)
L—~%g

Why are we talking about minimum values? Good question. It happens that
Eq. (4.134) is widely used to fit observed wave height data (without theoretical
justification). When applied to significant waveheight, for example, Eq. (4.314) is
usually written as

k
P(H, <H)=1-exp| - H-H, (4.134a)
s

H,-H,

where the parameters Hy, H, and k are determined from the data. Eq. (4.134a) gives
the probability that the significant waveheight is less than or equal to a given value
H. In practice the probability is set equal to some “target” value, and Eq. (4.134a) is
used to calculate the corresponding significant waveheight.

Before we can do this, we need to find the three parameters. There are several
available methods, the simplest of which is probably the least-squares method. To
apply the method, we first write Eq. (4.134a) in terms of the empirical cumulative
distribution function of the data,

F, (H) _ Number of datapoints S H (4.135)
Total number of datapoints
and take the log of both sides of the equation twice to obtain
In[-n(1-F, (H)))= k[n(H-H, )-In(H, -H, )] (4.136)

The minimum value H, is sometimes assumed to equal zero so that Eq. (4.136) can
be simplified to the so-called “two-parameter” form:

In[- In{1 - F, (H))] = k[in(H) - In(H1 )] (4.1362)

So by plotting In[-In(1 - Fe(H))] vs. In(H), and fitting a straight line to the results,
we can obtain k and H.. We could apply the same procedure to Eq. (4.136) by using
a series of assumed values of Hy, and selecting the value that minimizes the error of
the fit.
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The sharp-eyed reader will have noticed a potential problem in applying Eq.
(4.136a) and (4.135) to the largest observed value, i.e. when F (H) = 1, the log of
(1 - F((H)) does not exist. In fact there are other problems with Eq. (4.135),
particularly for small sample sizes. For example, one would expect F(H) = 0.5 for
the median of a set of observations; however if N = 5, say, Eq. (4.135) indicates
F.(H) = 3/5 = 0.6 for the median value. These inconsistencies can be overcome by
accounting for the fact that the measured quantities, and thus the empirical
distribution, are themselves random quantities. Several methods are available; they
are usually referred to as “plotting position formulas” because they determine what
value of F(H) to use when constructing the log - log plot discussed above in
conjunction with Eq. (4.136a) (in the olden days these analyses were done
graphically using special plotting paper). The two most popular plotting formulas
are the Weibull formula,

L =1— 4.137
' N+1 (4-137)
and the Benard or “median ranks” formula,
F =1-1203 (4.138)
N+04

which are based on having the mean and median of the random variable F coincide
with F = 0.5, respectively. In these formulas, which are independent of the
underlying frequency distribution, F; denotes the cumulative distribution associated
with the 1" point, when the points are in ranked order (i = 1 is the smallest, i = N is
the largest). Other formulas have been derived based on various distributions of H;
see (Liu and Frigaard [2001]), for example; however these are not widely used.

An alternative to the least-squares technique is the so-called “method of
moments”, in which we attempt to match the moments of the empirical distribution
to the theoretical values of the extreme value distribution. For the Weibull
distribution the following relationships exist among the parameters H,, H, and k,
and the mean and standard deviation of H:
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i)

HO =my —CH

(4.139)

H, =my+oy

{4

where I is the Gamma function and my and &y are the mean and standard deviation
of the variable H. Notice that Egs. (4.139) can only be used to determine only two
of the three parameters. However for the two-parameter form we have Hy = 0 so the
first of Egs. (4.139) can be solved for k in terms of my/cy.

5.2.2 Gumbel distribution

The other commonly used formulation for fitting wave height data is the Gumbel
distribution. In this case, taking the log of both sides of Eq. (4.130, £=0) twice we
obtain the plotting/fitting formula

In[-In(F, (H))]= ——H—;*—‘ (4.140)

or
H = —¢ In[- In(F, (H))]+ 1 (4.140a)

where one of the plotting position formulas would be used in the computation of
F.(H). The slope and intercept of the best-fit line on a plot of H vs. -In[-In(F.(H))]
thus yield the parameters ¢ and p.

The method of moments yields a simple relationship between the parameters @
and ¢ and the mean and standard deviation of H for the Gumbel] distribution:

My =U+y0 (4.141a)

Oy =

(4.141b)

e
V6
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where y is Euler’s constant, y ~ 0.577. Note that since the Gumbel distribution has
only two parameters, higher moments cannot be matched to the data.

5.2.3 Example

To illustrate the use of the long-term distributions, we will apply them to find the
100-year maximum significant waveheight at a particular location using buoy data.
Historical data from the buoys owned and maintained by the U.S. NOAA National
Data Buoy Center (NDBC) can be found online at http:\\www.ndbc.noaa.gov.
Looking at Station 44004, for example, which is located 200 miles east of Cape
May, New Jersey, we find that historical data are available back to 1977. The data
is tabulated by year; each file contains hourly measurements of significant
waveheight as well as several other meteorological quantities. Following is a table
of the maximum significant waveheight measured at this station in each year from
1977 - 2001.

TABLE 4.5 Annual maximum Significant Waveheight
at NDBC Buoy Station 4404

Year Max Hs| Year Max Hs| Year Max Hs
1977 7 1986 10.1 | 1995 8.9
1978 8 1987 9.1 1996 10.98
1979 7.2 1988 7.1 1997 9.36
1980 10 1989 8.3 1998 6.88
1981 8.4 1990 8.1 1999 7.69
1982 7.6 1991 7.1 2000 9.55
1983 8.6 1992 9.9 2001 8.11
1984 8.3 1993 135
1985 8.9 1994 116

To apply the least-squares methods described above, we must first compute the
empirical cumulative distribution and plotting positions. Thus the values in Table
4.5 must be sorted so that Eq. (4.137) or (4.138) can be applied; see Table 4.6.
Next, we must compute the log of F; or (1 — F;) twice, according to Eqs. (4.140) or
(4.136) for the Gumbel and Weibull distributions, respectively. Then we plot H vs.
-In{-In(F))] or In[-In(1 - F;}] vs. In(H - Hp) for Gumbel or Weibull, and fit a straight
line to the results; Hy is an assumed value which can be set to zero initially. This
procedure yields the parameters in Table 4.7.

To apply the method of moments for the Gumbel distribution, we just need to

compute the mean and standard deviation of the waveheight data and apply Egs.
(4.141).
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TABLE 4.6 Values for plotting Extreme Value distributions

i E; : _F
Rank, i H Eq. (4 137) In(-In(F))  In(-In(1 - F))
1 13.5 0.962 3.239 1.181
2 11.6 0.923 2.525 0.942
3 10.98 0.885 2.099 0.770
4 10.1 0.846 1.789 0.627
5 10 0.808 1.544 0.500
6 9.9 0.769 1.338 0.383
7 9.55 0.731 1.159 0.272
8 9.36 0.692 1.000 0.164
9 9.1 0.654 0.856 0.059
10 8.9 0.615 0.723 -0.046
11 8.9 0.577 0.598 -0.151
12 8.6 0.538 0.480 -0.257
13 8.4 0.500 0.367 -0.367
14 8.3 0.462 0.257 -0.480
15 8.3 0.423 0.151 -0.598
16 8.11 0.385 0.046 -0.723
17 8.1 0.346 -0.059 -0.856
18 8 0.308 -0.164 -1.000
19 7.69 0.269 -0.272 -1.159
20 7.6 0.231 -0.383 -1.338
21 72 0.192 -0.500 -1.544
22 7.1 0.154 -0.627 -1.789
23 7.1 0.115 -0.770 -2.099
24 7 0.077 -0.942 -2.525
25 6.88 0.038 -1.181 -3.239

Table 4.7a Results of Weibull fits to data in Table 4.6
Distribution  Weibull (Eq. 5.136a) _ Weibull (Eq. 5.136)

Ho 0, assumed 6.7m
H, 9475 m 9.068 m
k 6.117 1.203
r* of fit 0.857 0.983
Predicted H g 12.16 m 15.13m
Table 4.7b Results of Gumbel fits to data in Table 4.6
Method Least Squares Moments
(Eq. 5.139a) (Egs. 5.140)
¢ 1.403 m 1.235m
(" 8.066 m 8.098 m
1 of fit 0.973
Predicted Hygp 14.52m 13.78 m

The parameters obtained for the Gumbel and Weibull distributions are also
included in Tables 4.7, as are the coefficients of determination (r* values) of the
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least-squares fits. For the three-parameter Weibull distribution, the value of Hy that
minimizes r* was determined by trial and error (which does not require many trials
for single-place accuracy; note that the value of H, cannot exceed the lowest
tabulated value of H). The four best-fit distributions are plotted on Figure 4.15
along with the data.
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FIGURE 4.15 Comparison of best-fit extreme value distributions with data

Figure 4.15 clearly shows that the two-parameter Weibull distribution does not
fit this data very well, particularly for large wave heights and small exceedance
probabilities (which are generally of the most interest). Recall that Hy is supposed
to represent a lower limit of the underlying distribution of significant waveheights;
s0 it is perhaps not surprising that zero is not the best choice. The fit is considerably
improved by appropriate adjustment of this parameter. The two Gumbel fits appear
satisfactory for wave heights less than 12m, but underpredict the largest observation
by a considerable amount.

There is no compelling theoretical justification for choosing among the
commonly-used extreme value distribution functions. In practice we usually pick
the distribution that best fits the data in the range of interest, i.e. usually for the
higher wave heights and lower exceedance probabilities. Note however that it is
generally the case that data are available for only a small fraction of the return
period of interest, so that considerable extrapolation is required. Needless to say, it
is prudent to plot and examine the data along with the candidate distributions before
making a choice.

The final step in our example problem is to use the distribution parameters in
the corresponding formulas to find the expected maximum significant waveheight in
100 years. Note that this corresponds to an annual cumulative probability of



4. Water Waves 197

F(HIOO) =0.01

which is the ordinate of the horizontal axis in Figure 4.14. The predicted values can
also be found in Tables 4.7. Figure 4.14 clearly shows that the 100-year significant
waveheight predicted using the two-parameter Weibull distribution is considerably
lower than the greatest value in the 25 years of observations, which is highly
unlikely. It appears that the two-parameter Weibull distribution should be used with
caution in such applications.

In the following chapter we will apply many of the formulas introduced above
in the examination of the wave-induced motions of marine craft.
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CHAPTER 5

WAVE-INDUCED FORCES ON MARINE CRAFT

Ocean waves may generate significant forces and moments on marine vehicles and
fixed structures which must be considered by designers. In the previous chapter,
formulas for the wave-induced force on vertical walls and circular cylinders were
given. In this chapter we will focus on evaluation of the forces and moments on
marine vehicles, and the resulting motions, which are also of considerable interest.
We begin by studying the response of a floating body in small-amplitude waves; we
will see that the frequency (spectral) analysis introduced in the previous chapter is
applicable for determination of the statistics of the wave-induced response. Some
important nonlinear effects will be investigated, and the effects of a mooring system
will be briefly examined.

1. Wave-induced Motions: Linear Theory

We will consider a floating body acted on by waves which can be represented using
the linear theory described in the previous Chapter; that is,

KA << 1 (5.1

in deep water (see Eq. (4.74)) for all components of the incident wave spectrum.
This might seem to be overly restrictive, but we will see that the linear theory
generally works quite well, even in cases where this assumption is not strictly met.
Furthermore, we will assume that the body is stable, so that small disturbances will
yield proportionately small responses. In addition, we will for the moment neglect
viscosity, which acts to produce some nonlinear effects which we will discuss later.
Under these assumptions the body can be represented as a linear system, with the
waves as the input, and the resulting motions as the output.

With the additional assumption that the system is time invariant (meaning that
the output produced by a given input is independent of the time at which the input is
applied), it can be shown that the output y(t) can be expressed as a function of the
input x(t) as follows:

199
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3(0)= h(ek(e-cki 52)

where h(t) is the impulse response function, defined as the response to a unit
impulsive input. Thus the output depends in general on the entire time history of
the input; Eq. (5.2) applies to “causal” systems, which cannot have an output prior
to application of the input. As we will see, this is not necessarily the case for the
systems we will be examining here, so we will employ the more general expression

y(t) = ih(r)x(t - ‘r)d‘r (5.2a)

which applies to non-causal as well as causal systems®.

Expressions like Eq. (5.2a) are generally difficult to deal with, requiring
knowledge of the entire time history of the motion and evaluation of indefinite
integrals. This can conveniently be avoided by considering the Fourier transform of
Eq. (5.2a). This is because a convolution in the time domain corresponds to a
simple product in the frequency domain:

¥(o)= [yl = H)X(o) 53

where X, Y and H represent Fourier transforms of the input, output, and impulse
response function, respectively. Eq. (5.3) tells us that the output of a linear, time-
invariant system at a particular frequency depends only on the value of the input at
that same frequency, and the system characteristics at that frequency. Note that in
general H and Y are complex quantities, which means that the output has a phase
angle (given by the argument of Y) relative to the input.

The quantity H(®), which characterizes the system response in the frequency
domain, is called the frequency response function”; it is also referred to as the
Response Amplitude Operator (RAO for short) in the seakeeping literature. The
magnitude of H(w) gives the magnitude of the response per unit input a particular
frequency, and its argument gives the phase of the response relative to that of the

input (the phase of the input is usually taken to be zero). Thus we could find the

“ The “non-causal” systems we will examine are actually only apparently so, because of how we choose
to measure the input quantity.

® The frequency response function is a special case of a transfer function, which is given by the Laplace
transform of the impulse response function.
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frequency response function corresponding to a particular mode or component of
the motions of a ship by measuring the motion amplitude and phase in a series of
regular, small-amplitude waves of various frequencies. This procedure is in fact
carried out in seakeeping basins to find RAO’s.
To find the mean square spectral density of the output, we could apply Eq.
(4.91):
Syylo)= Y, (o, T (5.4)
w®)=Z ¥ o T

k=1

where Y(o,T) is the finite Fourier transform of the k™ output record of length T,
T .
Y (0, T)= [y, (t)e ™t (5.5)
0

Inserting Eq. (5.3) in Eq. (5.4) and making use of the fact that

[RXJ* = [HPX
we obtain
2 N
Syy (@) NTZ]Hm) X, (o, T)? =|H( ]zﬁglxk(m,TY=,H(mYSXX(0))

Thus we can obtain the output spectrum directly from the input spectrum, via
multiplication by the square of the RAO magnitude. Eq. (5.6) provides an
alternative means to find the RAO (in addition to the “frequency domain” approach
described above), by dividing the spectral density of the output by that of the input
and taking the square root of the result. Furthermore, all of the formulas for wave
peak statistics are applicable for computation of the statistics of motion maxima,
using the motion spectrum Syy. These computations and their applications will be
discussed at length in Section 7 below.

For completeness and for future reference we will mention that it is also
possible to define a cross-spectral density Sxv(®):

N
Sy (©) =2 X} (0, T)Y, (0,T) (5.7)
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where X, * is the complex conjugate of X,. It can be shown (Price and Bishop
[1974]) that

Sxv(®) = H(@)Sxx(®) (5.8)

Note that knowledge of the cross-spectral density function, together with the input
spectrum, permits evaluation of both the magnitude and phase of the RAO, whereas
use of only the input and output spectra (“autospectra” to be more precise) in Eq.
(5.6) allows us only to find the magnitude of H(®).

Prediction of the wave-induced ship motions (in waves satisfying Eq. (5.1))
thus boils down to finding the RAQ’s, or the motions per unit wave amplitude in the
frequency domain.

1.1 Hydrodynamic forces: Superposition

Finding the RAO’s of a floating body amounts to solving the equations of motion in
the frequency domain. Thus we need to obtain the hydrodynamic forces and
moments acting on the body.

The assurmed linearity of the system makes it possible to break a complicated
problem down into a series of simpler ones, since solutions can be superimposed.
We will make use of this property extensively in this chapter. The first application
will be to express the total hydrodynamic force as the sum of two basic components:

1. Wave-exciting forces: The forces due to the wave system only, with the body
assumed to be fixed in its mean position; these forces are linearly proportional
to the wave amplitude.

2. Radiation forces: The forces generated by the motions of the body in calm
water; these forces are linearly proportional to the motion amplitudes.

We have seen that a sinusoidal input to the linear system produces a sinusoidal
output at the same frequency. Thus we expect the motions to be of the form

X; = Xoicos(0t — §) = Re {xoe ™"} (5.9)

where, in the final expression, the motion amplitude x¢; is complex; the phase §; is
measured with respect to the wave crest at the origin. The subscript j ranges from 1
to 6 to indicate the direction or mode of motion: surge, sway, heave, roll, pitch and
yaw, respectively. The velocity and acceleration components can easily be found
by differentiating Eq. (5.10):



5. Wave-Induced Forces on Marine Craft 203

=Re{-ioxe™}; a;=Re{-0’xe™ (5.10)
) J '}

It is traditional to further decompose the hydrodynamic radiation force into
components which are in phase with the acceleration and velocity:

Fu(0)=-3[ag0 J+BUuJ]=Re{26:[m2Aij+i(oBij Oje‘i‘”‘} (5.11)

= \ =t

Here Aj and Bij are the added mass and damping coefficients, respectively. The
negative sign is inserted because these forces are expected to typically oppose the
motions of the body, resulting in positive values of the coefficients’. The added
mass coefficients should be familiar from Chapter 3 (if this is not the case, please go
back and read Chapter 3!); however, we now see that the added mass coefficient (as
well as the damping coefficient) are functions of the frequency of oscillation; the
results presented in Chapter 3 correspond to steady motion, or the zero-frequency
values of the coefficients. The steady-state values of By are zero in accordance with
d’Alembert’s paradox; the damping force at nonzero frequency is associated with
the energy carried away by the radiated waves. We will derive a relationship
between the damping coefficient By and the amplitude of the radiated waves far
from the body a bit later in this chapter.

The wave-exciting force Fx can be written as follows
xj = Fxicos(ot — ;) = Re{AX;e™"} (5.12)

where A 1s the wave amplitude; X; is the complex wave-exciting force amplitude
per unit wave amplitude (the phase of the force relative to the wave crest, §;, will
generally be nonzero).

Considering the body to be at zero speed (aside from the zero-mean wave-
induced velocities; the effects of forward speed will be addressed later), the other
forces that act on the floating body in waves are those associated with gravity and
buoyancy which we derived in Chapter 2. Using the “small-amplitude” gravity-
buoyancy relationships, Eq. (2.33), together with the sinusoidal motions given by
Eq. (5.9), we can obtain the following expression for the gravity-buoyancy or
restoring forces:

¢ We will see that By must be positive from energy considerations but that A;; may in fact be negative
under some circumstances.
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6 .
Fo-pi =—Re{zcijxoje"‘*"} (5.13)

j=1
The elements of the restoring force matrix C are listed on page 24.

We can now write down the expression for the total hydrodynamic force and
moment acting on a body at zero speed, “in the frequency domain” (i.e., for a body
oscillating at a given frequency and amplitude in response to regular waves):

6 . .
Fi (OJ)ZFRI' +FXi +FGBi =RC{Z [(DZA,'J' +i(DBij ——Cij ()je—lcot +AAXiC_lmt } (5.14)
j=1

We are now in a position to write down the equations of motion of the floating
body.

1.2 Equations of Motion; Simple I-DOF Case

Up to this point we have not specifically identified the coordinate system that we
are working with. To be consistent with Chapter 3, we should use body-fixed axes.
However it is more convenient in seakeeping analysis to work in fixed axes as in
Chapter 4. This dilemma is conveniently resolved, for the time being, by noting our
assumption of small amplitudes. If the motions are small, we may adopt the
linearized equations of motion in which terms involving products of displacements,
velocities and/or accelerations are assumed to be negligibly small, e.g., Eqs (3.139)-
(3.140). In this case, if the forward speed is zero, the terms that arise due to rotation
of the coordinate system disappear, and the resulting equations are identical to those
expressed relative to a fixed system! Since we will eventually want to integrate
these results with those of Chapter 3, we will generally refer to body axes when
expressing forces and motions.

Before considering the full system of equations, it is instructive to examine a
simple single degree-of-system case, such as the heaving motion of a spherical
buoy. From Eq. (1.36), neglecting coupling terms, the equation for heaving motion
is just

Z = F = mw = Re{- moxpse ™"} (5.15)
(note that in the “indicial notation” of the current chapter, the amplitude of heaving

motion is X3 and Z = F3). Notice that when Eq. (5.14) is inserted in Eq. (5.15), with
i=j =3 for uncoupled heaving, the common exponential factor cancels. We can
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also drop the “Re{}” on both sides of the equation, since the expression must be
valid for all t (implying that the imaginary parts must also be equal). Collecting all
terms involving xg3 on the left-hand side then yields

FoX(m+As)-ioBs +Cx oy = AX; (5.16)
or
X . X3 (5.17)
A —mz(m+A33)—imB33 +Css
which is the heave RAO.

You have probably noticed the similarity of Eq. (5.16) to the equation
describing the forced oscillations of a spring-mass-damper system; in fact the
equation is formally identical, with (m + Aj;), Bss, and C;; representing the mass,
damping, and spring characteristics, respectively. The difference is that Aj;,
Bs3,and Xj are frequency dependent in the present case.

The magnitude of the heave RAO is

[xo3 [X3|

A \/[—cnz(m+A33)+C33}z +0°Bis’

(5.18)

We will study the frequency-dependent added mass, damping and wave-exciting
forces in detail later in this chapter. For now, we will merely present the results for
a heaving semi-submerged sphere (hemisphere) in deep water. Nondimensional
values of the force coefficients are shown on Figure 5.1 below, as functions of the
dimensionless wavenumber, ka, where a is the radius of the sphere.

Some of the salient features of the forces are worth discussing at this point.
Note that the wave-exciting force magnitude has been normalized using (pg)
multiplied by the waterplane area; this is identical to the heave restoring force
coefficient (heave force per unit heave displacement). At low frequency the
exciting force coefficient approaches 1.0, indicating that the force on the fixed
sphere in very long waves (with unit amplitude) is equivalent to that on a sphere
heaving (with unit amplitude) in calm water. At high frequencies, when the
wavelength is much less than the diameter of the sphere, the effects of the waves
tend to cancel; in addition, the dynamic wave-induced pressure is proportional to
exp(-w”¢ /g) in deep water; thus the net force approaches zero.
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Figure 5.1 Force coefficients for a heaving hemisphere

Relative to the radiation forces, we will see that the free surface boundary
condition can be simplified in the limits of zero and infinite frequency. The
problem of an oscillating floating body can thus be reduced to a simpler, equivalent
problem of the body plus its image oscillating or pulsating (depending on the mode
of motion) in an unbounded fluid. In particular, a floating hemisphere heaving at
high frequency is equivalent to a heaving sphere in an unbounded fluid; the added
mass is in this case equal to half the displaced mass (see Figure 5.1) so Asj'
approaches 0.5 in the high-frequency limit. In the opposite frequency extreme, the
hemisphere is equivalent to a sphere which is undergoing oscillatory dilation
parallel to the z-axis. This is different than the high-frequency problem and so the
added mass coefficient is different; in fact it can be shown that

A{(0) > Ay(o) (5.19)

and furthermore, that As;(0) possesses a maximum and a minimum for three-
dimensional bodies (more on this later).

Recall that the damping component of the radiation force is associated with the
energy generated by the oscillations of the body which is carried away by the
radiated waves. Since there is no free surface in the equivalent zero- and infinite-
frequency problems, there is no mechanism for removal of energy and so the
damping force must go to zero in these limits. Since the damping coefficient is non-
negative at zero speed (from conservation of energy), it must have a maximum
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value, at the frequency for which the oscillating body produces the largest far-field
disturbance.

Inserting the values shown on Figure 5.1 into Eq. (5.18), we obtain the RAO
magnitude shown on Figure 5.2.

20

054

Heave amplitude / Wave amplitude
P

0.0 T T T
0 1 2 3 4

ka

Figure 5.2 Magnitude of heave response in regular waves

The behavior is very similar to the response of a linear mass-spring-damper system.
Note the presence of a peak, which we would expect at the natural or resonant
frequency; this occurs where the denominator of Eq. (5.18) is a minimum, By
inspection of Eq. (5.18) it is easy to see that the undamped natural frequency is
determined by solution of

-0’ (m + Az3) +C33=0

or

C
0y = 38 (5.20)
m+A;;

for heaving motion. This is not an explicit equation, however, since Aj; is a
function of frequency. If we assume that As;' = 0.5, we obtain
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in agreement with the result shown on Figure 5.2.

Recall that for the simple mass-spring-damper system, the critical damping
coefficient is given by

B,, =2J/MC

In the present case the mass M must be replaced by the (mass + added mass). Again
assuming that As;' = 0.5, we obtain

B 2Jilm+ A

B, = o _ \/I 33 E33 ~3
\% g ()% £
\ a \ a

for the normalized heave critical damping coefficient; thus at resonance the fraction
of critical damping is roughly (0.25/3) =~ 8%, so the damping is relatively light.
Typical marine vehicles have larger relative heave damping coefficients so that the
peak heave RAO value is usually around 1.3.

The value of the RAO at zero frequency is 1.0, as can easily be verified using
Eq. (5.18) and the zero-frequency value of the exciting force discussed above. This
is a characteristic of all linear-displacement RAO’s in deep water’, and indicates
that in very long waves, the body follows the wave, behaving as a fluid particle on
the surface (angular displacements follow the slope of the surface at low frequency).
At high frequency, we have seen that the wave-exciting force goes to zero, so we
expect the motions to approach zero at high frequency.

One type of wave measuring device consists of an accelerometer housed in a
spherical buoy; the wave elevation is obtained by integration of the acceleration
signal. In order for the buoy to accurately track the waves, the nondimensional
wavenumber, ka, must be “much less” than 1.0. This means that

ka=ﬁ<<1 or 3<<O.16
A A

or in terms of frequency,

4 Recall that in finite water depths, the particle trajectories become elongated in the horizontal direction
(see Eq. (4.24)); the surge and sway RAO’s approach 1/tanh(kh) in this case.
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If the buoy radius is 0.5m, the frequency of the waves being measured must be
much less than 4.4 rad/sec. Referring to Figure 4.10, we see that this is quite
satisfactory for Pierson-Moskowitz spectra, which have little energy at frequencies
above about 1.5 rad/sec. However, this limitation must be kept in mind if very short
waves are to be measured®.

We will now look at the computation of the linear wave-induced forces and
moments in more detail.

2. Radiation Forces: Added Mass and Damping

2.1 General computational procedure, zero speed

As stated above, radiation forces are defined as the hydrodynamic forces (exclusive
of hydrostatic) that arise as a result of forced oscillations of the body on otherwise
calm water. The added mass and damping forces are the components of the total
radiation force which are in phase with the acceleration and velocity of the body,
respectively, in the frequency domain. Unfortunately, even with the assumptions of
no viscosity and small amplitudes, there are no analytical solutions available for
these forces for any cases of practical interest except for the limiting values of some
simple forms at zero and infinite frequency (e.g., the sphere discussed above).

Fortunately there are a variety of numerical methods available to determine
these forces. All are computationally intensive, but well within the capabilities of a
modern personal computer. Probably the easiest method to understand is the
“source distribution method”. You should recall that a solid body of revolution
moving in an unbounded fluid can be hydrodynamically modeled using an axial
distribution of singularities. Distributing singularities on the body surface can
accurately represent more general shapes. The function of the singularity is to
produce a fictitious flow which will cancel the normal component of the fluid
velocity (relative to the body) on the surface, thus satisfying the “no penetration”
boundary condition. The strength of the singularity is thus determined by the
normal component of the body velocity relative to the fluid.

© Of course if the heave RAO of the buoy is known, a correction can be applied to the high-frequency
data, provided that the motions are measurable.
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For a floating body undergoing small sinusoidal oscillations, the normal
velocity varies sinusoidally and so the source strength must vary in the same
manner. Furthermore, the free surface boundary condition also has to be satisfied.
Perhaps the most straightforward way to do this would be to place singularities all
over the free surface (and on the sea bottom, for finite water depth), with strengths
determined by application of the free surface boundary condition. This method is in
fact used, but can be unwieldy due to the large number of singularities required.

An alternative approach would be to distribute singularities which themselves
satisfy the boundary conditions at the free surface and on the sea bottom. The
drawback here is that the expressions for the source potential are difficult to deal
with because they contain either complicated, indefinite integrals or summations of
infinite series (depending on which of the available forms of the potential is
chosen). The problem is slightly less complicated in two-dimensional flow
(oscillating cylinders) because the potentials involve only trigonometric and
exponential or hyperbolic functions whereas the three-dimensional potentials
involve these plus Bessel functions. The expressions are given by Wehausen and
Laitone [1960].

The basic procedure in the source distribution method is to divide the mean
wetted surface of the body (i.e., the wetted surface beneath the undisturbed
waterplane') into a number of planar panels (usually triangles or quadrilaterals)®. A
pulsating source, satisfying the free surface and bottom boundary conditions but
with unknown strength, is placed at the centroid of each panel. The total velocity
induced by all of the sources can then be computed (for unit source strength) at any
point in the fluid (the “observation point”); to obtain the source strengths, the
normal component of the velocity is computed on each panel”. Setting the normal
component of the fluid velocity equal to the normal component of the body velocity
on each panel results in a set of 2N simultaneous equations for the source strengths,
where N is the number of panels. The factor of 2 is due to the fact that the source
pulsation is not necessarily in phase with the velocity so that each source requires
two equations (for “in-phase” and “out-of-phase” or “real” and “imaginary”
components).

It is convenient to express the source potential in the form

"This is consistent with the linearization of the problem since the effects of changes in the underwater
hull shape due to the body motions are of higher order.

& “For good accuracy, the size of the panels must be much less than the wavelength and the local radius
of curvature of the body” (Mei [1978]).

" Special treatment is required for the velocity induced by the source which is located on the panel being
examined, since there is a singularity at the source location. One usually assumes in this case that the
source is uniformly “smeared out” over the panel. The velocity, determined by integration of the
distributed source potential over the panel surface, is finite.
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0 &1 C3E075, 65 1) =08 mne ™" (5.21)

where (&7,0) and (&,7,,¢;) represent the coordinates of the observation and source
points, m and n denote the observation and source panels, ¢ is the complex source
strength, and g;; is the amplitude of the unit source potential. As before, the real
part of the expression is implied. The total velocity potential is determined by
integration over the body surface; approximating the integral by a summation, we
have

N .
W& )=0y =D Cpgmae @'dS, (5.22)
n=1

where dS, is the area of the " panel. If we write the local velocity of the m® panel
in the form

U = Upe ™, (5.23)

the boundary condition on the body surface,

%
V(b'ﬂm =§n:=Um'nm (524)
where n,, is the normal vector on the m™ panel (directed out of the fluid), can be
formally expressed as

og
{ an‘“’“ dSn:|{0n}= U, nnts (5.25)
m

The exponential factor conveniently cancels, which is an advantage of using the
complex notation. The source strengths are thus determined by inverting the
[Og/0n] matrix and multiplying the result by the vector of normal velocities.

There are several available alternatives to the source distribution method; the
most popular is probably the “boundary integral method” which is based on
applying Green’s theorem to the velocity potential and another function, called the
Green’s function, which satisfies all of the boundary conditions except for that on
the body surface. This should sound familiar; in fact the Green’s function for the
floating body problem is the same as the unit source potential g; (which is why we
used that symbol!). Thus it should not be surprising that the boundary integral
method turns out to be essentially the same as the source distribution method,
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although they differ in some of the details (Mei [1978]). Yet another method,
applicable only for two-dimensional sections, will be discussed below.

Once the source strengths have been determined, the dynamic pressure can be
computed anywhere in the fluid using Eq. (4.27). In particular, the pressure on the
body surface can be computed; the hydrodynamic radiation force is then found by
integrating the pressure on the surface:

Fp = .”pndS: Mg = ”p(pxn)is (5.26)
S s

where R is the position vector of the point on the body surface S.

Note that we have been using the special coordinate system (& 7, {) introduced
in the previous chapter, with the origin at the undisturbed free surface and having
the {~axis positive upwards; this is fairly conventional in the seakeeping literature
(as well as the literature on wave theory). Thus when integrating the wave-induced
forces and moments into the model developed in Chapters 1 - 3, we must transform
these quantities into our standard body axes; we will discuss this further below.

2.2  Two-dimensional methods

Inversion of the [0¢y/On] matrix (which has 2N x 2N elements) is computationally
intensive; this precluded extensive use of three-dimensional solution procedures
prior to the availability of computers which were powerful enough to do these
operations in a reasonable amount of time. In the 1950’s a pragmatic approach
employing two-dimensional solutions was developed (Korvin-Kroukovsky [1955]),
which is formally equivalent to the “strip theory” introduced in Chapter 3 for
computation of added mass coefficients. A two-dimensional cross-section can be
well represented by 50 linear segments (or less), whereas a complete ship usually
requires at least 1000 panels. Furthermore, solutions for the Lewis forms described
in Chapter 3 can be obtained by another technique, called “multipole expansion”.
In this method it is not necessary to discretize the body surface, but the section must
be represented by a conformal transformation of a circle; the potential is expressed
as the sum of a source and a series of higher-order singularities or “multipoles”
located at the origin (Ursell [1950]). As explained in Chapter 3, not all ship cross-
sections can be represented in this way, but use of the “equivalent” Lewis forms
was found to be adequate in many cases.
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Strictly speaking, in order for the two-dimensional representation to be valid,
the slope of the body in the longitudinal direction must be very small'. This is not a
bad assumption for many ship hulls, except possibly near a bulbous bow or at a
transom stern. Strip theory continues to be widely used [e.g., in the U.S. Navy’s
Standard Ship Motion Program, SMP (Meyers, Applebee and Baitis [1981]))
despite the present availability of computing power which can handle fully 3-D
methods. In addition to the fact that the 2-D computations can be carried out more
rapidly (on the order of minutes for a typical range of wave frequencies and
headings, as opposed to hours for 3-D methods), much less effort is usually required
to model 20 cross sections (which is typical for a ship) than to create a 3-D panel
model of the ship surface. Also, a 3-D panel model applies only to a specific hull
whereas a database of 2-D sectional results can be used to (approximately) represent
a variety of hull forms. We will present some 2-D results below.

2.3 Frequency dependence

The linearized free surface boundary condition was given by Eq. (4.8):

0’9, o
?+g5§:=0 on {=0

If we write the potential in the form

W& Ct)=0l&n )™ (5.27)

the free surface boundary condition can be expressed as

—(02(,0+g2—2=0 on ¢=0 (5.28)

which demonstrates that ¢ must be a function of the frequency. In particular, in the
extremes of zero and infinite frequency, Eq. (5.28) reduces to

S—g—m on¢=0, ©—0 (5.29a)
¢—->0on {=0; 0> (5.29b)

! There are other limitations when the speed is nonzero, as will be discussed later.
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These expressions correspond to solid wall and zero dynamic pressure conditions,
respectively; thus two distinct solutions are indicated. Both solutions may be
obtained using the method of images; the solid-wall condition can be met by placing
an identical source at § = -¢; (above the free surface); this amounts to creating a
double-body in a fluid without a free surface. The zero pressure condition can be
met by placing an image of opposite sign (i.e., out of phase) at {=-¢;. In both cases
the free surface “disappears” and so there can be no radiated waves.

Keep in mind that the pulsating sources are located on the surface of the body
in its mean position. Downward heaving motion is simulated by flow emanating
from sources located on the bottom of the body, effectively “pushing” the fluid
beneath the body out of the way (the draft effectively increases); conversely,
upward heaving is simulated by water being sucked into the singularities, “pulling”
the surrounding fluid upwards (thus effectively reducing the draft). At zero
frequency the image sources are behaving in exactly the same way so that the
heaving body is equivalent to a double body which is expanding and contracting
vertically, symmetrically about the plane { = 0, as we pointed out in the sphere
example above. At high frequency the sources are pulsating 180° out-of-phase with
the images. In this case, when the body heaves down, so does the image and so the
double-body behaves as a single heaving rigid body.

For lateral motions, the situation 1s somewhat different. Consider the behavior
of a two sources symmetrically located on the port and starboard sides of a swaying
body which is symmetric about 7 = 0. In general we expect that the two sources
will be pulsating 180° out-of-phase because when the starboard side “expands”
(moves to the right), the port side must “contract” (also move to the right) by the
same amount. Now let’s look at what the images are doing. At zero frequency the
images are in-phase with the corresponding sources, so the image is moving along
with the swaying body. Thus the double-body behaves as a single rigid body
(which was the case for heaving at high frequencies; a consequence of this is that
the added mass expressions originally developed for high-frequency vertical
vibrations of Lewis forms are also applicable for low-frequency lateral motions!).
At high frequencies, the images are out-of-phase with the corresponding sources so
that the actual and image bodies are moving in opposite directions. The double-
body is thus undergoing periodic horizontal shearing deformations parallel to = (.

§ The discussion in this and the preceding paragraph is largely based on the eloquent presentation by
Newman [1977].
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24 Added mass and damping forces

As mentioned above, it is traditional (and physically meaningful) to break the
radiation force down into components which are in phase with the acceleration and
velocity of the body, defined as added mass and damping forces, respectively. We
thus obtain Eq. (5.11) which we will repeat for convenience:

6 .
Fyi(0)= Z[a)zAij +i0Bj joe " (5.30)
j=1

where the real part is implied and -A; (-B;) corresponds to the force component in
direction “i” induced by acceleration (velocity) with unit amplitude in direction “j”.
Recall that i and j range from 1 to 6 and that the “force” is actually a moment when
1=4,5, and 6.

We can also invoke linearity to write the velocity potential in a similar form:
S iot
0&,m¢30)= 2 %0505 (& m g7 (531)
=1

where ; is the complex amplitude of the potential for motion with unit amplitude in
direction j. The normal velocity of a point on the body can also be written in terms
of its components (for reasons which will be apparent shortly):

3 6
U'n=—i0)[z Xojnj ‘f‘z:Xoj(p><n)j_3}e_imt (532)

= j=4

Here the first and second summations represent the effects of linear and angular
velocities of the body, respectively. Invoking the body boundary condition, we find
that

én

" |-iolpxn)_; j=456

From Eqgs. (5.31) and (4.27) the dynamic pressure can be written in the form

6¢ . 6 —imt
P=—PE=1(DPZXOJ'<PJ'C (5.34)
j=1
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and the radiation force components can be obtained using Eqgs. (5.26):

6
io)pe_“‘“Zxoj j @;n;dS i=123
Fp; = | B (5.35)
impe"“’thoj .U(pj(pxn)i_3 dS i=45,6
S

=

or, inserting Eq. (5.33),

it 00;
FRi =—pe ZXOJ'H(pj dsS (536)
j=t S on

Finally, comparison with Eq. (5.30) shows that

0)2A1'j +i(DBij =—p”(pj%(fli—ds (5.37)
S

which shows how the added mass and damping coefficients are computed from the
values of the velocity potential and its normal derivative, integrated over the wetted
surface of the body. Using Eq. (5.37) and Green’s theorem, it may be shown
(Newman [1977]) that at zero speed, the radiation force is symmetrical with respect
to the force and motion directions:

Aij = Aji and Bij = Bji (538)

It can be shown that the added mass and damping coefficients are related by the
so-called Kramers-Kronig relations (Kotik and Mangulis [1962]):

2= By
Aﬁ(@)—Aij(OO)=;0fu2’_m2 dp (5.39a)
2072 Aij(H)
Bij(w)z_T Juz——wzdu (5.39b)

Thus if one coefficient is known as a function of frequency, the other can be
calculated. From Eq. (5.39a) at ® = 0 we find that
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o0 B”
Aij(O)—A,-j(oo)=%J- ;ig“)du (5.40)

0

As we mentioned above, the damping is associated with energy dissipation by the
radiated waves and so must be positive (at zero speed); thus the quantity on the
right-hand side of Eq. (5.40) must be positive and so

A(0) > Ajj(e0) (5.41)

again at zero speed”. It can also be shown (Kotik and Lurye [1964]) at zero speed
that

o0

la(©)-Aj()bo =0 (5.42)

0

We have stated several times that the damping force By is associated with
energy radiation. In fact one can derive a relationship between the waves in the
“far-field” radiated by the body motions and the damping coefficient. It can be
shown that the average power required to sustain general sinusoidal oscillations is

_ s
P=F-U=) u;Fy = ZuolzBquJ co ZXOIZBUXOJ (5.43)
i=1 i=1 j=1 i=1 j=1
where x" indicates the complex conjugate of x.

Far from the body, the free surface elevation induced by the forced motion in
mode i is of the form

SR x)= 3 A; R, xxoje ™ (5.44)

—n
—

where R is the horizontal-plane distance from the body, y is the wave direction, and
A; is the complex amplitude of the waves generated by unit-amplitude motions of
the body in mode j. The average power carried away by the waves is equal to the
mean rate of energy flux across a cylindrical control surface with radius R:

* At forward speed, energy may be “fed in” from the free stream, similar to the aeroelastic flutter
phenomenon, resulting in negative damping (Newman [1961]).
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P= J’—Rdx_—pgv R [ZA R x)x(,J
o=t

(5.45)

*

:——ng R j[i (R x)xo,J{ZA R x)xoj} dy,

where we have used Eqs. (4.43) and (4.44); V, is the group velocity of the radiated
waves. Setting the “power in” from Eq. (5.43) equal to the “power out” from Eq.
(5.45) yields a general (but not very useful) relationship between the damping
forces and the radiated waves. A more useful expression can be obtained by
considering a special case in which the body is constrained to move in only one
degree-of-freedom; in this case i = j in Eqs (5.43) and (5.45) and by equating the
“power in” to the “power out” we obtain

pgV, R’ .
By =——— [A;Ra0A R (5.46)

0

which shows that the diagonal terms in the damping matrix can be obtained by
oscillating the body in the desired direction and measuring the radiated waves in all
directions. In fact, it can be shown (Wehausen [1971]) that a more general
relationship exists:

gVR

j AR, 0AT (R, 1)y (547)

so that in principle, all of the damping coefficients could be obtained by
measurement of the waves radiated by forced oscillations in each of the 6 modes.

The presence of the factor R in Eqns. (5.45)-(5.47) may seem puzzling;
however, you can rest assured that the values of the damping coefficients do not
depend on the radial location chosen for the measurement of A; (provided that it is
far enough from the body so that “near-field” effects are negligible). In fact the
asymptotic behavior of the free surface elevation amplitude is

Aj ~ (TkR) ™ as R —>o0 (5.48)

(as required for conservation of energy in three dimensions) so that the results of
Eqgs. (5.45) - (5.47) are actually independent of R.
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In two-dimensional flow the expression for the damping coefficients is
somewhat different than Eq. (5.47), because of the fact that the radiated energy is
not spread over an increasing area as the distance from the body increases; thus we
must replace Eq. (5.48) with an expression of the form

Aj~AffasE — 1w (5.49)

where A;" and A;” are constants. The expression for the damping coefficient turns
out to be (Mei {1989]):

B _pevY,
§ o2

(Arar +A7AT) (5.50)

2.5 Radiation Forces in the Time Domain

For simulation of body motions, we require the hydrodynamic forces in the time
domain. For steady-state sinusoidal oscillations, these are just given by Eq. (5.30).
However, for situations involving non-steady state conditions (such as transients),
Eq. (5.30) is not valid and we must adopt a strictly time-domain approach. One
solution method would be to use a distribution of sources whose strength varies
arbitrarily in time (“transient sources”) in Eq. (5.25); this would require a
determination of the required source strength at each instant of time (i.e., at each
integration time step). However, since time- and frequency-domain quantities can
be related using Fourier transforms, a more efficient approach for small-amplitude
motions is to compute the radiation forces in the frequency domain and then to
transform these quantities into the time domain.

It can be shown (e.g., Cummins [1962]) that the radiation forces (for zero
speed) can be expressed in the time domain as follows:

6 6t

Fg; (t)=—Zaj(t)Aij°° -Z IKij(t—T)Llj(T)dT (5.51)
=1 =l ew

where a; and v; are the acceleration and velocity components, A;;” is defined as

A" Euli_ffgoAij(“’)

and Kj(t) is a “memory function” accounting for the past history of the motion of
the body (the waves generated by the motion of the body at time (t — 1) will still be
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present at time t and thus will continue to exert forces on the body). Taking a
Fourier transform of Eq. (5.51), and using

a(0) = —iou(w)
we obtain
6 6
F(Fei)=i0Y u;(0)A;7 -3 FK (o) (5.52)
j=1 =1

By comparison with Eq. (5.11) we see that
F(Kij)= ~im[A‘-j ((D)_Aijw]"'Bij () (5.53)

Since K;;, A and By are all real quantities, we can separate real and imaginary parts
n Eq. (5.53) to obtain

-]

.[Kij (t)cos(mt)dt =By (a)) (5.54a)
D]Kij (t)sin(ot)dt = m[Aij (0)- Aij‘”] (5.54b)

o

Thus the “memory function” K; may be determined using inverse Fourier cosine or
sine functions of the frequency-domain damping or added mass coefficients,
respectively:

[*2] o0
2 2 .
Ky(t)=2 [Byo)eosfotdo =2 [[ay(0)-Ay° hsinfotho (5.5
ms mJ
In practice A;” is usually not known, so that one would use B;; to compute Kj; Ay
could then be obtained using Eq. (5.54b).
It is important to remember that since the radiation forces include added mass

effects, it would be redundant to include the added mass forces presented in Chapter
3. Thus when wave-induced radiation forces are added to the equations of motion

! The formulation given in Eq. (5.51) is not unique, as pointed out by Bingham et.al. [1993]; alternative
expressions involving convolutions with the displacement or acceleration of the body can also be
developed.
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(Egs. (2.1)), the “added mass forces” should be set to zero. In the limit of very low
frequency, the radiation force will be equal to the added mass force from Chapter 3,
as we have previously stated™.

The memory function K;3(t) for heaving motion of a hemisphere of radius a,
computed using Eq. (5.54a) with the damping coefficient shown on Figure 5.1, is
illustrated on Figure 5.3 below. Physically, K3; can be interpreted as the heave
force experienced at time t, induced by a heave velocity impulse that occurred at t =
0; the figure shows that the effects of the impulse have essentially vanished at a
dimensionless time of 10 (e.g., 2.26 sec for a 1m diameter sphere). Figure 5.4
shows the values of Aj;” calculated from this data using Eq. (5.54b) and As;(w)
from Figure 5.1. Note that As;(@) approaches the correct high-frequency value of
0.5xmass, but is still 5% lower even at the highest available frequency of \/(Sg/a)
(nearly 10 rad/sec for the 1m diameter sphere!). Values computed using Eq. (5.54b)
are quite accurate.
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FIGURE 5.3 Heave memory function for a floating hemisphere

" One might expect a similar redundancy of the damping and steady forces; however this is not the case
since the wave-induced damping is a potential-flow phenomenon whereas the steady forces are viscous-
fluid effects.
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FIGURE 5.4 Computation of As;” using Eq. (5.54b)

2.6 Effects of Forward Speed on Radiation Forces

2.6.1 General case

The discussions above were limited to situations in which the mean position of the
body is fixed. If the body has an arbitrarily-varying velocity Uy(t) in addition to the
wave-induced motions, the problem is fundamentally different:

o Since U is not necessarily a small quantity, the linearized pressure equation
contains additional terms involving products of U, and the perturbation
velocities.

o The body boundary condition is complicated by interactions between the
“steady” and “oscillating” flows.

These factors preclude a simple superposition of the zero-speed radiation forces and
the forces induced by U,.

To solve this problem using the source distribution technique, we should use
the expression for the potential of a pulsating, translating source. This expression is
of course more complicated than that for the fixed pulsating source; furthermore, a
new source distribution is required for each combination of speed and frequency of
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oscillation.  Alternatively, we could distribute simpler sources (which do not
themselves satisfy the free surface boundary condition) on the body and on a
portion of the free surface near the body, as in the fixed-source case (this is referred
to as a “Rankine source method”). Another approach would be to use sources of
arbitrarily variable strength and velocity which satisfy the free surface boundary
condition (the “transient source technique”, Lin and Yue [1990]). The expression
for the potential is formally somewhat simpler than that for the fixed pulsating
source, but now the strengths have to be computed continuously in time (i.e., at each
integration time step).

For small-amplitude motions, the velocity potential can be decomposed as in
Eq. (5.31), with the addition of terms representing the effects of the speed Uy:

6
0E,m.¢ 1)=& n.¢, 0+ 0,6, n.4, 1)+ D 0;(£m 1) (5.56)
j=1

where we will now allow the coordinate system (&7, ) to translate with the
constant velocity U, , remaining parallel/perpendicular to the undisturbed free
surface, and

;&1 ¢, 1)=x050;(8,7,0 ) (5.562)

is the potential for oscillations in mode j with amplitude x,". The function ®
represents the potential of the “basis flow” relative to the body, generally taken to
be that which would exist (relative to the moving coordinate system) if the body
were not present:

V@ = -Uy=-Upl ~ VoJ - WK (5.57)

where (I,J,K) are unit vectors in the (£7,¢ ) coordinate system. The function ¢,
represents the “steady” (nonoscillatory) perturbation to the basis flow due to the
presence of the body, and the last term in Eq. (5.56) accounts for the effects of the
imposed small oscillations.

To make the problem a bit more tractable, in the literature the velocity Uy is
almost always assumed to be constant, aligned with the &-axis:

U0=U01

" Note that the frequency of oscillation of a body with forward speed will not generally be equal to the
wave frequency; the body oscillates at the encounter frequency. The distinction becomes important
when we combine radiation and diffraction forces (see Section 3.5.1 below).
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In this case the linearized free surface boundary condition becomes

2
o _y o 9 _ -
( U, agJ ¢+ga; Oon¢ =0 (5.58)

relative to the moving frame. The body boundary condition is

5 8.
(®+¢S)+Z%=U-n=(Uu+Qu><p)-n (5.59)

%
on &

0
on

on the body surface, where the subscript “u” indicates “unsteady”, which is the
imposed oscillatory motion. We stated above that for small motions, it doesn’t
really matter whether we refer to body axes or fixed axes when evaluating the
velocity on the body surface; the results are the same relative to either system to
leading order in the perturbations. Stated another way, the exact location of the
body is immaterial. However, this only holds at zero speed. Since the velocity Uy
was assumed to have a constant magnitude and direction, there will be “crossflow
velocities” proportional to the product of U, and the angular displacements of the
body (these products are not of “higher order” because U, is not necessarily
“small”). Thus we must apply the boundary condition on the “exact” (displaced)
body surface.

To express the boundary condition in terms of the displaced location of the
body, we must transform the normal vector n from body axes to the £7é-axes (we
should also express the hull surface position vector p relative to this system).
Unfortunately, our standard body axes have the z-axis pointing downwards and the
y-axis to starboard, which are opposite to the positive senses of {and 7. In order to
avoid these additional transformations at this point, we will temporarily introduce
“seakeeping body axes” (x,y,z) which are fixed relative to the body but which have
the same general directions as the corresponding (&,7,4) axes, as shown on Figure
5.5 below. In the figure, O represents the origin of the wave/seakeeping coordinates,
located on the intersection of the mean free surface plane and the centerplane of the
body; 0'is the origin of the seakeeping body axes (displaced from 0 due to wave-
induced motions); and the body axes are shown with origin at the CG (their origin
could in general be at any point on the body, however).

Transformation of the unit vector n from the seakeeping body axes to the
“fixed” (£n¢’) axes can now be accomplished using the transformation matrix [T]
given in Eq. (1.8). This expression is nonlinear, containing products of sines and
cosines of the angular displacements; however, since we are still only considering
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small perturbations, we can use the linearized form of the transformation matrix,
Eq. (2.21):

1 -y ©
nx[T'a={y 1 —¢pn (5.60)
-6 ¢ 1

z

FIGURE 5.5 Coordinate systems

where the Euler angles (¢,8,y) correspond to rotations about the x, y and z axes.
Ingerting this expression and @ = -Uyé in Eq. (5.59) and using

8
on

n

n-vV

we obtain

5 Bb.
—Uo(nx—wny+9nz)+@—’i+2&+...=(Uu+qup)-n+... (5.61)
on 4 on

Here “+...” indicates the presence of higher-order terms. Since ¢s, ¢;, U, and Q, are
all small, only the main diagonal elements of [T] contribute to the leading-order
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terms in Eq. (5.59) that involve these quantities. By collecting “steady” and
“unsteady” terms in Eq. (5.61) we can separate the boundary conditions on ¢, and

y:

%
6ns =Uyn, (5.62)
U‘nj, _]=1,2,3
9% ; p(—zny +ynz) j=4
—= (5.63)
on q(mx—'xnz)+U06nz J=5
ri-yn, +xn,)-Usyn, j=6

where we have examined the radiation potentials one-at-a-time; the u; are the
components of the unsteady velocity perturbation. In the literature, the boundary
condition (5.63) is usually expressed in the following form:

9¢; |un;, j=12.3
95 e ) (5.63a)
on u; pxn)j_3+mjxj, j=4,56
where in the present case®,
m_l = (010’070)U0nz 9'U0ny) (564)

These so-called “m-terms” are the source of the coupling between the steady and
unsteady potentials. The forces and moments induced by the steady component ¢,
are the same as those which would be experienced in calm water; these effects are
the subject of Chapter 3 and will not be discussed further here.

The linear dynamic pressure relative to the moving coordinate system is

_ %y %
p= p[at U, ag] (5.65)

Integration of the pressure induced by the radiation potentials yields the radiation
forces, as before; however, due to the presence of the “m-terms” there is a
“radiation restoring force” in addition to added mass and damping forces. Thus Eq.
(5.11) becomes

© A more general formulation is given by Magee[1991].
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6 .
FRi((D,UO)=z[(DzAij(co,Uo)+icoBij(m,UO)—cij(UO)}(Oje"“"t (5.66)

=

where c;; denotes the “radiation restoring force” matrix (recall that C;; represents the
hydrostatic restoring force matrix). Notice that now the added mass and damping
coefficients are functions of the forward speed as well as frequency, and that the
radiation damping is a function of the speed (only). In addition, because of the
change in the body boundary condition due to the forward speed, the radiation force
coefficients are not necessarily symmetrical with respect to i and j (i.e., Eq. (5.38)
holds only for Ug=0).

In the time domain, Eq. (5.51) is replaced by

Fr; (U, t)= —26: Aijwaj(t)+bij(U0 )uj(t)+cij (U, )Xj(t)+ ]Kij (t-t, U, )“j(")dT

j=
(5.67)

The added mass coefficient A;” is independent of both speed and frequency and in
addition possesses the symmetry property A;” = A;”. On the other hand, it can be
shown (Bingham et. al. [1993]) that the speed-dependent damping coefficients

satisfy

bij =0 for i =j
b,‘j = 'bji fori ¢j (568)

The relationship between the time and frequency domain coefficients may again be
determined using Fourier transforms; following the procedure that led to Eqs. (5.54)
we can obtain

oG

[K(t,Ug )cos(ot)dt =By (0,U,)- by (U,) (5.692)
0

o0

.[Kij (t, U, )sin(a)t)dt = (J)[Aij ((o, U, )—A,-jw ]+

Cj (Uo)
0}

(5.69b)
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2.6.2  Slender bodies

As mentioned in section 2.2 above, a simplified approach to the computation of the
radiation forces and moments is available if it can be assumed that the body is
“slender”, meaning that the ratio of its maximum lateral dimension to its length is
small. This in turn means that the body geometry, and consequently the flow
induced by the motions of the body, are slowly-varying in the x-direction’. Thus
the flow near the body is locally two-dimensional and a strip theory approach is
justified. To see how this assumption can be applied in a case with forward speed,
we will use Eq. (5.56a) for the unsteady velocity potential in Eq. (5.65) to obtain the
dynamic pressure. Integrating the result first over a 2-dimensional cross-section and
then over the length of the body we obtain the radiation force; formally:

Fij = _pe_iwt J.(— io— UO a_ag)(x 0j j(pjn‘ds}df (570)
z

L

fori=1,2,3 and j = 1,2,3,4. Here the inner integral is over a 2-D contour X. Fori=
4, n; is to be replaced by (p x n);_3 as before; the pitch and yaw terms (i,j = 5,6) will
be discussed below. However, the displacement x,; in Eq. (5.70) must be regarded
as a local value and is thus (generally) a function of the longitudinal coordinate &
Furthermore, we need to account for the “crossflow effect” of the steady speed Uy in
combination with angular displacements 6 and y. In the more “exact” treatment
described in the previous section, these effects were accounted for by inclusion of
the “m terms” in the body boundary condition, Egs. (5.63). The easiest way to do
this in the present case is to add an “effective transverse displacement” relative to
the fluid such that the v- and w- velocity components contain the “crossflow
components”

ve=-Upy; w.=Uy0 (5.71)

which correspond to “displacements” of

Yo =2 ypeit; 5, = - J0 g oriot (5.72)
10 10

Consequently the total local displacement (complex) amplitudes are:

P In this discussion, the body will be assumed to be ship-like, i.e. elongated in the x-direction, coincident
with the direction of the velocity Us.
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(5.73)

for j = 1 to 4, where for example x,(0) indicates the amplitude of the surge motion
measured at the origin.

Thus Eq. (5.70) should actually be written in the form

F, = -pe " || —-io-U, 2 X I@lnids d¢
L %) 3

i . 0 U
Fi,6 =—pe ot —i0-Uy— || Yo +Wo| E+— 0 I‘Pznids dé
; o0& o )¢

Fiss Z’Pe_im J‘("iﬂ)_Uoi Zy _90(5‘*&] J-(p3nids dé
’ ; o0& o )[4

Fyy = —pe ™" —i")‘Uoi o I‘P4nid5 dg
L o6 z

for i = 1,2,3,4; we will adopt the convention that (for example) x, = x,(0). Notice
that the expressions for the sway- and yaw-induced forces are combined by use of
Egs. (5.73), as are those for the heave- and pitch-induced forces. Pitch and yaw
moments, Fs; and Fg;, are obtained by multiplying the integrands of the third and
second of Eqgs. (5.74) by -£ and & respectively.

(5.74)

From Egs. (5.33) and (5.37) we have
pio [o;n;dS =0’ A +ioB; (5.75)

or, for a 2D contour,
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pio [ m;ds = A () +i0B; ()= e (¢) (5.76)
z

(per unit length) which is meaningful only for i,j = 2, 3 or 4 [again with the
convention that n, = (pxn);]. Strictly speaking, the added mass and damping
coefficients in Eqgs. (5.73) and (5.74) differ from the corresponding zero-speed
values because of the modification of the free-surface boundary condition on ¢j, Eq.
(5.56).
The slenderness assumption means that

n; << ny,n3 (577)
so that we may substitute Eq. (5.76) in Egs. (5.74). By integrating the resulting
expressions by parts, and assuming that the sectional radiation forces vanish at the
bow and at the stern, we can eventually obtain:

Fy =0
F, = e_im)’o IfRiZ (f)df

L
E; = e_imzo ijiB (f)df
L
Fiu =79y [fria(£)¢ (5.78)
L
—iwt UO
Fs =-e70, I(§+.—JfRi3 (5)‘15
! i
—imt U()
Fe=¢ "y, _.-(5 +;)‘]fmz (5)‘15
L

fori=2,3,4, and
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; U
_ -1t 0
Fo3 =—e7"2o || §~— Ifr33 (f)df
L 10

Fgs = e—imeo J‘(é! + JfR33 (f)df
Fe —e_m J(f— ) R22 ‘f)df

(5.79)

Fgs = J(f +——] R22(§)d§

for i = 5 and 6, for a body which has port/starboard symmetry. Notice that we
cammot obtain the surge force or surge-induced forces and moments using this
approach. By separating real and imaginary parts, and using Eq. (5.76), we can
easily rewrite Eqgs. (5.78) and (5.79) in the form of “total” added-mass and damping
coefficients, as functions of the 2-D sectional values, again for a body which has
port/starboard symmetry and pointed ends (i.e., the sectional added mass and
damping are zero at the ends). See Egs. (5.80) below. Notice that the coefficients
are no longer necessarily symmetrical with respect to i and j (A # Asg;, €tc.).

There is however one small complication, in that these 2-D added mass and
damping coefficients differ from the corresponding zero-speed values because of
the modification of the free-surface boundary condition on ¢;, Eq. (5.58). However,
the slenderness assumption allows us to argue that the &/60¢ term will be small
relative to the other terms in Eq. (5.56); thus this boundary condition reduces to that
in the zero-speed case. Hence it is consistent with the strip-theory approach to use
the zero-speed sectional added-mass and damping coefficients in Egs. (5.79) and
(5.80).

This approach is equivalent to that of Salvesen, Tuck and Faltinsen [1970].
However, it has been pointed out (e.g., Newman [1977]) that this approach is
inconsistent with respect to the order of magnitude of the terms retained. Ogilvie
and Tuck [1969] have presented a more consistent “rational” approach, which
mncludes several additional terms; an alternative derivation of these was developed
by Wang [1976]. However, although including these terms is technically more
correct than neglecting them, it is unclear whether they contribute to the accuracy of
the predictions. On the other hand, predictions based on the simpler method
described here have been shown to be quite satisfactory, particularly for pitching
and heaving motions, even in waves which would not be considered “small”.
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Ap = J.Azz(‘f)i‘f
L
Ap=A,= _[A24(§)15
L

Ay = _[Azz(f)fd§+‘tj—ngz
. )
A= _[A44(§)j§
L
Ay = JA42(§)'fd§+‘U_gB42
0
Agy = IAzz(f)fdf— By
Agy = J.A24(§)fd§“_3B24
o
Ags = J.Azz sz dé"" A22
Ajy = IA33(§)15
Ajs = _IA33(§)5d§ Y Bsa
Asy = _J-Ass §)§d§+—3333
. o

U.2
Ass = J-A33(§)fz d.f+-;°2—A33
L

By, = J'Bzz(f)i‘:
L

B,; =B; = IB24 (f)jf

L

By = IBzz(f)fdf— UpAy
L

By = J‘Bu(f)ié
L

By = jB4z (5)5(15— UpAyy
L

Bg, = _[Bzz(f Y dE+UsAy
L

By = IB24(§ )fdf +UpAy,
L 2 .

Bgs = J.Bzz(fx d§+—°2—B22
; ®

B, = IB33(§)15
L

By = _IB33(§)§d§ +UpAj;

L

Bs; =- IB33(§)fd§ - UpAs3

Bss = IB33 f)—fz df* B33

(5.80)

In the theoretical development of strip theory it is assumed that the lengths of

the radiated waves are of the same order of magnitude as the beam of the ship and
(as a consequence of the slenderness assumption) short relative to the ship length.
In fact it can be shown that the two-dimensional radiation forces behave quite

differently than their three-dimensional counterparts.

For example, the heave-

induced heave added mass of a 3-D body obviously remains finite as the frequency
of oscillation approaches zero, but the heave added mass coefficient of a two-
dimensional cylinder in deep water “blows up”; for a circular cylinder it can be
shown that
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Agulo)- _8 pAln(ka), ® >0
¥

where A and a are the cylinder’s submerged area and radius and k is the
wavenumber. The usual explanation is that in the low-frequency limit in two-
dimensional flow, the entire mass of fluid is accelerated when the body accelerates
at “zero” frequency. Since the waves generated by body motions can be thought of
as being “confined” in a 2-D channel, their amplitude remains constant even
infinitely far from the body.

Interestingly, the zero-frequency behavior of the 2-D radiation force is different
in water of finite depth. In this case it can be shown that the heave added mass does
approach a finite value, and that the heave damping force is nonzero, in the zero-
frequency limit. The latter effect may be difficult to understand in light of our
statement in Section 2.3 that in the low frequency limit, the damping force must
vanish because there are no waves in this limit. In finite water depths, which can be
regarded as “shallow water” in the zero-frequency limit because the wavelength is
infinite, we must refine that statement a bit. If one defines “waves” as a vertical
deflection of the free surface, then it is certainly true that there are no waves at zero
frequency. However, using Eqs. (4.23) we can show that

uw~\/g};

w, —0

in the low-frequency limit. Thus energy can continue to be carried away in this
limit in shallow water. In three dimensions, however, the body does not generate
the plane waves described by Eqs. (4.23); energy is carried away in all directions,
and the net result is that the damping approaches zero at low frequency for 3-D
bodies.

For transom-stern ships, the sectional area is not zero at the stern which results
in the addition of several “end terms” to Eqs. (5.78) and (5.79). These terms are
presented by Loukakis and Sclavounos [1978], who point out that they include these
terms “for the sake of mathematical completeness only” since there was “no
experimental verification for their validity”, and since the fundamental “small
slope™ assumption of strip theory is not valid at the stern.

It is important to keep in mind that © in the formulas in this section refers to the
frequency of oscillation of the body. As mentioned in the footnote on page ??, at
forward speed this is not necessarily equal to the wave frequency but rather should
be taken as the frequency of encounter, discussed in Section 3.5.1 below.
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2.7 Transformation to “standard” body axes

The radiation forces and moments presented above were developed with respect to

the translating inertial coordinate system (£ 77 4) defined in Section 2.6.1, which is

consistent with virtually all of the available literature on the subject. However, in

order to use expressions such as Eqgs. (5.80) in the equations of motion that we

developed in the previous chapters, we must first transform them to the standard

maneuvering body axes. The following sequence is recommended:

1. Rotation through angles (y,0,¢) to the body orientation, using the small-angle
transformation matrix (transformation to the xyz system)

2. 180° rotation about the & -axis

3. Translate from O to the origin of the body axes, using Eq. (1.37) (the origin of
the body axes does not have to be at the CG).

For small-amplitude motions, the first step is accomplished by resolving the
forward speed U, in body axes (Schmitke [1978]; see also Wang [1976]) so that the
velocity components become:

u= ¢
v=rn-Uyw (5.81a)
w= g +U09

Here u is the velocity with respect to the (x y z) system; the angular velocity
components are unaffected by this transformation. Thus in terms of the velocities in
the seakeeping body axes, the velocities relative to (£ 77 ) are

E=u
n=v+ Uy (5.81b)
é; =W—U09

The transformations for the accelerations are of the same form since U, is assumed
to be constant. The expression for the radiation force relative to (x y z) can now be
found by inserting Eqs. (5.81b) in the expression for the radiation force:

6 e 0
FRi(‘”):_Z [A,'ij +Bij§j] (5.82)
=

where we have used the notation ¢y = &, £, = 7, etc. and the wave-induced motions
are of the usual form &; = £4e™". By introducing the expressions for added mass
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and damping, Egs. (5.80), using Egs. (5.81), and collecting coefficients of
é ;and fj , we can obtain expressions for the added mass and damping coefficients

relative to the “seakeeping body axes” xyz:*

Agp = LjAzz(g’)dé By = LIBZZ(:)dé
Ap=Ap= JA24(§)1§ By, =By, = LjBM(é)d@
Az = LJ”Azz(:kdé By = LfBzz(é)fdé
Ag= JAs(Ehe B, = LIB44(§>15
A _ IA42(¢)fd§ Bys = LfBu(é)fdf
Ag = jAZZ §)§d§— —2B,, By, = Lszz(g):d§+ UpAp
Agy = IA24 §)§d§— —4B,, Bgs = Lf1324(.§)§d¢'+ UpA 4 (583

Ags = JA22(§)§2d§—m—g [Bal€kds  Be= [Bule)?ds+ U, fAn(e)ds
L L L L

Ay = IA33(§)16 By = J.Baa(f)ﬁ
L L
Ags == JA33(§)5 dg Bys =~ IB33(§)fd§
L L
Asy = —IA33(§)fd‘f + %Bw Bs; = ‘I&s(f)fdg —UjAss
L L

Ags = _[A33(‘f)52 dé _% JB33(§)§df Bss = _[B33(§)§2 df+U, jA33(§)§d§
L L L L

The next step in the coordinate transformation, a 180-degree rotation about the
x-axis, orients the y- and z-axes to starboard and downward, respectively, as is
conventional in maneuvering. This is far from being a “small angle” rotation, so we
have to use the full transformation matrix, Eq. (1.8), with y =6 = 0; ¢ =  so that

4 The ambitious reader who actually carries out these steps will find that he ends up with terms
containing the pitch or yaw angular displacements. These could be grouped with the “radiation restoring
forces” c;; in Eq. (5.66); however, it is conventional to divide by (-o°) and group them with the added
mass forces.
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1 0 0
[T]=l0 -1 o (5.84)
0 0 -1

With our convention of expressing the force and moment together as a 6-element
vector F, we can write the transformation in the form

Fyy. = [T]F, (5.85)

where the “enhanced transformation matrix” [T] is defined as

r A

1 0 0 0 0 0
0 -1 0 0 0 0
fr]- 0 0 -1 0 0 0 (5.86)
0 0 0 1 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1

Note that Eq. (5.85) transforms the forces and moments, but they are still expressed
in terms of the velocities and accelerations in the xyz frame. So, a second
transformation is necessary. Using Eq. (5.11) we can write the radiation force as
F=[R]x

where

[R] = [0°A; + ioB;Je™ (5.87)
Since x = [T]x (note that [T]" = [T]), Eq. (5.85) becomes

Fyy. = [TI[R][T]x (5.88)

where A, Bj are to be determined using Eqgs. (5.83)". This can be written in scalar
form as

" Recall that matrix multiplication is not commutative, so [T][R][T] # [T*[R].
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Fri =(25,, +25,, -1) (25”+2z‘>j,4-1)[oﬁAij+imBij e (5.89)

6
J=1

where §;; is the Dirac delta function,

5,‘J =1, 1=j
=0, i#]

Eq. (5.89), with the added mass and damping coefficients from Eq. (5.83),
determines the radiation forces with respect to maneuvering body axes with origin
at 0, the origin used in the computation of A; and B;; (usually on the intersection of
the undisturbed free surface with the longitudinal centerplane of the body). The
final step in the transformation, then, is to use the translation-of-axes formula, Eq.
(1.37), to obtain the moments about the new origin.

2.8 Radiation forces: Available data

There are no known sources of experimental or 3-D computational results for
radiation forces on systematic series of hull forms, which is perhaps not surprising
in view of the substantial effort involved in either case. The experiments in
particular are difficult, requiring a special apparatus to oscillate the model in each of
the six degrees of freedom, and the capability to make dynamic force measurements
with high precision (accurate determination of the phase of the force relative to the
motion is critical). Furthermore, the effects of the inertia of the model and
apparatus, and the hydrostatic forces and moments, must be independently
determined and subtracted from the data. In the case of computations, generation of
the panel model is a time-consuming task. In either case, the resulting data would
be of limited value in assessing hullforms falling outside of its envelope of
characteristics.

On the other hand, such data has been available for 2-D ship-like sections for
quite some time. For example, Grim [1960], Porter [1966], and Tasai [1961]
produced charts and/or tables of computed added mass and wave amplitude ratios
(from which the damping coefficient can be obtained by use of Eq. (5.50)) for
Lewis forms. Porter includes values for sections obtained using a three-parameter
mapping function, which can be used to represent a wider range of sections than is
possible with the original two-parameter formulation (the original Lewis
formulation includes two parameters, which can be expressed in terms of the section
beam/draft and area ratios; see Egs (3.19)-(3.20)). Vugts [1968] published a
comprehensive set of experimental data (along with some theoretical results) for 2-
D cylinders including semicircles, triangles, several ship-like sections, and
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rectangles, the latter at a range of drafts. The experimental data obviously include
all forces and moments acting on the sections, not just those due to radiation; thus
some disagreement is not unexpected. Nevertheless, Vugts’ results show that the
theory works pretty well for heave and sway motions; viscous effects are much
more significant for rolling motion (which will be discussed later).

Rather than reproducing some of these results here, with their inconsistent
nomenclature and normalizations, we instead present a new set of charts obtained
from computations using the U.S. Navy’s Ship Motion Program, SMP, which was
mentioned above. Results are shown on Figures 5.6 and 5.7 for Lewis forms having
half beanvdraft ratios of 0.5, 1.0, 1.5, 2.0, 3.0 and 5.0 and section area ratios up to
0.9, and for a rectangular section® (not a Lewis form: Recall that the Lewis forms
are possible only within a certain range of parameters; see Section 2.1 in Chapter 3),
in deep water. Note that it is not necessary to use the Lewis forms in SMP;
however, this is a convenient way to represent ship-like sections for back-of-the-
envelope estimates, and to convey a general impression of the behavior of the
radiation forces.

Each panel in Figures 5.6 and 5.7 shows the dimensionless added mass and
damping coefficient, respectively, for a particular half-beam to draft ratio, plotted
against dimensionless frequency, for various values of the section area ratio (the
lower limit is determined by the permissible range for Lewis forms). Calculations
were carried out for dimensionless frequencies of 0.0625 to 12.47 (the range is
hardwired in SMP); the plots show only the lower end of this range, where
significant variations of the added mass and damping forces occur.

3. Wave Exciting Forces

3.1  Radiation forces: Available data

Wave exciting forces are induced by the direct action of the incident waves on the
body. In linear theory, these forces are directly proportional to the wave amplitude,
which is assumed to be small. The leading-order interactions between the exciting
forces and the radiation forces, which are proportional to the small body motions,
are thus expected to be of the order of the product of the wave and body motion
amplitudes. These interactions can therefore be neglected in linear theory, so that
the body can be assumed to be fixed in its equilibrium position for evaluation of the
exciting forces.

* Since SMP uses splines to interpolate between offsets, it is not possible to obtain a truly rectangular
section; however by spacing the offsets more densely near the comers, we can obtain a good
approximation.
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FIGURE 5.6a Sway added mass A,,/pA of two-dimensional sections
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FIGURE 5.6b Heave added mass Azi/pA of two-dimensional sections
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FIGURE 5.6c Roll added moment of inertia A4/pAB? of two-dimensional sections
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FIGURE 5.6d Roll-induced sway added mass A,,/pAB of two-dimensional sections
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FIGURE 5.7a Sway damping coefficient B,y/pA(g/B) of two-dimensional sections
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FIGURE 5.7b

©VB/lg wVBig
Heave damping coefficient B3y/pAv(g/B) of two-dimensional sections
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FIGURE 5.7¢c Roll damping coefficient B,o/pAB>V(g/B) of two-dimensional sections
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FIGURE 5.7d Roll-induced sway damping coefficient B,,/pABV(g/B) of
two-dimensional sections
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Making use of Eq. (5.12) and the superposition principle, we can write the
exciting force in the form

Fyj = AXie™ = A Xp)e ™"

iAmpe o J‘J‘((pI +0p )nidS i=123
= - (5.90)
iAope™" J.J-((pI +(pD)(p><n)l._3 dS i=45,6
S
where
¢ = du+ dp = Ae™(@r + gp) (5.91)

and A is the wave amplitude. The potentials ¢; and @p, represent the effects of the
incident and diffracted waves, respectively, and are functions of location as well as
the wave heading and frequency. Because of the assumption that the body is fixed,
the body boundary condition is just

% _,
on
or
on on

on the body surface. Note that the incident wave potential ¢; is known (see Eq.
(4.20)); thus

@, = —lg- cosh k(}LC)ei(kfcostmsinx) (593)
o coshkh

Since this “diffraction problem” differs from the previously considered radiation

problem only in the right-hand side of the body boundary condition, we can use the

same procedures to obtain the diffraction potential as those we used to obtain the

radiation potentials. In particular, if the body is discretized as described above, we

can use Eq. (5.25) in the form

Bgn’“’" ds, }{cn}z {—%} (5.94)

m aIll'[l
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Note that the matrix of “influence coefficients” on the left-hand side,

0,
]

representing the effect on Panel m of a unit velocity “disturbance” on Panel n, is
identical for the diffraction and radiation problems (for all six modes of motion of
the body), and thus only has to be computed once at each wave frequency of
interest. Each boundary condition, on the right-hand side of Eq. (5.92), yields a
distinct set of source strengths; in the diffraction problem the source strengths are
functions of the wave heading as well as the wave frequency.

3.2 Frequency dependence

We can easily predict the low- and high-frequency behavior of the components of
the wave-exciting force. In the zero-frequency limit, the waves are much longer
than the body and thus will not be much disturbed by it. Thus we expect diffraction
to be negligible so that the wave-exciting force can be determined by integration of
the pressure induced by the incident waves, as if the body were not present. This is
known as the “Froude-Krylov hypothesis” after two early investigators who
employed this assumption; the forces thus computed are called “Froude-Krylov
forces” in the literature.

In the zero-frequency limit the free surface remains essentially horizontal so
that the wave-induced pressure is effectively hydrostatic; thus we expect

X, »X;2Csa 00 (5.95)

where Cj; is the restoring force coefficient defined in Chapter 2. The only nonzero
restoring force coefficients with j = 3 are Cs; and Cs;; thus only the heave exciting
force and pitch exciting moment have nonzero values at zero frequency:

X3 > pgAyp: Xs > —pgAywpXcr a5 0 >0 (5.96)

and Xl,2,4,6 —>0asw®w—>0.

In the high-frequency limit, we expect all components of the wave exciting
force to go to zero. At high frequencies the waves are very short, and thus their
effects will tend to cancel when integrated over the body surface. In addition, at
high frequencies the wave-induced pressure is behaves as e, approaching zero
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everywhere but in a thin layer at the free surface (the depth of the layer is
proportional to 1/k and thus also goes to zero!).

3.3 The Haskind relations

Combining Eqgs. (5.33) and (5.78) we can express the wave exciting force per unit
wave amplitude X; in terms of the radiation potential @;:

o
X =—pff(¢1 +¢D)—a(f1—‘d8 (5.97)
S

A very interesting and useful result can be obtained by applying Greens theorem to
the potentials ¢; and ¢p and combining the result with Eq. (5.97). You should recall
that Green’s theorem states that for any two functions ¢, and ¢, that satisfy the
Laplace equation within a region enclosed by a closed surface Sioy, the following
relationship holds:

j j (q)l X2y O de 0 (5.98)

Stotal

We will apply Eq. (5.98) to the potentials ¢; and ¢p, in a region bounded by the
body surface S, the free surface, the sea bottom, and an artificial surface consisting
of a vertical cylinder located far from the body. The contribution of the integration
on the bottom is obviously zero because of the bottom boundary condition on both
¢; and @p. On the free surface, when the boundary condition (Eq. (5.28)) is applied,
the two terms in the integrand cancel; the same thing occurs on the vertical
cylindrical surface since both potentials must satisfy the so-called “radiation
condition” far from the body:

R
¢ip~——>R—ox (5.99)

VR

which means that body motions and wave diffraction result in a system of waves
that move away from the body. Thus Eq. (5.98) can be written in terms of integrals
over the body surface alone:

H@D %‘i—id3= IJ(Pi a;an dS=—H% %ds
S S S
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where the final expression results from application of the body boundary condition,
Eq. (5.92). By substituting this expression in Eq. (5.97) we can obtain an equation
for the wave exciting force that is independent of the diffraction potential:

= J’J’( o; 201 )ds (5.100)

What this means is that we do not have to solve the diffraction problem to obtain the
total wave exciting force! It is only necessary to solve the diffraction problem if
one is specifically interested in the diffraction potential (or the associated pressure
and force) or the form of the diffracted waves.

We can derive another useful result by noting that Green’s theorem can also be
applied to ¢; and ¢; in the closed region described above. The contributions of the
integration on the bottom and free surface are zero for the same reasons as in the
case discussed above; however there is a nonzero contribution from the vertical
cylindrical surface because ¢ does not satisfy the radiation condition. Denoting this
surface as S,, , Green’s theorem leads to

“[ % _o, a‘p‘]ds_ J‘J{ X _, a“"]ds

so that
=p j(%g“’—‘- i st (5.100a)
Soo

This equation can be used to express the wave exciting force in direction i as a
function of the amplitude of the waves radiated in the far-field by forced body
motions in direction 1! By inserting Eq. (5.84) for ¢; and the far-field asymptotic
expression for ¢; (which can be found in Wehausen [1971]), and using the method
of stationery phase to evaluate the surface integral, we can eventually obtain

2pgV - -7
Xi=£ﬁ"—‘/%&e( “)Ai (5.101)
[0)]

where A; is the complex wave amplitude in the far-field induced by motion with
unit amplitude in direction i. As pointed out previously, A; is a function of wave
direction and radial distance, as well as frequency; X is a function of the incident
wave direction and frequency (since A; behaves as 1/\R, there is no net dependence
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on radial distance). This result is interesting but not particularly useful; however,
solving for A; and plugging the result into Eq. (5.47) yields

_k
8npgV,

2n
i jxixj &y (5.102)
0

showing how one can obtain the damping coefficient from the wave exciting force
(unfortunately it is not possible to obtain the exciting force from the damping
coefficient, however!). The 2-dimensional analog is

1

+* —

where the superscripts indicate the effects of waves incident from the positive and
negative directions. Eqs. (5.102) and (5.103) are known as the “Haskind relations”.

3.4  Exciting Forces in the Time Domain

The wave exciting force can be expressed in the time domain as a convolution
integral of the wave elevation and the wave force impulse response function (IRF):

Fi(t )= [FmaoKp(t-zx)de (5.104)

where Kp is the wave force IRF. Notice that the range of integration is doubly-
infinite. The force will generally depend on the wave profile at future times as well
as past times. This would seem to violate the principle of causality: How can the
effects of the waves be felt before they occur? The answer is simple: The wave
elevation in Eq. (5.104) is specified at the reference point of the coordinate system
(which could be located arbitrarily). Thus, for example, head waves are felt at the
bow of a ship before they reach a reference point located near amidships; their
effects are felt by the ship before they are observed at the reference point.

To relate these quantities to the frequency-domain results, we can again take a
Fourier transform, as we did for the radiation forces. Recalling that a convolution in
the time domain correponds to a simple product in the frequency domain, we obtain:

FE ()= FU O (Kor 1) = Aor) [Kos (6@ (5.109)

-0
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Comparing with Eq. (5.78), we obtain
X;(wx)= IKm (e dt (5.106)

and so
Koi(t2) = [Xi(0,0) ™ do (5.107)
2n 4

It is tempting to discard the negative frequency range of this integral; however, this
is not correct (even though this part of the range is not “physically realizable”).
Since K, is real, we can use Eq. (5.106) to show that

X{(-0) = X(0) (5.108)

so that

KD, ty)= jRe{X ,X)eim“’}du)

- (5.109)
=l J. Re X (co,x cos ot - Im{X (m,x)}sm mt]do)
!
0

3.5  Effects of Forward Speed on Wave Exciting Forces

3.5.1  Encounter frequency and encounter spectra

The salient effect of forward speed is the apparent change in the frequency of the
incident waves; this is the same phenomenon as the “Doppler shift” that causes an
apparent change in the pitch of sound generated by a moving source.
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The time taken for one wave to pass by a stationary observer is obviously equal
to the wave period T. However, if the observer moves with velocity U, in the
direction from which the waves are emanating, the time will be shorter,

A A 2wk

t: = =
Via V,+U,  o/k+U,

Te

where V,, is the phase velocity of the wave. The apparent or encounter frequency is
then given by

c =E1—I—=O)+U0k,
t

indicating that the frequency of encounter is higher than the wave frequency for an
observer moving into the waves, as expected. More generally, for arbitrary wave
heading 7, the encounter frequency is

o, =0-Ugjkcosy (5.110)

with y = 180° representing the case just discussed. In deep water, Eq. (5.110) can
be written in the form

2

o, =0-Uy2—cosy (5.110a)
g

Note that negative encounter frequencies are possible in stern seas (where cosy >
0); physically this corresponds to the ship overtaking the waves. Eq. (5.110a) can
be explicitly solved for the wave frequency:

m=(Qi\/92—4Qme)/Z (5.111)

where we have defined

Q=—2% (5.111a)
U, cosy,

For bow seas, 90°< ¢ < 270°, Q < 0 so that the square-root term in Eq. (5.111)
must be greater in magnitude than Q. Since the wave frequency cannot be negative,
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the negative root must be rejected and the physical solution is unique. However, in
stern seas, 0°< y < 90° and 270°< yx < 360°, there are two physically meaningful
(positive) solutions to Eq. (5.110) when the waves overtake the ship. This is most
easily visualized in a plot of Eq. (5.110a) re-arranged in the form

Qe 002 (5.112)
Q Q Q
Eq. (5.112) is plotted on Figure 5.8.

0g/ Q>0
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FIGURE 5.8 Behavior of encounter frequency in stern seas (Q>0)

The figure shows that for o/Q < 1, the encounter frequency is positive, indicating
that the waves overtake the ship. This is equivalent to

U, cosy < g A\
®
i.e., the component of the observer’s velocity in the wave propagation direction is
less than the phase speed, as expected. At small values of w/Q, indicating low
frequencies (associated with high phase speeds) and/or low observer speeds, the
figure shows that @, » ®. At increasing wave frequencies, the phase speed
decreases, eventually reaching a point where it is equal to the vessel (observer)
speed U, (at Q = 1 as noted above). Thus there must be a maximum encounter

frequency for the overtaking waves, between ©=0 and ©=Q. The figure shows that
this maximum value is

D max = /4
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occurring at o = /2.

A consequence of the multi-valued nature of the solution of Eq. (5.111) is that
the wave spectrum cannot be calculated from measurements made by a moving
observer (such as an instrument on a moving ship) in stern seas. The moving
observer can obtain only the encounter spectrum (i.e., the spectrum in the encounter
frequency domain), but there is no way to determine how the energy at a given
value of @, is distributed among the wave frequencies which may correspond to it.
In fact there are three corresponding wave frequencies: the two solutions to Eq.
(5.111) for overtaking waves and the solution corresponding to -w. for waves
overtaken by the observer (who cannot distinguish between positive and negative
encounter frequencies). On the other hand, it is possible to transform the wave
spectrum to the encounter frequency domain:

_ Sﬁ(“’): Sﬁ(‘”)

S5l0.)= ’ (5.113)

do,
do

1-22
o

The transformation is constructed to preserve the area under the spectrum; thus the
area is finite despite the singularity at ®/Q = 0.5.

Some care is required in order to compute encounter response spectra using the
encounter spectrum; this will be discussed under “Motions in [rregular Waves”

below.

3.5.2  Froude-Krylov force with forward speed

To find the pressure induced by the incident waves alone, in a frame moving at the
forward velocity Uy, we can use Eq. (5.65) and the velocity potential given by Eq.
(4.20), after substitution of the encounter frequency (i.e., the wave frequency
relative to the moving frame) for the wave frequency. Using

by = Age™! (5.114)

with @; given by Eq. {(5.84), we obtain

o = pgA coshk(h +¢)
oo coshkh
A Mﬁg_) gilkscosx+krsinx-o,t)
coshkh

[0, +Ugkcos x]ei(kfc‘“x*k’ls"“ 1-0ct)
(5.115)
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where we have used Eq. (5.110). This has the same form as the expression in the
fixed frame, with the substitution of ®, for ®. Thus this must be true for the
Froude-Krylov force as well; i.e., the Froude-Krylov force on a vessel moving in
waves, with encounter frequency o, is identical to that experienced by the vessel at
zero speed in waves of frequency o = ®,.

3.5.3  Diffraction force with forward speed

We have seen that the boundary value problem for the diffraction potential is
formally identical to that for the radiation potential; the only difference (aside from
the temporal dependence on encounter frequency) is in the specified normal
velocity on the body surface. Thus the methods described above to obtain the
radiation potentials and forces are also applicable to the diffraction problem.

For slender bodies a development parallel to that in Section 2.6.2 can be
followed. First we will plug the expression for the incident wave potential, Eq.
(5.90), into the body boundary condition, Eq. (5.92):

Opp __ %95
on on
= EEﬂk(h—ﬂ-é’)e“(kgms“k'”i"")[inlk cosy +in,k siny +n;k tanh k{h + ¢ )]
® coshkh

(5.116)

on the body surface. We will now invoke the slenderness assumption, Eq. (5.77),
which allows us to neglect the first term in the square brackets in Eq. (5.116). In
addition, we must make an assumption about the wavelength. Since the most
significant heave, pitch and roll motions occur near the resonant frequencies, we
should focus on a range of encounter frequencies bracketing these values. If we
define a “slenderness parameter” &:

e=(Bor T)L (5.117)

which for slender bodies is small (B and T are assumed to be of the same “order”,
both small relative to L), we can use Eq. (5.20) to show that

18 _
Oy _2=8]/2
€
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Thus, assuming that Uy is not “small” (i.e., the Froude number UO/\/(gL) is of “order
1”"), as a consequence of the dispersion relation and the expression for the encounter
frequency,

kLoce™; ML ocg!? (5.118)
or, using Eq. (5.115),
k(BorT)ece; M(Bor T)cg™ (5.119)

so that the waves must be short relative to the length but long relative to the beam!
This seems very restrictive; however we will show that the wave exciting forces
computed according to strip theory approach the expected zero-frequency limits;
thus our approximate results are also useful for wavelengths that are substantially
longer than the ship length.

Eq. (5.118) shows that k# and k¢ are both small on the body surface (relative to
k&). Thus for slender bodies in waves satisfying Eq. (5.118), Eq. (5.116) becomes

0 ig
—&3—zl~ge‘k§°°sx[inzksinx+n3ktanhkh] (5.120)
an o

Following Newman [1977], based on Eq. (5.120) we propose the following form for
the diffraction potential near the body surface:

 _eikecosy| g SIX g, 5.121
Pp [ 2 tanh kh 3 ( )

where W, and ‘¥ are functions of (£, 77,¢) that satisfy

o,
on

. PV
=—~ion,; ——6:3=—io)n3 (5.122)

on the body surface. Furthermore, plugging Eq. (5.121) into the Laplace equation
and using

ok 2% 0¥,; 0¥,;
<< , :
24 on ~ o¢
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based on slenderness, we find that to first order, ¥, and ¥; each satisfy the 2-D
Laplace equation in a transverse plane'.

Applying the free-surface boundary condition, Eq. (5.58), to the expression for the
diffraction potential,

1wt

op =A@Qpe

yields

2
[iwe +U, ] +g5% ¢p=0ong=0 (5.123)

0
23

Inserting the expression for ¢p from Eq. (5.111), and carrying out the £ -derivatives
and some algebra, we eventually obtain

2
0 0
iw+U,—1 +g—|¥,, =0 =0 5.124
(1&) 08;‘] gBC 2,3 ong ( )

which is identical to the boundary condition on the radiation potentials ¢;, obtained
by substitution of Eq. (5.562) in Eq. (5.58). However, in a moving coordinate
system the frequency of excitation in the radiation problem is the encounter
frequency whereas the frequency appearing in Eq. (5.124) is the wave frequency.
Thus we have

Wa(00c) = @x(0); F3(@e) = @3(0) (5.125)
where the potentials are for two-dimensional flow.

We can now obtain an expression for the diffraction pressure in terms of the
radiation potentials ¢, and @3, by combining Eqs. (5.65), (5.121), and (5.125):

Pp = p(iwe +U, ggj{— e‘k§°°sx(i<p Smx (p3):}Ae“‘”e‘ (5.126)

2 tanhkh

' 1t can be shown, using Eqgs. (5.110), that ¥, and V5 are functionally independent, thus each satisfies the
Laplace equation individually.
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To obtain the diffraction force we integrate the pressure on the body surface in a
stripwise manner, as in Egs. (5.74):

Fpi = [d€ [ppnids, i=234 (5.127)

with the convention adopted in Section 2.6, that n, = (pxn),. Inserting Eq. (5.126)
in Eq. (5.127) we obtain

F = —ipw Aem@et [ekecosy| ; S (N oy fo(onds Jd& (5.128)
i PR I:'. tanhkh J.% i I(p3 nids 4 (

for i = 2,3,4. Using Eq. (5.76), this can be written in terms of the zero-speed
sectional radiation force coefficient fr;;:

(0] i sSm
B = - Qe po-iodt [oikecosy[; SmX ¢ £ Jd 5.129
Di o € Lj [l tanh ki ri2 (€, 0)+ i (€, 0) [dE ( )

where we have also made use of the dispersion relation, and it has been assumed
that the radiation force vanishes at the forward and aft ends of the body. Note that
the radiation force coefficients appear as functions of the wave frequency.

For a body with port/starboard symmetry, frs; = fzz3 = 0 and fr34 = 0; thus we
have for the individual components

Fpy =0
L0 -i siny ikécos
Fpp =-i—SAe™ ——=- |e * o (£, 0)d&
® tanh kh /
Fpoy = ——2 Aemiont J'eikfcosfo33 (£, 0He (5.130)
®

L

B¢ , ot SN ik
Fp, = —i—% Ae 10 elkecosxf ,®
pa =i b h ) ria (65004

For the yaw and pitch moments, we multiply the integrand in Eq. (5.127) by +¢&,
respectively; this results in a contribution from the &/0% term in the pressure, even
for a body with pointed ends. After integrating this term by parts, and again
assuming that fg;;=0 at the ends of the body, we obtain:
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i ; iU,
Fps = Ae iyt j‘enkfcosx(_(f)m_eé: ! )fR33 (/: (D)df

L (5.131)

y i . iU
Fpg = —iAe ™! X feikecos &‘5 P fra (f, O))df
tanh kh ~ ® ®

It is convenient at this point to develop the corresponding equations for the
Froude-Krylov forces and moments, which when added to Egs. (5.130) and (5.131)
give complete expressions for the wave exciting force and moment components. To
do this we once more employ Eq. (5.127), replacing pp with p; from Eq. (5.114).
Again following Newman [1977] we can simplify the result by using Egs. (5.118) to
argue that

coshk(h+§)e.'kqsinx ~1+ik7siny + k¢ tanh kh (5.132)
cosh kh

plus terms of higher order in k77 and k. Making this substitution in Eq. (5.114) and
integrating in the manner of Eq. (5.127) we obtain

Fy =pgAe ™ [ee [(1+iknsiny +k¢ tanhkh)ngds  (5.133)
L z

again for i = 2,3,4. Assuming that the body has port-starboard symmetry, we can
carry out the contour integrals to obtain

Fj, =—pgikAe “odt sin X Je ik:COSXA(f)jf
L

Fjy ngAe—imet Ie““fc"sx[B(g)—m?zA(é)}d{ (5.134)

L

L
where the dispersion relation has been used; B(¢) and A(&) are the local beam and

section area, respectively, and Q(&) is the first moment of the section area about the
n-axis:

0
Q=2 [¢n.d¢ (5.135)
-T
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Here 7. denotes positive values of 77 (i.e., the integration is carried out in one
quadrant; the factor of 2 comes from port-starboard symmetry). Note that Q will
always be negative in our coordinate system; in fact, dividing Q(¢) by the section
area A(&) yields the {-coordinate of the centroid of the section, which corresponds
to the “center of buoyancy of the section” (i.e., the center of buoyancy of a cylinder
with the given section properties).

As a simple example we can consider rectangular prismatic barge in beam seas;
in this case

ar o()—oB[L 2] 1o
A(¢)=BT; Q(§)—22L§ L =-5 BT

so that for y, = £90°,

FIZ = “il(lAAemimet

) 2
F, = pgAe-r“*’c‘(AWP —‘Lv] (5.136)
g
. 2
Fp, =ikAAe ™ T_B”
2 12T

The first of these expressions looks peculiar; however it is easy to verify: Figure
5.9 is a sketch of a cross-section of the barge, showing the free surface at a phase of
n/2 (i.e., a point of maximum wave slope is located on the centerline of the barge).
With the assumption that the waves are long relative to the beam (see Eq. (5.119)
above), the free surface can be approximated by a straight line with a slope of kA as
shown on the figure. The hydrostatic force on the vertical sides is given by the
product of the hydrostatic pressure at the centroid of each side and the
corresponding area; the values are shown on the figure. The net horizontal force is
the vector sum of the values,

B\L
|Fia| = pg(4TkA Ejf =kAA

in agreement with Eq. (5.136). With regard to the heave force, we recognize the
first term as the heave restoring force coefficient, pgAwp, multiplied by the wave
amplitude A, again a hydrostatic effect. The second term, involving the wave
particie acceleration amplitude, is associated with the force induced by the ambient
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pressure gradient, which we discussed in the previous chapter in connection with
Morison’s formula (see Eq. (4.55)).

The expression for the roll moment can also be verified by consideration of the
hydrostatic effect of the wave. A roll angle equal to kA would induce a roll
moment of

T BL
AGM KA =kAA| zg ~—+———
2 12LBT

for the rectangular barge; the hydrostatic portion of this (exclusive of the
gravitational contribution) approximates the wave-induced moment:

T B?
ol = kAL~ 7

again in agreement with Eq. (5.136)".

_—
_kaB/z

ST

- — F=pg(T+kAB/2)’L/2
F=pg(T-kAB/2)’L/2 ]

FIGURE 5.9 Horizontal “hydrostatic” forces on barge cross-section in a wave

The Froude-Krylov yaw and pitch moments are found by multiplying the
integrand of Eq. (5.133) by £, with i = 2 and 3 respectively; thus

. 2 2
F[s = —pgAe —i@ t J'elkfcon i:B(f)_(D_ A(g)}g d§
b g (5.137)

Fg =—ipgkAe < siny [e** <% A(£)s d&
L

" Recall that the origin of the coordinate system that we are currently using is on the undisturbed free
surface. For an origin at the CG, the Froude-Krylov moment is in fact given by AGM1kA; more on this
later.
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In the limit of zero frequency, it can be seen that the diffraction force and
moment components are all equal to zero, since

fRZZ, fR42 ~ 602 as 0—0
fr33 ~ ©°In(k) as ©—>0

For the Froude-Krylov component, Fyy, Fy4, and F4 are all zero in the zero frequency
limit because of the factor of k, and

1wt

Fi; ~pgAwp Ae™ as >0

Fis ~ —pgX cpAwp A% as - 0

in agreement with Egs. (5.96).

Unfortunately, the behavior of the approximations at high frequency is not as
satisfactory (which should not be surprising in light of Eq. (5.128)). In this limit we
expect the wave exciting forces to approach zero, as argued in Section 3.2.
However, the diffraction force expressions, Egs. (5.130)-(5.131), “blow up” at high
frequencies, since fr;; contains a term proportional to a)ZAij(w), and Aij(w) is
generally nonzero. The Froude-Krylov forces, as given by Eqgs. (5.134) and (5.137),
exhibit a similar behavior due to the factor of k. This latter deficiency can be
remedied by applying the “exact” form of the Froude-Krylov pressure, Eq. (5.115),
instead of the approximate form used in Eq. (5.133).

As for the diffraction component, our approach again does not yield an
expression that is appropriate at high frequencies. However, the following
pragmatic (though theoretically unjustified) argument could be made to obtain
correction factors for Egs. (5.130) and (5.131): At high frequencies we have

M(th_C)_,ekf; tankk(hﬂL()_)l
cosh kh

Thus, using Eq. (5.115) and the slenderness assumption, the diffraction potential
would be expected to be of the form

Op =X ek [ip, siny + ¥, ] (5.138)

(which is also applicable in deep water at any frequency). As pointed out by
Newman [1977], the diffraction force cannot be expressed in terms of the radiation
force when Eq. (5.138) is used, because of the e factor, so that the approach is no
simpler than solving the two-dimensional diffraction problem at each section. This
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difficulty can be circumvented by replacing the ¢ factor with e*'", where the
“effective draft” T* of each section can be defined as

T*(8) = A(5)/B(&)

(Beck et.al. [1989]). The factor ¢*T" thus becomes a “high frequency correction
factor” for Egs. (5.130) and (5.131); in fact, there is no harm in retaining this factor
at all frequencies since it is essentially unity in the range for which the equations are
strictly applicable.”

As was the case for the radiation forces, transom sterns (for which fz;#0)
require the addition of several “end terms” to the expressions for the diffraction
force and moment; see (for example) Loukakis and Sclavounos [1978].

3.6 Transformation to “standard” body axes

As with the treatment of radiation forces, the wave exciting forces in the
expressions above refer to the seakeeping coordinate system. However, since the
body is assumed to be fixed in the diffraction problem, the transformation is
considerably less complicated, amounting only to Steps 2 and 3 in Section 2.7
above: Rotation through 180° about the longitudinal axis and translation of the
origin. The rotation is carried out as in Eq. (5.85) using the transformation matrix
[T] defined in Eq. (5.86). This just amounts to reversing the signs of the sway,
heave, yaw and pitch components. The effect of this transformation is to change the
phase of these components relative to the incident wave. Note that the wave
elevation is not to be transformed; a downward sense for the wave maxima would
be totally confusing to both the maneuvering and the seakeeping comununities.
However you must keep in mind that a phase of zero for heave (for example) means
that the heave maxima (positive down) coincide with the wave maxima (positive
up); this is contrary to the usual seakeeping convention. Thus it is recommended
that unless time domain maneuvering simulations are to be performed, seakeeping
axes (z axis upwards) be employed for calculation and presentation of wave-
induced motions.

¥ An identical correction factor, but with a more elaborate expression for T*, is referred to as the “Smith
correction” by Price and Bishop [1974]; see also Wang {2000].
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4. Viscous Roll Damping

We are now at the point at which we can set up and solve the equations of motion
for a floating body under the influence of small-amplitude waves in an inviscid
fluid. However, the results will turn out to be quite unsatisfactory for one mode of
motion in particular: roiling. The reason for this is that viscous effects contribute
significantly to roll damping. Neglecting these effects will result in predictions
which are considerably higher than measured values, particularly near resonance.

The viscous contribution is significant in the case of roll damping simply
because the wavemaking contribution is so small for slender (ship-like) bodies.
Forced rolling motion generally does not produce much of a disturbance to the
fluid; in fact for a semicircular cylinder rolling about its axis, no waves are radiated
and so the wavemaking damping is zero. However, we know that some effort is
required to produce the motion; the resistance comes from frictional drag on the hull
surface. In addition, if the hull has sharp corners (like a rectangular barge) there
will be additional damping due to flow separation and eddy formation. Also,
appendages contribute significantly to roll damping, particularly at speed. Thus in
order to make reasonable predictions of rolling motion, we need to be able to
account for these effects.

Unfortunately, the theoretical prediction of viscous roll damping is beyond the
current state-of-the-art for ship-like bodies. The available tools of computational
fluid dynamics (CFD) are being applied to the problem, but results are just
becoming available for very simple geometries under somewhat idealized
conditions (see Salui et.al. [2000], Korpus et.al. [1997]), for example). Thus we
must use semi-empirical methods or experiments to determine the damping
moments.

Note that, as was the case for added mass, the possibility exists for double-
accounting if viscous roll damping is included in the “wave-induced roll moment”
term; it could also justifiably be included in the “steady” roll moment (e.g., the

coefficients 32 and?iﬂ in Eq. (3.389d)). Care must be taken to avoid this
duplication when incorporating wave-induced moments in the equations of motion.

4.1  Experimental determination

The best way to find the roll damping moment for a ship would be to impart a roll
velocity to the hull and measure the hydrodynamic roll moment; this would have to
be done for a range of angular velocities as well as forward speeds. Unfortunately
this is seldom (if ever) possible in practice, even in model tests. Thus one is usually
forced to resort to a so-called “roll decay test”, in which rolling motion is induced
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by releasing the hull after somehow applying a roll inclination (for example), and
the subsequent rolling motion is measured; the roll damping is computed from these
measurements. To see how this is done, we will start with the single degree-of-
freedom equation for small-amplitude “unforced” roll motion:

(T +A4J0+Bayrd+Cyyd=0 (5.139)
where By,r denotes “total” roll damping, including viscous effects, and ¢ is the roll

angle. This equation can be written in a more standard form by dividing by the
coefficient of the acceleration:

O+2vo+ w0, 9 =0 (5.139a)
where
Vzﬁb; © = T:x%; (5.139b)
You should recall that the solution of Eq. (5.139a) is of the form
o(t) = hoe” (5.140)

where ¢ is the initial roll amplitude. Substituting Eq. (5.140) in Eq. (5.139) yields
the auxiliary equation

G’ +2ve + 0> =0 (5.141)

Solving for ¢ we obtain

6 =—viyv:-a,’ (5.142)

Note that v and @, are always positive quantities (C,4 is positive for a stable vessel
as we showed back in Chapter 2). If v > w4, Eq. (5.142) yields two real solutions
and we can write (5.140) in the form

o(t)=c(A,e" +A,e7) (5.143)

where
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b=yv? -0, (5.144)

and A, and A, are determined from initial conditions. In this case the roll angle
exponentially approaches the equilibrium value (zero) without oscillating.

However, for rolling motion it is more usual to have v < o, so that the

solutions given by Eq. (5.142) are complex; in this case the solution is of the
general form

o(t)=e™ (A, cosbt+A, sinbt),
or, equivalently,
o(t) = doe™" cos(bt +3) (5.145)

where b = ib and & is a phase angle. The motion in this case exhibits decaying
oscillations. Thus we see that the quantity

b=+, -v? (5.146)

is the damped natural rolling frequency, and since v = 0 when By = 0, g is the
undamped natural rolling frequency (as we have already seen in connection with
heave in Section 1.2 above)."”

The intermediate case, when v = @,, 1s known as “critically damped”; in this
case Eq. (5.139b) gives

Bt =Bucr ZZV(Ixx +A4)Cy (5.147)

where Bascr is the “critical damping” coefficient. Thus the coefficient v can be
expressed in terms of the fraction of critical damping k (see Section 1.2 above):

B
v=" g, =xo, (5.148)
44CR

¥ As alluded to in Section 1.2, the quantities b, ©o and v as defined in Eqs. (5.139b) and (5.146) are
actually functions of the wave frequency w. To determine the true undamped natural frequency (for
example), one could compute ®o using Eq. (5.139b) at a range of frequencies and plot the resulting
values against @. The true natural frequency is given by the point on this curve at which o = @o.
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and, from Eq. (5.146),

b=wyVl-«> (5.149)

A typical time history of unforced rolling motion is shown on Figure 5.10.
Successive extrema are labeled ¢; on the figure. In this case there is a maximum at
t=0 and so the phase 8 = 0. According to Eq. (5.145), the extrema should be given
by

X

in

0 :(—1)J'¢0e_ - (5.150)

where we have made use of Egs. (5.148) and (5.1490). The ratio of successive
maxima or minima is then given by

px 13
q)j =e 1-x2
¢j+2
or
W % _2me (5.151)
j+2 1-«?

which provides a means of determining k from the data, if the damping coefficient
(or fraction of critical damping) is independent of the roll angle (in which case the
ratio of extrema is constant) and frequency (since in this type of test we can only
look at the natural frequency™).

In practice, however, the ratio of extrema usually varies as a function of the roll
angle due to nonlinear effects. To attempt to account for these nonlinearities we can
re-write Egs. (5.139) and (5.139a) as follows”:

(L + A )0+ B44,1‘iJ + B44,2¢‘d’i + B44,3‘i)3 +Cyu=0 (5.152)

* The wavemaking contribution (which we know to be a function of frequency) would in this case be
computed at ® = mo and subtracted from Busr, determined from x using Eq. (5.148), to obtain the linear
viscous contribution.

¥ The restoring moment is also nonlinear; we will ignore this for the moment.
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§+2vh+addl+po’ +0,"0=0 (5.152a)

o

Roll angle
”6
a

Time

FIGURE 5.10 Typical roll decay time history

Returning now to the roll decay data, we will define the mean roll angle ¢, and
roll decrement A¢d as

¢m = |¢j|+2’¢j+1 5 A¢ =l¢j‘_

¢j+1

By integrating Eq. (5.152a) over a half-period and equating the energy dissipated by
damping to the work done by the restoring moment, we eventually obtain the
following expression for the roll decrement as a function of the mean roll amplitude
(Himeno[1981]):

Ab = kh. +%a¢m2 +%‘ﬁmo¢m3 (5.153)

Thus, one could find the coefficients k, o and B (and so By, Buss and By ;) by
plotting the roll decrement against the mean roll angle (the “roll extinction curve”),
and fitting a cubic polynomial to the data, at a range of vessel speeds.
Unfortunately we are once again unable to identify any frequency dependence of the
coefficients by this method, and in addition the coefficients are tacitly assumed to
be independent of the amplitude of the roll motion. However it is certainly an
improvement over neglecting the viscous contribution and should be fairly accurate
at the frequency at which the rolling motion is largest, provided that the amplitude
range of the extinction data brackets that experienced by the ship.
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To illustrate the procedure, the first 8 extrema of a roll decay time history (such
as that in Figure 5.9) are given in the second column of Table 5.1 below. The third
and fourth columns contain the mean roll angle and the roll decrement, computed as
indicated above. These are plotted on Figure 5.11. The results of the regression
with a cubic polynomial (with constant term set equal to zero) are also shown.

By comparing the coefficients of the regression equation to those of Eq. (5.153)
we can obtain the following values of the quantities x, o and f:
B B
442 0.00456; B = 4“3 _ 0.00056
L +Ay L +Ay g

k=0.18776/x = 0.060; o =

Care must be taken in carrying out the curve fit, since it is possible to get
nonsensical results if there is an insufficient number of data points available or if,
for whatever reason, the data does not define a smooth curve (it seldom does). In
these cases it is quite possible to obtain negative values for the regression
coefficients; however, it is difficult to justify a negative fraction of critical damping
physically. Similarly, the coefficient By, ,, which is in essence a “crossflow drag
coefficient” multiplied by a lever arm, is expected to be positive. The coefficient
B4 3, on the other hand, does not have a simple physical justification and so could
be viewed as an empirical “adjustment” to the second-order term, which may be
positive or negative, provided that the total nonlinear contribution is positive (we
note that the values of By, ; presented by Himeno [1981] for four different ships, at a
range of speeds, are all positive).

5

A¢, deg

4 -

Ad = 0.00086¢,° + 0.00608¢m2+0.18776¢m\
3 -
2 -

)
14
0 T v T T T
0 2 4 6 8 10 12
$ s deg

FIGURE 5.11 Roll extinction curve and regression results
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TABLE 5.1 Roll decay data

j ¢j ¢m Ad
deg deg deg
0 1340
11.43 3.93
1 9.46
832 228
2 718
632 1.72
3 546
491 1.09
4 437
392 0.88
5 348
3.15 0.66
6 282
2.56 0.51
7 231

4.1.1  General single degree-of-freedom response

At this point it is useful to digress somewhat to write the general expression for
the single degree-of-freedom response” for a floating body in the frequency domain
(Eq. (5.18) was the solution for heave motion), in terms of the dimensionless
quantities defined above:

'fj_! _ ‘Xj‘/(Mﬁ “A;) (5.154a)
A \ﬂcoo2 _mz)z +41<j2a)02u)2
which can be re-written in the simple form
‘ii_‘: xil/es (5.154b)
A \/(1—A2)2+4»<j2/\2

“ Note that the effects of coupling among the modes of motion may be significant; the degree of coupling
is a function of hull shape as well as the choice of the origin. Thus the single DOF equations should in
general be used with caution.
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if Cj; # 0 (that is, if there is a natural frequency in mode j; thus Eq. (5.154b) holds
for j =3, 4 and 5), where

A= (5.154c)
W

If the natural frequency is low enough to permit the wave exciting force to be
approximated using the Froude-Krylov component, Egs. (5.134) and (5.137), and if
we transfer the moments to a coordinate system with origin at the CG®, it can be
shown that

[Xs| = Css; [Xa # kCys; |Xs| = kCs;s

so that Eq. (5.154b) becomes

1 ) ’X4,5’ - 1
’ - 2
Ji-n2Praczaz 0 oA e, 2A
which can be regarded as “magnification factors” for the responses relative to the

wave amplitude or wave slope. At the resonant frequencies (A = 1), Eq. (5.155)
reduces to

(5.155)

Pl
al

IX3((D()X 1 ,)(4,5(('001~ 1

~

A 2kyT KA 2Ky

(5.156)

The behavior of the magnification factor with the frequency ratio A for several
different values of the damping ratio is illustrated on Figure 5.12 (note the
logarithmic vertical scale).

For heave and pitch motions, the damping is generally quite substantial, and
magnification factors less than 2 are typical. However, for typical ship forms the
total roll damping moment is small (generally less than 5% of critical for ships
without bilge keels). Thus the roll magnification factor may be greater than 10 at
resonance. This could result in large roll motions if the encountered wave system
confains a significant amount of energy near the roll resonant period, patticularly if
the operator cannot alter course to reduce the excitation (due, for example, to loss of
power). The (undamped) roll resonant frequency was given in Eq. (5.139b) above;
the period is

* For other choices of the origin, coupling among the various motions must be considered; the same
conclusions will eventually be reached, however.
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Lo +Au

Ty, =27
o Cay

which can be approximated for typical ship forms using (Beck[1989])

T, ~—228 (5.157)

) V8GM ¢

where B is the beam. Roll resonant periods for typical large ships are in the range
of 10 to 16 seconds (possibly considerably longer for containerships, which
generally have low values of GMy). As shown in Table 4.1, wave modal periods in
this range are most probable in Sea States 6 and higher, which are relatively
uncommon events. However, encounter periods in this range are quite possible in
lower sea states, in following seas. Thus there is motivation to increase the roll
damping and various methods have been applied.

10

Magnification factor

0.1 T T T T T
0.0 0.5 1.0 15 20 2.5 3.0

Frequency ratio, A

FIGURE 5.12 Magnification factor (Eq. (5.155)) vs. frequency ratio

The simplest and most common of these are bilge keels, which are usually
nothing more than flat plates installed along the bilge. The bilge keels are generally
aligned with the local longitudinal flow lines (determined from the results of flow
visualization tests) to minimize resistance. They usually extend about one-third of
the length of the ship, and spans of 0.5m - 1.0m are common on large ships (the
bilge keels are typically sized so that they do not extend below the baseline or
outboard of the maximum beam). The bilge keels can increase the roll damping by
a factor of 2 or more, thus reducing the magnification factor at resonance by this
factor. This reduction of rolling motion is generally well worth the small price in
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the form of increased resistance (the increase in power is typically on the order of
3%). Other anti-roll devices are discussed below.

4.2 Prediction of roll damping

As discussed above, the only techniques that are presently generally available for
the prediction of viscous roll damping of realistic ship forms consist of semi-
empirical formulas. The principal weakness of these methods is that their use is
restricted to the hullforms comprising the database of each formulation. In addition,
the fit of these expressions to the data that they represent can only be described as
fair, particularly for the expressions representing the effects of forward speed.

The most popular semi-empirical method currently in use is the “component
analysis” described by Himeno [1981]. In this method (actually an amalgamation
of the methods of several researchers) the total roll damping is broken down into its
components, consisting of:

*  Friction on the hull surface (Bg);

e “Eddy damping” caused by flow separation at the bilge or near the stem

and stern (Bg);

e Damping induced by lift forces on the hull (B); and

* Bilge keel damping, due to:

*  Normal force on the bilge keels (Bpkn);

¢ Pressure on the hull induced by the flow around the bilge keels (Bpxy);
and

*  Wavemaking damping of the bilge keels (Bpxw).

This method “can be safely applied to the case of [an] ordinary ship hull form with
single screw and rudder if the ship is in its normally loaded condition”
(Himeno[1981]). The resulting damping moment is a function of frequency,
amplitude, and forward speed. The relative contributions of the various components
are shown on Figure 5.13.

The Himeno method is, unfortunately, a little complicated. The expressions for
the eddy damping and bilge keel-induced hull pressure components are presented as
2-D sectional values, which must be integrated over the length of the hull. No
expression is available for the bilge keel wavemaking component; Himeno states
that “for bilge keels with ordinary breadth of B/60 to B/80 [B = maximum beam],
we can safely neglect the wave effect of bilge keels”.
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FIGURE 5.13 Contributions of components of roll damping
(from Himeno [1981])

An alternative, less complicated (but probably also less accurate) approach,
originally formulated by Watanabe and Inoue [1964], is also presented by
Himeno[1981]; a simplified version was developed by de Kat (see Beck et.al.
[1989]). This formulation is based on “an extensive series of model tests and some
theoretical considerations on the pressure distribution on the hull caused by ship roll
motion” at zero speed (a forward-speed “multiplier” was later proposed by another
investigator). Himeno likens the approach to a “drag coefficient” for the hull and
bilge keels; thus the formulation would appear to be applicable only to the quadratic
coefficient By, ,; this is further supported by the fact that the method is presented in
terms of the so-called “N-coefficient”, where

Ad = Noy,”.

So, despite the fact that Himeno and Beck et. al. present formulas for both By, and
Buag ., there is little justification for a linear term in this approach.

Using the expressions given in Himeno’s report, we obtain the following
expression for the quadratic damping coefficient:

CgT AgkOop

+2 12

Bus :h':l.42 +0.01}f(Fn,A) (5.158)

where
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ol (XG=T/2)’ (TY' L B | mB® 180
B B) 4B 64T |4n’Cp 7 ,
c~1.1994Cyp> —0.1926Cyp

and KG is the height of the CG from the keel, Cyp is the waterplane area
coefficient, m is the mass of the ship, and o, is a “bilge keel efficiency” factor,
shown as a function of the aspect ratio of the bilge keel on Figure 5.14. The
expression for the factor ¢ is the result of fitting a curve to the results of the more
complicated equations given by Himeno; the results match to within 1% for 0.55 <
Cwe < 1.0. The factor f(Fn,A) represents the effect of forward speed:

1— -10Fn

f(Fn,A)=1+0.8——F— (5.158a)
A

where Fn is the Froude number and A is the frequency ratio (eq. (5.154c)). These
formulas are based on “detailed analysis of many typical commercial ships,
including some very high block coefficient tankers”. An additional caveat added by
Himeno [1981] stems from the fact that roll decay data was used, limiting the
applicability of the formulas to the natural roll frequency: “...these formulas should
be applied to the case of a normally loaded ship, and then only near the natural
frequency...”.

4.3 Egquivalent linear roll damping

Unfortunately, it is not easy to make use of the nonlinear roll damping terms in
a frequency-domain analysis (they are by definition excluded from our standard
linear “small amplitude” model). However, these effects can be extremely
important, particularly near resonance where the roll motion is dominated by the
damping moment. To incorporate the nonlinear effects in the linear model, it is
common to define an “equivalent linear damping” coefficient, which is generally a
function of the roll amplitude and frequency. One way to define the equivalent
linear damping is to determine the linear damping coefficient that produces the
same energy dissipation in a half-cycle of motion as the actual (nonlinear) process
(similar to the analysis that led to Eq. (5.153)). This method leads to the following
expression:
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B44,1‘i)+B44,2<i’ld)\+B44,3¢3 = BMc(i)

Byje =Bag) +—0oBusr +
3r

86 30 (5.159)

2
'4_¢O B44,3

where ¢ is the amplitude of the roll motion. Thus we need to know the roll motion
before we can solve the roll equation! In practice this difficulty is usually
surmounted by employing an iterative procedure, in which an initial amplitude is
assumed for the first calculations and subsequently “tuned” based on the results.
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FIGURE 5.14 Bilge keel efficiency o (Eqg. (5.158)), from Himeno [1981]
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5. Some Examples

5.1 Heaving and Pitching in Head Seas

As a first example, we will compute the heaving and pitching motions of the
merchant ship that we used in Chapter 3, in regular head waves. Characteristics are
given in Table 3.1 and the body plan is shown on Figure 3.8. We will make use of
strip theory, using Equations (5.80) along with the results shown on Figures 5.6-5.7
to find the added mass and damping forces and moments. We will assume a speed
of 10 knots, and waves with amplitude 2.0m and period 9.5s in “deep” water.

Strictly speaking, we need to consider the surge motion, also, since surge is
coupled with heave and pitch. Unfortunately, though, surge forces and surge-
induced forces and moments cannot be computed with the aid of strip theory.
However, we can make use of the (zero-frequency) added mass and steady forces
that we obtained in Chapter 3 for surge, tacitly assuming that the frequency effect is
small (and ignoring the inconsistency in the orders of magnitude between the surge
and heave/pitch terms). In addition, the net thrust will be assumed to be of the
simple form adopted in the example in Section 7.2.3 in Chapter 3, Eq. (3.160):

a9+ Xp ~ aoou* (5160)

(consideration of the effects of the propulsion system dynamics, described in
Section 4.2 in Chapter 3, is an interesting and non-trivial problem that we will forgo
here). We can use the Holtrop method (Appendix A, Chapter 3) to estimate the
resistance, wake fraction and thrust deduction, and the B-series data (Appendix B,
Chapter 3) to find the thrust. For the required propeller data we will assume

Diameter 5.5m
Pitch/Diameter 1.2
Expanded area ratio  0.90
Number of Blades 5

In addition, the Holtrop method requires information on the appendages; we will
assume that these consist only of a rudder. The area can be estimated based on the
DnV rules for minimum rudder area (Det norske Veritas, [1975]):

2
TL B
A, =—— 1425 = 5.161

R 100{ (L]} ( )
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With the ship characteristics given in Table 3.1 and the rudder area from Eq.
(5.161), the Holtrop method predicts a resistance of 145.8 kN, w = 0.201 and t =
0.188, at 10 knots. Following the method given in Section 7.2.4 in Chapter 3, we
find an equilibrium propeller speed of Ny = 54.42 RPM and

200 ~ -109.5 kN/(m/sec).

Additional applied forces that we must consider include radiation and wave-
exciting forces, other steady-flow forces (in addition to a,), and gravity/buoyancy
forces. To be consistent with the treatment for the wave-induced forces presented
above, we will consider only terms that are linear in the motion or velocity
perturbations.

With the assumption of head seas and port-starboard symmetry, sway, roll and
yaw and all of their derivatives will be zero. Thus the surge-sway-yaw equations,
from Eqs. (3.2) and (3.3) (considering linear terms only), become

X= m[u + ZGQ]
Z=mlw - Uyq - x54] (5.162)
M= Iyyq + m{zGﬁ - xG[v'v - qu]}

Referring to Eqgs. (3.37a,c,e), we find that in the present case the only linear
steady force terms on a vessel with port-starboard symmetry are

XS =a0
Zg =cy+ciw+C,q

Mg =eq+e;w+e,q

The coefficients ¢, and e, (expected to be functions of the speed Uy) result from the
asymmetry of the hull about a horizontal plane; they induce a mean “sinkage” and
“trim” which are generally small relative to the wave-induced motions and which
will be neglected here. The coefficients ¢y, ¢,, €, and e, represent linear lift and
damping induced by viscous effects, which again are expected to be negligibly
small relative to the wavemaking damping terms™. The drag term a, has been
accounted for already in Eq. (5.160).

™ Forces related to “crossflow drag” may become important in large, steep waves; however these terms
are expected to be quadratic in w and q.
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The gravity-buoyancy terms are usually expressed in terms of the restoring
force matrix C; however it is a bit more convenient here to use Eqs. (2.35), which
define the heave force and pitch moment explicitly:

Zg_B = 'pgAWP c + png 0= -pgAwp(Q - XCFe) (5163&)
Me.s = -pg[Vo(z6-28)+S:] B + pgSi £ (5.163b)

For small motions we can replace the displacements relative to the fixed axes with
their body-axes counterparts in these expressions.

The equations of motion and gravity-buoyancy forces have been expressed with
respect to maneuvering body axes, so we must use the expressions for wave-
induced forces in a consistent coordinate system. For radiation forces we have Eq.
(5.89):

6 .
FRi :ZDi,j[a)ezAij +i0)eBij}(0je_lmct (5164)
j=1

where it is assumed that A; and B;; have been evaluated with respect to seakeeping
coordinates (e.g., x,y,z on Figure 5.5), and we have defined

D,',j = (28“ + 28i,4 — 1)(2811 + 26j’4 - 1) (5165)

We will estimate the coefficients using Eqs. (5.83) and the Lewis-form results
shown on Figures 5.6-5.7.

To use these figures, we need the usual Lewis-form coefficients for each
section (we have these already in Table 3.2), and the nondimensional encounter
frequency me\/(B/g). The encounter frequency is computed from Eq. (5.110a); the
heading angle is 180° so cosy = -1; the wave frequency is

®= —21 =0.661rad/sec
9.5

and 10 knots = 5.15 m/sec so

0.6612

®, =0.661+5.15 =0.891rad /sec
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Since we are using 2-D sectional values, the local beam is to be used to normalize
the frequency. Results for the (nondimensional) sectional values of As;3'(€), B3s'(€),
found by interpolation from Figures 5.4b and 5.5b, are given in Table 5.2 below
(columns 7 and 8). Note that the nondimensional sectional values must be
“dimensionalized” (i.e., multiplied by the appropriate dimensional factor) prior to
carrying out the numerical integration along the body length, because the
normalizing factor is a function of the local section properties.

Knowledge of As3'(£), Bss'(£) allows us to calculate the coefficients Ass, Bis,
Ass, Bss, Ass and Bss; strip theory gives no information about the surge force and
the surge-induced heave force and pitch moments (other than that they are small
relative to the heave and pitch forces and moments). So, as mentioned above, we
will make use of the zero-frequency added mass coefficients from Chapter 3; since
there are no waves in this limit, we have to assume that B; ;= B;;~ 0. We have an
approximation for A;, from the previous example in Chapter 3, and A5 can be
estimated with A, and the vertical coordinate of the center of buoyancy using Eq.
(3.13).

Unfortunately there is no “back of the envelope” method to estimate the heave-
induced surge added mass A,; (equal to the surge-induced heave added mass).
Qualitatively, it should be related to the degree of bow-stern asymmetry of the
body; the effect is undoubtedly small for a “slender” ship hull and we will set it
equal to zero for lack of a better alternative.

Finally, we need to add the wave exciting forces, Egs. (5.130) and (5.131) for
diffraction and Eqs. (5.134) and (5.137) for Froude-Krylov. Note that these must be
transformed into standard body axes as explained in Section 3.6. The combined
expressions for Fx = F) + Fp in body axes can be written in the form

Fy; = —Ae ™! Jae'kT*(f) A 0,0, )coské -B(£, 0,0, )sinkE]

(5.166a)
—i[A(f, ®,0, )sinké +B (£, 0,0, )cos ké]}dé

Fys = —Ac —iw,t J‘e—kT*(é) {[__ {A(f, ®,0, )§ +UgBy, (f, (o)}cos k&
+B(&, 0,0, ) +0UgA, (£, 0)sin k] (5.166b)
'H[{A(f, O, 0, )§ + U0B33 (5’ (D)}Sm k§
n {B & o0, X +0UyA S, (&, m)}cos kf]}dé
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TABLE 5.2 Sectional added mass and damping coefficients

Sta B T B/2T Beta omegae' A33' B33' omega' A33' B33
10 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9.75 7.28 22.80 0.160 0.540 0.424 0.500 0.180 0.315 0.594 0.138
9.5 14.60 26.57 0.275 0.562 0.600 0.611 0.416 0.445 0.833 0.318
9.25 21.42 29.23 0.366 0.548 0.727 0.761 0.646 0.540 0.907 0.581
9 27.36 30.51 0.448 0.556 0.821 0.870 0.838 0.610 1.069 0.744
8.5 39.66 30.51 0.650 0.669 0.989 0.940 1.128 0.734 1.232 0.991
8 52.46 30.51 0.860 0.679 1137 1.128 1.691 0.844 1.573 1.457
7 69.32 30.51 1.136 0.782 1.308 1.128 2133 0.971 1723 1.820
6 74.80 30.51 1.226 0.870 1.358 1.072 2.033 1.008 1.666 1.732
5 74.80 30.51 1.226 0.921 1.358 1.063 1.833 1.008 1.617 1.565
4 74.80 30.51 1.226 0.885 1.358 1.066 1.974 1.008 1.648 1.682
3 73.88 30.51 1.211 0.774 1.350 1.158 2.380 1.002 1.821 2,022
2 59.78 30.51 0.980 0.674 1.214 1.224 2.079 0.901 1.775 1.775
15 48.79 30.51 0.799 0.529 1.097 1.444 2.008 0.814 1.952 1.707
1 36.94 30.51 0.605 0.410 0.955 1.339 1.602 0.709 1.728 1372
0.76 29.66 30.51 0.486 0.440 0.855 1.067 1.129 0.635 1.334 0.985
05 24.64 30.51 0.404 0.470 0.780 0.904 0.851 0.579 1.099 0.753
0.25 18.24 30.51 0.299 0.500 0.671 0.685 0.554 0.498 0.804 0501
o] 7.28 4.00 0.910 0.572 0.424 3.495 1.165 0.315 4.058 0.914
-0.125 3.64 1.77 1.028 0.500 0.300 5417 1.105 0.222 5917 0.876
-0.25 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

where we have set the heading x = 180° for head seas®, and for convenience
defined the quantities

2
A¢,0,0,)= pr(é)—Eg—/’*(f)*“’e(”A33 (¢.0) (5.166¢)

B (§, 0,0, ) = O)eB33 (5’ ('0)

where (you will recall) A(£ ) and B(& ) are the local section area and beam,
respectively. Note also that we have employed the “high frequency correction

factor”,
KT,

discussed in Section 3.5.3. It is important to note that the sectional added mass and
damping coefficients in these expressions are to be evaluated at the wave frequency,
not the encounter frequency, as explained in Section 3.5.3 above. So, unfortunately,
we cannot use the values listed in Table 5.2; values corresponding to the
dimensionless wave frequency are tabulated in Columns 10 and 11 of Table 5.2.
Notice also that we have separated real and imaginary parts of the portion of these

expressions “to the right” of the g ioet factor; that factor is retained because it will
ultimately “cancel out” of the equations.

 The corresponding expressions for arbitrary heading are obtained by substituting (-kcosy) for k in Egs.
(5.166).
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Unfortunately we have no corresponding expression for the longitudinal
component of the wave exciting force, since in strip theory the longitudinal force is
“of higher order” in the slenderness parameter. Thus to be consistent we must set
the longitudinal component of wave exciting force equal to zero. It is tempting to
employ a low frequency approximation such as Morison’s formula, Eq. (4.55). For
Morison’s formula to be valid, the variation of the wave-induced particle velocities
must be negligibly small over the length of the body; this is equivalent to the
requirement that the body be short relative to the wavelength. In the present
example the wavelength is

x=2—’2g—=141m; * o83
° L

indicating that the hull is /onger than the wave. Thus use of the Morison formula
would result in an over-prediction of the force in this case, because the cancellation
that occurs due to the reversal of the particle velocities over the length of the hull is
not accounted for.

We are now at last in a position to write the equations of motion. We anticipate
a solution of the form

ot

—iw, t - : ~io t, 2 -
Xy =l Xge ;X =0, Xpe e (5.167)

Xi = Xpi€

as assumed in Egs. (5.164) above; recall that the x¢; are complex motion amplitudes.
Inserting these expressions in Eqs. (5.162) and combining with Egs. (5.163)-(5.164)
we obtain after some rearrangement:

[_(’)ez(m"’Au)_i@eaOO]xOl —0. (mzg + A5 Xgs =AX, =0 (5.168a)

I__C‘)e2 (m+A33 )—icoeB33 +pgAWPJxO3

) . (5.168b)
+ 10, (mXG —A35)+10)e(mU0 ‘B35)“PgAWPXCF]>‘05 =AX,

—a)ez(sz+A51)x01 +[we2(mXG —A53)—ia)eB53 _pgAWPxCFIXOS

] (5.168c)
+[_(0e2(1yy +A55)—1(oe(meU0 +B55)+ ngOGML]xO5 =AX;

or, in matrix form,
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—ol(m+ A )-io.a 0 -~ (mzg +A5) Xo1 0
0 -0, (m+Ay)-io, By +pgAyp 0 {mxg — Ags)+io, (MUy ~ By )-peAweXer f{Xorp ={1AX,
“”cz(mzoJfAsl) C‘)ez (me —A53)—imeB53 —PBA wpXcE —mgz(lyy +Ass _imz(mGUO +B55)+PEV<>GMT AX

Xos

(5.169)

where X; and X are given by Eqgs. (5.166a) and (5.166b), respectively; note that the
motion amplitudes are complex.

Table 5.3 is a summary of the input quantities, computed using the information
in Tables 4.1and 6.2. The pitch gyradius was assumed to be equal to one quarter of
the waterline length, which is a common assumption if detailed mass distribution
data is not available. The waterplane area and its first and second moments (used in
the computation of LCF and GM) were obtained by simple numerical integration of
the local beam along the length of the ship. Values of the added mass and damping
forces were similarly obtained from the sectional quantities, according to Egs.
(5.83) with the coordinate transformation (Eq. (5.165)). A value of KG = 10.86m
was assumed for the computation of GM as indicated in the table; KB was estimated
using sectional values calculated using the Lewis-form offsets. Finally, the exciting
forces were obtained by numerical integration of Eqs. (5.166) using the values of
Aj3(¢) and B3;(&) at the wave frequency as indicated.

TABLE 5.3 Calculated quantities
KG (assumed) 10.86|m ago -109.5|kN/(m/s)
m 20890000(kg Al 497700]kg
Awp 2855|m” Ags 305800]kg-m
LCF -2.97\m Bys Olkg-m/sec
Zs 6.14|m As 1658000]kg
XG=Xp -0.67\m Bsis 20230000]kg/sec
G -1.56|m Ass | 60760000/kg-m
GM,. 215|m B;s 81400000|kg-m/sec
L, 3.77E+10lkg-m’ || As; | 3058000]kg-m
Bs; O(kg-m/sec
X; real -146200(N/m Asy | 1.92E+08(kg-m
X3 imag 2497000|N/m Bs; -3964000|kg-m/sec
X real -2.8E+08[N-m/m|| Ass | 2.32E+10/kg-m®
Xsimag | -3.1E+08|{N-m/m|| Bss | 2.66E+10[kg-m”/sec

Now all that remains to be done is to plug into Eq. (5.169) and solve by
inverting the matrix and multiplying by the force vector (if you prefer not to work
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with complex numbers, Eq. (5.169) can be separated into real and imaginary parts,
yielding 6 simultaneous equations). The solution (per unit wave amplitude) is:

Xoi/A =0.021 — 0.0131 meters/meter
Xo3/A = —0.130 — 0.049i meters/meter
Xos/A = 0.015 — 0.00936i radians/meter

The final answer is obtained by multiplying by the wave amplitude (2m). Results in
the conventional (amplitude and phase) format are given below:

Xo1 = 0.05m 8, =-317°
X3 = 0.28m 83 =-159.3°
Xos = 2.03° 55 =-32.0°

The surge motion is small, as expected, since it is (in this calculation) entirely
due to coupling with pitch; it would be even smaller if the origin were taken at the
VCG. To evaluate the importance of coupling with surge on the heave and pitch
motions in this case, we can compare this solution with that obtained from the heave
and pitch equations alone:

X3 = 0.28m 63 =-159.3°
X5 = 2.03° 85 =-31.9°

which is virtually identical to the solution with surge. Thus we might as well
neglect surge in such calculations. If surge is of particular interest, strip theory
should not be used!

As a “sanity check” on these results, it is useful to examine the non-dimensional
response amplitudes and natural frequencies. The dimensionless heave amplitude is
simply x03/A = 0.17; however the pitch amplitude should be normalized based on
the amplitude of the wave slope. In the present example,

Mazx. wave slope =kA = 0.089 = 5.1°
so the dimensionless pitch is 0.40.
Using Eq. (5.20) we can calculate the undamped heave natural frequency; the

expression for pitch natural frequency is obtained by replacing m, Aj; and Cs; by
Ly, Ass and Css respectively:
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C C
Wg3 = ,|—2— =0.875rad/sec; wy5 = |—>— =0.850rad/sec
m+A;, Iyy +Ass

Note that the values of Aj; and Ass used in these formulas should correspond to the
corresponding natural frequencies so that in general an iterative procedure is
required. In the present example

[ [

€ =1.02; € =105
®o3 ® g5

so we are pretty close to the natural frequencies. It is also useful to look at the
fractions of critical damping as described in Section 1.2 above (see also Eq.
(5.147)):

Ky =2ym+A5)C,; =03L ks =2,/[[,, +Ass)Css =0.26

If the waves are long enough to justify the zero-frequency Froude-Krylov
approximation, we can use Eq. (5.156) to find the magnification factors at
resonance:

|X3(G‘)01z 1 —16: lxs(‘”o]N 1
A 2 KA 2x

=19

These values are substantially higher than our solution. However, the zero
frequency Froude-Krylov assumption is #not justified in the present case because the
wavelength is not long with respect to the ship length, as we have seen above (it is
in fact shorter than the ship length). So we expect some cancellation to occur
among the sectional exciting-force values along the length of the ship, yielding a
result that is smaller than the result of the zero-frequency approximation. In
addition, there is a term in the expressions for Froude-Krylov heave force and pitch
moment that is proportional to ®* Egs (5.134) and (5.135) show that this term acts
to reduce the exciting force and moment relative to the zero-frequency value,
regardless of the heading. Thus we expect the heave and pitch to be lower (possibly
substantially lower) than the values indicated by these magnification factors.

3.2 Rolling in Beam Seas

The second example we will consider is the behavior of a simple barge in beam seas
at zero speed. A body plan is shown on Figure 5.15 and particulars are summarized
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in Table 5.4. The barge is symmetrical fore and aft (we assume that the mass is
symmetrically distributed also) so that we need to consider only the coupled yaw
and roll equations. For small motions and with Uy = 0, Eqgs. (3.2) and (3.3) reduce
to

K=1,p-mzgV '

relative to the standard (maneuvering) coordinates. In the present example, since
there is no steady motion, the only forces in addition to gravity/buoyancy are those
induced by the waves. Thus we expect the response to again be of the form of Eq.
(5.167). By inserting this and the expressions for the radiation force and moment,
Eq. (5.164), the roll restoring moment, Eq. (2.36), and the wave exciting force and
moment Fy; = Axpe ™" in Eq. (5.170), and doing some algebra, we finally obtain

Fo2(m+A,,)-ioB,, ko, +|o2(mzg + A, )+ioB,, ko, = AX, (5.171a)

Icoz(sz +Ap)+ 1‘(’313421"02 + I“ 0 (L +Agy)—i0Byge + ngOGMTlxM =AX,
(5.171b)

where the added mass and damping coefficients are to be computed with respect to
the seakeeping coordinate system (x,y,z on Figure 5.5)% and we have used

Dy, =Dy =1; Dyy=Dy=-1.

Notice that we have used the equivalent linear damping coefficient defined in
Section 4.3.

TABLE 5.4 Characteristics of Barge

Length on waterline, m 60.0
Beam, m 10.0
Draft, m 2.5
Displacement, tons 1179
KG, m 3.0
KB, m 1.38
Roll gyradius, m 3.50
Cp 0.766

Sectional area coefficient(all sections)  0.950

% This may seem confusing, but as we have stated before, all known sources of such data (software
output, experimental data, tabulated 2-D coefficients, etc.) have been computed or measured relative to a
coordinate system in which the z-axis is positive upwards.
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FIGURE 5.15 Body plan of barge. Dimensions in meters.
To proceed further we need to define the wave condition. Let’s assume a
wavelength of 50m and a height of 1.25m (and assume that the water is “deep”).

We can now compute the following quantities:

TABLE 5.5 Calculated quantities

Quantity Equation Value
k 2n/\ 0.126 m™
® dispersion 1.11 rad/sec
T 2n/® 5.66 sec
GM7 2.37) 2.73m
L m-gyradius® 14,430,000 kg-m’
Cus (2.33) 31,540,000 kg-m
o4 (estimated)* (5.139b) 1.2 rad/sec
A (5.154c¢) 0.93
T4 (estimated) 27/ 004 5.28 sec
kA 0.0785 rad =4.5°

*using Ayy(®) from Table 5.6 below

Notice that the predicted roll period is quite short; this is generally true for barges,
which are usually wide and shallow (resulting in higher values of S,,/V,) relative to
ships. Since the wave period is close to the roll natural period, we expect relatively
large roll motions. Figure 5.12 indicates that the magnification factor should be
around 5, assuming that the damping is around 5% of critical. This corresponds to
a roll angle of 22.5° in the present example. It is likely, however, that the actual
value will be lower since the long wave approximation for the exciting moment
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cannot be expected to be valid at this relatively high frequency; also, the nonlinear
roll damping will probably reduce this further.

The added mass and wavemaking damping coefficients can be obtained using
the Lewis form charts, Figures 5.6 and 5.7, and the exciting forces computed using
these results and Eqgs. (5.130) and (5.134) as in the previous example (in this case
we do not need a second set of added mass and damping values since w, = ©). Note
that one of the strip theory restrictions on wavelength is not met since A > L.
However, we know that strip theory yields the correct low-frequency results so strip
theory shouldn’t be too bad.

The quadratic roll damping coefficient can be estimated using Eq. (5.158). To
avoid having to deal with a nonlinear equation, the equivalent linear roll damping,
Eq. (5.159), will be used as mentioned above.

Computed values of the added masses, damping coefficients, and wave exciting
forces are given in Table 5.6. Before solving for the motion amplitudes as we did in
the previous example, we need an initial estimate of the roll amplitude. Based on
the discussion above, a value of 15° = (.26 radians will be chosen. The equivalent
roll damping is then

By =B, +§—°’ $oB 442 = 6,270,000kNm
T

which is only 3.5% higher than the linear component alone. Thus the nonlinear
contribution does not appear to be very significant in the present case (remember
that this is based on the initial guess value for the roll amplitude).

TABLE 5.6 More calculated quantities

Ay 789000|kg X, real -835000{N/m
B, 1402000(kg/sec X,imag | 3121000|N/m
Ay, -1255000(kg-m X, real -441000|N-m/m

By, | -2391000[kg-m/sec |X,imag | -750000|N-m/m
Ay | 7842000]kg-m’
By | 6055000(kg-m’/sec
Buyo | 871000[kg-m’

We can now plug the coefficients into Eqs. (5.171) and solve for the complex
motion amplitudes:

Xoo/ A = 0.034 — 0.9721 meters/meter
Xos/A = —0.036 + 0.317i radians/meter
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or

X2 =~ 0.61m 82 =-88.0°
Xoq4 = 11.4° 84 = 96.5°

We can now carry out a second iteration, re-computing the equivalent linear roll
damping with ¢y = 11.4°; the results are:

X2 = 0.61m 62 =-87.8°
Xoa = 11.5° 64 = 96.4°

which is (to quote the host of a popular television quiz show) our “final answer”.

This amount of rolling is probably not acceptable for most applications. If
these wave conditions are typical for the operational area, the options are to change
the natural roll period or to provide more roll damping. Changing the roll period
requires either modifying the hull design (e.g., changing the beam) or altering the
weight distribution (changing KG and/or I,,). This may not be feasible due to other
constraints on the design. It is usually far easier to increase roll damping, and the
simplest method is to install bilge keels.

The bilge keels are generally oriented at 45° to the baseline to maximize the
projected area normal to the flow induced by rolling. The span is generally limited
by a requirement that the bilge keels cannot extend below the baseline. In the
present example, the maximum span would then be just over 0.5m. We will use Eq.
(5.158) to predict the impact of adding a pair of 0.5m x 40m bilge keels to the
barge.

Referring to Figure 5.14, we find that for

3‘&=£=o.0125; Cp =0.766
Ly
the bilge keel efficiency is 0y ~ 113. Plugging into Eq. (5.158), we find
Bua, = 20,649,000 kg-m?’,

substantially higher than the value for the unappended hull. The equivalent linear
roll damping becomes

Bas. = 7,750,000 kg-m*/sec
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using an estimated roll amplitude of 5°. This is an increase of about 27% relative to
the unappended case. Thus we expect a reduction by a factor of about

1. 0.89

§1.27

in the roll amplitude, based on Eq. (5.156). This means that our estimate of 5° has
to be revised upwards; however this in turn increases the contribution of B44,2 to
the roll damping. After a couple of iterations we find

Xo2 = 0.62m 8, =-93.2°
Xo4 = 8.8° 5= 98.2°

The roll amplitude is reduced by about 24%.

6. Roll stabilization devices

Bilge keels are the simplest of the roll mitigation devices. They are quite effective
at reducing roll motions near resonance, where the most severe motions generally
occur. However they add to the resistance of the ship, and are vulnerable to
damage. There are numerous of other devices currently in use that are more
effective, at the penalty of increased complexity. We will briefly introduce each of
these here.

6.1 Passive devices

Passive devices are advantageous because they have no moving parts and require no
power or control systems for operation. Popular passive devices in addition to bilge
keels include free surface tanks and U-tube tanks (Figure 5.16). These anti-roll
tanks are based on the fact that at their resonant frequency, the roll moment applied
by the tanks to the ship is 180° out of phase with the roll velocity and thus increases
the total roll damping. A disadvantage of these anti-roll tanks is that they reduce the
roll restoring moment, like any tank that has a free surface. Imagine that the entire
hull was filled with water: The hydrostatic pressure on the inner surface would
cancel that on the outer surface, resulting in no net hydrostatic force or moment. If
only a portion of the ship is “flooded”, the effect is of course reduced
proportionally. This effect leads to increased rolling due to the stabilization device
at low frequencies, which may be a limiting factor on the size of the tank.
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FIGURE 5.16 Free surface (left) and U-tube passive anti-rolling tanks

The free surface or flume tank consists of an open rectangular duct running
athwartships. When the ship rolls, the fluid (usually but not necessarily water)
sloshes back and forth. The fundamental frequency of the fluid motion in a
rectangular tank is

h
0, = EEtanh(” ‘)z—g,/ght (5.172)

where b and h; are the tank width (athwartships) and water depth; the approximate
form is good for h; << b, which is the usual case. To be effective, the damped
natural frequency of the tank must be equal to that of the ship (the undamped
natural frequency of the tank should thus be somewhat larger than that of the ship,
because the tank fraction of critical damping is generally larger than the value for
the ship). Ignoring this small difference and setting the tank width b equal to the
beam of the ship allows us to estimate the required depth of the water in the tank:

4B2
h, ~

& 3 (5.173)
gTo,

Combining this with our back-of-the-envelope estimate for the roll period, Eq.
(5.157), we obtain the following simple result:

hy =~ 0.78GMy (5.173a)
The fore-and-aft dimension of the tank L, is limited by the maximum acceptable

reduction of the roll restoring moment, which is generally expressed as a “free
surface correction” to GMy. The reduction in the effective metacentric height is

5GM = 2t (5.174)
pV
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where p, is the density of the tank fluid and i, is the tank transverse waterplane
moment of inertia. Passive tanks usually have a ratio of u = 6GM1/GM7t of 0.15 to
0.30 (Faltensen [1990]) with a value of 0.2 representing a “typical good design”
(Beck et.al. {1989]). For a rectangular tank,

L’
12

1, =

so that the tank length is given by

12v

L, =pGM (5.175)
&b3
p

Eq. (5.174) can also be re-written in terms of the ratio of the mass of the tank
liquid to that of the ship:

2
5GM, =p-GM, =2 B (5.176)
m

t

Assuming a full-beam tank we can use the estimate for h, from Eq. (5.173a) and p =
0.2 to find

2
&No.m(GMTj
m B

A typical value for the mass ratio is 0.02.

Relative to location, the tanks are more effective the higher they are located in
the ship.

U-tube tanks are somewhat more attractive because of their reduced free
surface area. These tanks can be open at the top, as in Figure 5.16, or they may be
connected by an air duct. For the open U-tube, a simple theory for computing the
tank moment is outlined by Lloyd [1998] (such a theory is apparently unavailable
for the seemingly simpler flume tank). For a unit consisting of two rectangular
prismatic tanks connected by a transverse rectangular duct, all having longitudinal
dimension L, the result is
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2
Cy 1-2te p 2
t
Ay 2KtAt
; tang, = ——L—L

‘F4ti=¢
\/(1—At2)2+4»<t2/\t2 1-A¢

(5.177)

where A, and «, are the frequency ratio (w/m,) and fraction of critical damping
associated with the oscillation of the fluid within the tank,

2ghy by
o \/b,bc +2h,hy” Y 2ac,

and ay and a, are coefficients of the tank moment in phase with the tank and fluid
acceleration, respectively; by is the damping coefficient of the tank fluid and cy is
the component of the moment in phase with the fluid displacement. The other
quantities represent tank dimensions, identified on Figure 5.17.
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FIGURE 5.17 Dimensions of simple U-tube anti-roll tank

The quantities ag, a4 and ¢ can be approximated as follows (Lloyd[1998]):

24, 2 2
ptbr bc Lt bc hr ptbrbc Lt
= +—Llba, =t "t(h, + 5.179
Ay ) 2hy b, Ay 2 ( rd) ( )

— ptgbrbcht

. ; (5.180)

Typical results are shown on Figure 5.18, where we have plotted the tank
moment, normalized using the zero-frequency value, and phase as a function of



5. Wave-Induced Forces on Marine Craft 295

frequency. Note that the tank moment predicted using Eq. (5.177) increases without
bound (~ A’) at high frequencies; this is not realistic due to a variety of nonlinear
effects. It is recommended that this formulation only be used up to a frequency
ratio of 2 or 3.

Note that the hydrostatic term ¢, represents the reduction in the total roll
restoring moment due to the free surface: If the tank is rolled to starboard (for
example), the fluid level increases in the starboard side of the U-tube, resulting in a
hydrostatic moment to starboard. The reduction of effective metacentric height is in
this case just

$GM ;. =% (5.181)
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FIGURE 5.18 U-tube tank moment amplitude and phase vs. frequency

Both types of anti-roll tanks have a limiting roll angle, above which they lose
effectiveness (this is known as “saturation”). One limit is reached when the tank
fluid hits the top of the tank, which occurs when

_2(H-h)

: (5.182)

¢
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where h = h, for the flume tank, and h = h, and b = b, for the U-tube. For the U-
tube, however, the effectiveness can be reduced before this point is reached because
the fluid may have already drained from the upper side; this occurs when

£>2
h

r
and the limiting value is then

2h,
b,

o= (5.183)

Note that in the latter case the saturation angle can be increased by raising the tank
water level, but that this has the opposite effect in the former case (in this case the
tank height H must be increased).

6.2 Active devices

Active roll control devices are generally more effective than passive devices, at the
expense of greatly increased mechanical and electronic complexity. Active devices
include active anti-roll tanks and fin stabilizers.

Active anti-roll tanks are similar in construction to the U-tube tank, except that
they incorporate a pump to move the water (as well as sensors to measure the roll
angle). This system is effective at a wider frequency range than the passive tank,
and requires less water than a comparable passive tank due to more efficient
movement of the water. However the power required to attain significantly better
performance than the passive system is generally considerable, and the time lag
between starting the pump and moving the desired amount of water limits its
effectiveness.

The most effective stabilization method employs active fins. The symmetrical
pair of fins is generally located on the sides of the hull near the turn of the bilge; the
fins are deflected in opposite directions to produce a roll moment. The fins are
usually made retractable; they are drawn in for docking maneuvers and during
transits in calm seas to reduce resistance. Besides this added resistance, another
disadvantage of the fins is that they are ineffective at low speeds, because the force
they produce is proportional to the square of the local flow velocity. However,
except for vessels that operate exclusively at zero or low speeds, these
disadvantages are outweighed by the large stabilizing moments that can be
generated at speed with much lower phase lags than those of tank stabilizer systems.
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Fin stabilizers can be characterized by their “wave slope capacity” ¢, which
corresponds to the maximum heel angle that the fins can generate at the service
speed of the vessel. Thus the fins are capable of producing the roll moment
required to maintain zero roll in waves having a maximum slope of ¢.;. A typical
value is 5° (Bhattacharyya [1978]). This permits the size of the fins to be estimated:
The roll moment produced by the two fins is

F,; =pU A:CL Ry (5.184)
where Uy, Ay, Cyy, and R; are the local flow velocity, fin planform area (one fin), lift

coefficient, and radial distance from the x-axis to the center of pressure on the fin.
The restoring moment at a heel angle of ¢ is

pgGM Vi, (5.185)

Setting Eq. (5.184) equal to Eq. (5.185) and solving for the fin area yields

M,V
A = QZT_“’w_s (5.186)
U CreRy
which can be written in non-dimensional form as
A C GM
B—gz B L (5.186a)

where we have used an approximation for the fin radius,
R{ ~ (B2Y + T

For the 170m ship considered in the example in Section 5.1 above, at a speed of 20
kt, with a GMr of 1.5m and ¢, = 5° we find A;/B® ~ 0.032 or A; ~ 16.8n7,
assuming a maximum lift coefficient of 1.0. It is somewhat counterintuitive that the
fin area is proportional to GMr, that is, a more stable vessel requires larger fins than
a less stable one; this is of course due to the fact that it is easier to change the roll
angle of the less stable ship.

Another method of active control is rudder stabilization. Here the rudder is
used to generate the stabilizing moment. For this method to be successful, the
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center of pressure on the rudder must be far enough below the roll axis that a
significant roll moment is induced by rudder deflection. In addition, high rudder
rates are generally required. This method is most suitable for small, high-speed
craft, which have rudders mounted low on the hull (possibly extending below the
baseline); such craft heel into turns (at least initially) because of the substantial roll
moment generated by the rudder. Coursekeeping ability is generally not affected
since the ship will respond more quickly in roll than in yaw (roll inertia is much
lower than yaw inertia). This method obviates the need for dedicated roll control
hardware (with the exception of the roll sensor and computer associated with the
control system), at the expense of more robust steering gear. A disadvantage is that
like the active fins, the rudder loses effectiveness at low speeds.

7. Motions in Irregular Waves, Frequency Domain

In this Section we will apply linear system theory outlined in Section 1 above, to
find the spectra and statistics of the output (vessel responses). In the time domain,
of course, we already have the necessary tools; see Sections 2.5 and 3.4 above for
radiation and wave exciting forces, respectively. The wave exciting forces depend
on the time history of the wave elevation, which can be calculated from the wave
spectrum using Eq. (4.125), for example. However if statistics of the responses are
of primary interest, and only wave-induced forces are applied, it is much more
efficient to do the computations in the frequency domain; these computations
amount to first finding the response spectra and then finding the moments of the
response spectra, as will be shown below.

The relationship between the spectrum of the ship motions and that of the
incident waves, under the assumption of linearity and time-invariance, was derived
in Section 1 above:

Sy, (©,7)=[H(o,x)S 4 (0) (5.187)

where S and S, correspond to input (wave) and output (motion) spectra. H(w) is
the frequency response function or “Response Amplitude Operator” (RAQO), which
is just the amplitude of the response per unit wave amplitude in the frequency
domain. Note that Eq. (5.187) provides a means to compute the spectrum of any
process that is linearly proportional to the wave height, including motions,
velocities, accelerations, and forces computed using the linear theory described
above.

Eq. (5.187) can be written in the more general form
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H

*
xf
Sxixj(m’X)zH*((Da)(Bﬁ'(m)HT(ﬂ)’X): S/f{}[xlf Hxsf} (5188)
H *
x6f

where * indicates complex conjugate; the frequency and heading dependence has
been omitted from the functions on the right-hand side for convenience. Here
the SXixj represent cross-spectral densities between the output quantities for i # j.

The input-output cross-spectral density can also be found, using Eq. (5.8):

More of interest than the spectra themselves are the statistics that can be
computed from them. Recall that the area under the spectrum (which we referred to
as the mean square spectral density in Chapter 4) is equal to the mean square of the
process. Furthermore, we can compute other interesting statistics from this and the
other moments of the spectrum, defined in Eq. (4.95):

m, = [o"S(Xo (5.190)
0

In particular, we can use Eq. (4.110) to compute the maximum expected value of
the output in N cycles, and Eq. (4.105) to calculate the average of the 1/n® highest
peaks (assuming a narrow-banded output process). These statistics are much more
useful to characterize seakeeping performance than the frequency-domain results,
because they account for the full range of wave amplitude and frequency
combinations present in the actual seaway. Seakeeping specifications for new ships
(if they exist at all!) are generally given in terms of motion and/or acceleration
statistics. It must be remembered, however, that the spectrum is a short-term
characterization of the seaway. To obtain statistics for longer periods (such as the
design lifetime of a ship) we must consider the effects of all spectra (i.e.,
combinations of significant waveheight and modal period) expected to be
encountered during this period, each weighted according to its likelihood of
occurrence,

An example of a computed heave motion spectrum for a large cargo ship is
shown on Figure 5.18. The sea is represented by a Bretschneider spectrum with a
significant waveheight of 4m and a modal period of 9.7 sec (this is a high Sea State
5); the motions are for beam seas at zero speed. The response spectral ordinate is
computed by multiplying the wave spectral ordinate by the square of the RAO at
each frequency as indicated by Eq. (5.187). Notice that the peak of the RAO is
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nearly coincident with that of the wave spectrum, which is undesirable but not
easily circumvented: Eq. (5.20) shows that for a given displacement, length, and
beam (quantities usually determined by requirements unrelated to seakeeping), the
heave natural frequency is proportional to the square root of the waterplane area
coefficient. It is doubtful that this coefficient can be changed enough to have a
significant effect (without changing to a totally different hullform). Notice also that
the peak of the heave spectrum does not coincide with those of the wave spectrum
or motion RAO. If the wave spectrum and RAO maxima are close together, the
peak of the output spectrum will be somewhere in between; if they are separated,
the output spectrum will exhibit two peaks.
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FIGURE 5.19 Example of wave and response spectra

Carrying out the integrations in Eq. (5.190) numerically, we obtain for the first
five moments of the heave spectrum:

my 0.926m"

m;  0.628 m%/sec

m,  0.468 m¥/sec?
m;  0.348m%sec’

m, 0.268m%sec

The RMS heave is thus ¥0.926 = 0.962m. The bandwidth of the output spectrum
can now be computed using Eq. (4.97):

2

m
g=1-—2—=0.117
momy
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indicating a narrow-band process, as is evident from Figure 5.19. We can now
apply Eq. (4.107) (which was obtained from Eq. (4.105) with confidence to predict
the average heave amplitude,

Xo3 =1.25m, =1.20m

for example. It has become common to refer to the “significant single amplitude”
of motions; in this case

X1/3 = 2,'1110 = 1.92m

(we have left out the subscripts 03 denoting “heave amplitude” for clarity); however
it is not clear what the physical significance of “significant heave amplitude” is.

Eq. (5.10) gives the velocity and acceleration amplitudes in terms of the
frequency of the motion and the displacement amplitudes:

fuoil = @xoi; 2l = &’xo (5.191)

Thus the velocity and acceleration RAO’s can be computed from the displacement
RAO’s as follows:

H,  =oH, ;; H; =0’H,, (5.192)

Looking at Eqgs. (5.190) and (5.192) it is apparent that if S is a motion spectrum, m,
and m, represent the corresponding mean square velocity and acceleration; i.e.,
these are the “zeroth moments” of the velocity and acceleration spectra. So we can
apply the expressions above to find statistics of velocity and acceleration as well as
of displacement.

7.1 Encounter spectra

The expressions above are presented in terms of the wave frequency ®. However,
the ship responds at the encounter frequency as we discussed in Section 3.5.1 above,
so in some cases it might be useful to work in the encounter frequency domain.
Quantities measured on a moving model or ship, for example, are necessarily in the
encounter domain. We can determine the RMS motions from the area under the
encounter spectrum; since it can be shown (see Eq. (5.113)) that

S(w)do = S(w.)dw, (5.193)
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it is apparent that the areas under the spectra are the same in the wave-frequency
and encounter-frequency domains. This should come as no surprise: The incident
waves (for example) have the same RMS height whether they are measured by a
stationery buoy or by someone on the moving ship.

Caution must be exercised in passing from the encounter domain to the fixed or
wave-frequency domain, in stern seas, due to the multi-valued nature of the
encounter frequency at these headings. As shown in section 3.5.1, in stern seas, if

W, > /4

(Q is defined in Eq. (5.111a)), waves having three distinct frequencies have the
same encounter frequency. In this case we should write

S(o,)= Y so(o.)) (5.194)

=1

where the o(w,); are the three wave frequencies corresponding to the encounter
frequency w,. Thus we cannot transform the measured encountered spectra to the
wave-frequency domain since it is impossible to determine the contributions at the
various wave frequencies which may correspond to the same encounter frequency.

We can transform from the wave frequency domain to the encounter frequency
domain, however. This would be required in order to compare theoretical
predictions to measurements, for example. The usual procedure is to divide the
wave frequency domain into three regions, so that the corresponding value of the
encounter frequency is unique in each region; see Figure 5.20.

The incident wave spectrum is next partitioned in the same way; within each
region, the transformation given by Eq. (5.113) yields a unique value of the wave
encounter spectrum. The three values are summed at each encounter frequency to
obtain the encounter spectrum. Based on Figure 5.20 and the transformation
equation, we expect two salient differences between the wave and encounter
spectra:
¢ Since we must divide the wave spectrum by the slope of the curve in Figure

5.20, the value of the encounter spectrum will be infinite at © = Q/2 (o, = /4).
s The value of the encounter spectrum at ®, = 0 will usually be nonzero because

of the contribution at wave frequency o = Q.

The first point should not be cause for alarm since the area beneath the spectrum
remains finite (and equal to the mean square of the process) as stated above.
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FIGURE 5.20 Frequency regions for stern seas (€2>0)

Figure 5.21 shows the partitioning of the wave spectrum used in the previous
example (Figure 5.19) for a case of following seas (y = 0) with a ship speed of 16
knots; in this case Eq. (5.111a) gives Q = 1.19. The corresponding encounter
spectra for the three regions, and the total encounter spectrum, are shown on Figure
5.22. It can be seen that all three regions contribute at encounter frequencies below
Q/4 whereas only Region III contributes above this encounter frequency.

To obtain the response spectrum in the encounter frequency domain, we can
employ Eq. (5.187); however we must handle the three regions individually and add
them up as before:

3 Hy (o(o, stﬂ(m(we)-,x) (5.195)

Note that we really need the RAO in the wave frequency domain in order to carry
out this computation, since the three regions must be transformed individually
before the summation. Thus it is more straightforward to compute the output
spectrum in the wave frequency domain first, and then convert to the encounter
domain using Eq. (5.120).

Since the vessel oscillates at frequency ., to compute velocity and acceleration
we must re-write Eq. (5.191) using the encounter frequency:

il = 0eXoi; a0 = e X0 (5.196)
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with corresponding changes in Eqs (5.192). Similarly, we must compute the first
and higher spectral moments in terms of the encounter frequency:

m, = Ime“S(me)dcoe (5.197)
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FIGURE 5.21 Wave spectrum showing regions for encounter spectrum calculation
forQ=1.19

5

Stwe)
4
3 B
2 -
1 4

I I TOTAL
o+ : : = r
0.0 02 Y4 g4 06 08 1.0
o, rad/sec

FIGURE 5.22 Wave encounter spectrum corresponding to Figure 5.21, for 16 knots
in stern seas
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Since analytical expressions for the output spectra are seldom (if ever) available,
these integrals must be carried out numerically. This is problematic in the
encounter frequency domain in stern seas because of the singularity at o, = /4;
however, we can circumvent this problem by writing Eq. (5.197) in terms of the
wave frequency and making use of Eq. (5.193):

m, =°](o“[1— U,

0

cos xj a))d(n Im (1 ——] m)dm (5.198)
which can be written explicitly in terms of the input (wave) spectrum and RAO:
© o n )
m, = |o"|1-—| |H,(0) S4(o)}o 5.198a

This integral can be carried out numerically in a straightforward manner. Thus
moments of the output spectra can be computed without explicitly transforming to
the encounter frequency domain.

For short-crested waves (see Section 4.1.1, Chapter 4), we must incorporate the
“spreading function” G(®,Y), and integrate over y; remembering that Q is a function

of heading:
2no ( ® n
= }lo®1- ——)
Oj Oj Qlx)

It is important to realize, however, that this wave frequency formulation is valid
only for computation of moments; the integrand in the expression for my (for
example) from Eq. (5.198a) is not the encounter spectrum, but does have the same
area. In addition to avoiding problems with the singularity in the integrand, this
formulation also circumvents complications relating to the range of the x-
integration: Since the encounter frequency is a function of the heading, and the
range of encounter frequencies is limited in Regions I and II, the corresponding
heading range is also limited and is a function of the encounter frequency.
Furthermore, since the short-crested seaway will generally also contain components
with headings in the range 90° < y <270° (bow waves), a fourth “region” is required
(recall that there is a unique encounter frequency for each wave frequency in this
region; see Section 3.5.1 above). The process is sufficiently complicated that
“estimates of the virtual response spectrum in short-crested seas are virtually never
done” (Beck et.al. [1989]). Further details can be found in Price and Bishop [1974].

H,, (0), szsﬁf (m)G(co, x)d(ndx (5.198b)
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7.2 Statistics of maxima

We have mentioned that the moments of the response spectra can be used with Eq.
(4.110) to compute the expected maximum value of the output in N cycles. The
number of cycles would be determined from the duration D in which the spectral
moments remain essentially constant:

N=— (5.199)

c

for example, where D is in seconds and T, is the average period between successive
maxima. However, the expected (or most likely) maximum may not be appropriate
for design purposes because the probability of exceeding the most likely extreme
value is high. For a Rayleigh distribution of peaks (narrow-banded spectrum) and a
large number of cycles, it can be shown (Ochi [1973]) that

P[X > Xmax] = 1 - €' =0.632

which is “better than even”; i.e., it is “more likely than not” that the most likely
extreme value will be exceeded (due to the shape of the Rayleigh probability
density function)!

For design purposes it is better to use the value which will be exceeded with a
given (lower) probability:

P[X > Xmax, dersign] =a (5200)

where o is a small number. The likelihood that Xy gesign Will 70t be exceeded is
thus (1-ot), which is sometimes referred to as the “confidence” associated with the
design maximum value. Ochi [1973] provides an approximate formula for the
design maximum value that is good for “small o” and for € < 0.9 (i.e., the vast
majority of cases of practical interest):

1-¢’ 2N

1+41-g? ©

Figure 5.23 shows the ratio of the design maximum value to the RMS value as a
function of the number of cycles, in the narrowband limit, for several values of a.
The most likely maximum is also shown.

x 2m, In| (5.201)

max,design —
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The most likely and design maximum values can be expressed as functions of
the duration of the sea state using Eq. (5.199). However, if we define N as the
number of maxima having positive values (negative maxima are generally not of
much interest), something interesting happens. Ochi [1973] gives an expression for
the expected number of positive maxima per unit time:

N-pos_ 1 1+\/1 g’ ’mz (5.202)

The total number of positive maxima would thus be
Npos =DN pos

Inserting this in Eq. (5.202), we find that the bandwidth cancels out:

X design = szo mLL /ﬂ] (5.203)
2o | my

Thus the design maximum value is independent of the bandwidth of the response
spectrum. Like Eq. (5.201), this expression is valid for small values of a. In
addition, as pointed out by Dalzell (Beck et.al. [1989]), Eq. (5.202) is applicable
only under the assumption that successive positive maxima are statistically
independent, which is dubious for processes having narrow-banded spectra.
However, he goes on to say that the effect of violating this assumption is to “inject
some conservatism” into the prediction, typically amounting to less than 10% even
for narrow-banded processes.

As an example we can use the heave spectrum that we computed at the
beginning of the present section (Figure 5.19). The spectral moments are tabulated
on Page 301. To find the design maximum value of heave for a duration of 1 day,
for example we plug D = (24)(60)(60) = 86,400 sec and the spectral moments into
Eq. (5.203); results are shown on Figure 5.24 as a function of confidence (1-a).
Specific values are tabulated below; the most likely maximum value is 4.12m. Ochi
recommends a value of o = 0.01, based on comparison of observed extreme values
with predictions using a range of o’s.
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FIGURE 5.23 Design maximum value as a function of number of cycles and confidence
parameter o

Results for Design Maximum Heave corresponding to
the heave spectrum shown on Figure 5.19
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FIGURE 5.24 Design Maximum Heave for 24 hour exposure, corresponding to
Heave Spectrum shown on Figure 5.19.
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This approach is obviously applicable only to a single sea state, heading, and
ship speed. For design purposes, we must assess the most severe responses,
considering the effects of all sea states, speeds and headings that will be
experienced by the ship or structure in its lifetime. There are (at least) two basic
methodologies, known as the “long-term” and “short-term” approaches.

The long-term approach is similar to the method described in Chapter 4,
Section 5.1, for prediction of the distribution of significant waveheight based on
occurrence data; however the present problem is more complex because we must
account for the expected variations of heading and speed. The probability density
function (PDF) for long-term response is given by Ochi [1978] in the following
form:

Z Z Z Zpipjpkpmnijkmfijkm (X)

ik

2202 2 PiPPiPm i
1 m

i k

f(x):

(5.204)

where

pi = weighting function (fraction of time) for sea state

p; = weighting function for wave spectrum (modal period,
spectrum shape)

P« = weighting function for heading in a given sea

Pm = weighting function for speed in a given sea and heading

and

fijtm = PDF for short-term response
Njm = average number of responses per unit time = 1/ T,

T, is the average zero-crossing period computed from the response spectrum,

m
=2n |—8
m,

T

z

The factors p; and p; can be found in occurrence tables for the design site or route;
P« and p,, are functions of sea conditions as indicated above. The total number of
cycles in the lifetime of the ship or structure is
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N=Dx> > > > p;p;PiPmNijkm (5.205)
i j k m

where D is the total exposure duration. The long-term cumulative distribution
function F(x) is found by integrating Eq. (5.204). For large values of N,

1

N—
1—F(X max )

(5.206)

which can be solved for the most likely extreme value. The design maximum value
can be determined from

N__ 1 (5.207)
o 1-F(Xmax )

Alternatively, the expected or design maximum response can be evaluated only
in the highest expected sea state identified using the methods of Chapter 4. In this
case we can use Eq. (5.203), with the duration D equal to the total exposure time to
the given sea state at the worst-case speed and heading. This is referred to as the
short-term approach since we are only considering the response in a single sea state.
Ochi [1978] argues that in addition to being much simpler than the long-term
approach, the short-term method yields superior results. This is due to the fact that
the form of the long-term distribution is determined largely by the data in mild seas,
which constitutes the preponderance of available information, but which is not
directly relevant to the extreme value. However for studies of fatigue performance,
for example, the cumulative effect of all loading cycles must be considered
regardless of their magnitude, so that only the long-term approach is appropriate.

7.3 Caveats

The formulas presented above are convenient “short cuts” for calculation of
response spectra and associated statistics, but it must be kept in mind that they are
applicable under the assumption of linearity of the responses (i.e., the responses are
linearly proportional to wave elevation). As we have stated above, this
methodology yields useful predictions for a wide range of conditions; however, the
results for extreme conditions must be used with caution. Important nonlinear
effects on the encounter frequency motions (“first-order motions”) include viscous
damping and variations in the hydrostatic and hydrodynamic forces and moments
due to significant changes in the submerged portion of the hull; i.e., the motions
cannot be regarded as “small” with respect to the wave elevation.



5. Wave-Induced Forces on Marine Craft 311

The latter effects are particularly significant for hullforms with overhanging
sterns or a large amount of flare, since in those cases even moderate motions can
result in large changes in the submerged hull surface. However, these effects are
mitigated to some degree by the fact that the observed wave periods generally
increase with increasing significant wave height, so that the average wave steepness
does not change much. In fact it has been shown by Adegeest [1997], Kring et.al.
{19971, Miyake et.al. [2001], and others, that nonlinear effects on heave and pitch
motions are not significant for conventional hullforms.

We know that roll motions, on the other hand, are strongly affected by
nonlinear viscous damping; this can be accommodated in the linear theory by the
“equivalent linear roll damping” method discussed in Section 4.3 above. However
the roll restoring moment becomes nonlinear above a roll angle of 20 or 30 degrees,
requiring modification of Eq. (2.36). A typical “righting arm curve”, where the
“righting arm” is defined as the roll restoring moment divided by displacement, is
shown on Figure 5.25. The slope of this curve at the origin, multiplied by
displacement, is equal to the magnitude of the linear roll restoring rate C,. The
curve usually becomes somewhat steeper with increasing roll angle at first, because
of the small increase in waterplane area. However a point is eventually reached
when the center of buoyancy cannot move further from the centerplane and the
righting arm must decrease®™; this happens when the deck edge becomes submerged.
At this point the righting arm curve rapidly turns downward eventually reaching
zero at the “point of vanishing stability” (which, if reached, will probably also be
the “point of vanishing ship”). Thus when very large rolling motions are expected,
such as in evaluation of survivability, we must consider nonlinear hydrostatics.

25

20 A

Righting arm, m

-05

0 20 40 [~ 80
Roll angle, deg

FIGURE 5.25 Typical righting arm curve

“ For a simple rectangular prismatic barge, we can show that there is a second term in the restoring
moment expression that reinforces the linear term, proportional to sing-tan’¢.
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Another source of nonlinearities is in the forces applied by mooring lines and
fenders. Fenders and short mooring lines are highly nonlinear since they apply a
force in only one direction unless they are pre-tensioned (not the usual case). And,
the constitutive materials (foam rubber, nylon) have nonlinear force - deflection
behavior. Thus problems involving these types of restraints should be solved in the
time domain, where it is easy to incorporate nonlinear forces of this type. Long
mooring lines, such as anchor chains, are governed by the highly nonlinear catenary
equations; however in this case the force - motion relationship can be linearized
about the equilibrium position for evaluation of small-amplitude motions (Faltensen
[1990]).

There are other types of nonlinearities, which produce forces at frequencies
other than the wave or encounter frequencies. These include mean drift forces, and
sum- and difference-frequency effects, which are “second-order effects” because
they are proportional to the square of the wave amplitude and involve two
frequencies (which happen to be equal in the case of mean forces). These effects
will be discussed in Section 9 below.

8. Derived Responses

Solution of the equations of motion as writien above yields the motions of the
reference point on the moving body. We are often more interested in motions at
some other point on the body, such as the bridge on a ship or the helicopter landing
area on a platform. In addition, relative motions between the wave crests and
certain points on the body are of extreme importance in design: For ships, water
shipping and propeller emergence, for example, depend on relative vertical motions,
and slamming depends on relative vertical velocity; for platforms, designers try to
minimize wave contact with the deck cross-structure.

8.1 Motions at a point

Recall that the location of a point P on a moving body relative to a fixed
coordinate system is given by

R(P) = R + p(P) (5.208)

where R is the location (position vector) of the origin of the body axes and p(P)
gives the location of the “point of interest” relative to this origin. Since the
components of p are usually known constants relative to body axes (we can regard
the ship or structure as a rigid body in most seakeeping analyses), we need to apply



S. Wave-Induced Forces on Marine Craft 313

the transformation of Eq. (1.7) to find the location of the point relative to the fixed
(or steadily translating) £ng system:

R(P) =R + [T] p(x..,2) (5.209)

The transformation matrix T is given by Eq. (1.8), which simplifies to the form
given in Eq. (2.21) for small-amplitude motions.

The velocity and acceleration of point P are found by differentiating Eq. (5.209)
with respect to time, as described in Section 3 of Chapter 1. The velocity is just

U(P)=U +Q x p(P) (5.210)

where Q is the angular velocity vector, usually resolved in body axes. The
expression for acceleration is a little more complicated due to the presence of
centripetal and Coriolis accelerations; see Eq. (1.20). Assuming that the point of
interest is fixed relative to body axes, this becomes

U(P) = U +Qx p(P) + Qx(Qx p(P)) (5.211)
The last term can be neglected for small-amplitude motions.

In the frequency domain, the linearized expressions (i.e., the small-amplitude
forms of the transformation matrix and Eq. (5.211)) can be used to find the RAO’s
of the points of interest. It is important to keep track of the phases of the various
motions in these calculations; recall that the complex representation of the RAO
does this automatically. For example, Eq. (5.210) gives the vertical velocity of a
point with body-axes coordinates (x,y,z) as

w(P) = w + py — qx
so that the RAO for the total vertical velocity at P would be
Hw(P)/(OJe,X) = meHzf((DeaX) + y(DeHw((De,X) - X(DeHe,/((De’X)
where we have used Eq. (5.192) to express velocity RAQ’s in terms of those for

displacements; z, ¢ and © denote heave, pitch and roll displacements; we again
emphasize that the RAO’s are complex quantities.
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8.2  Relative motions

The term “relative motions™ refers to the motion of a point on the body relative to
the water surface; generally, only relative vertical motions are of interest, so the
following discussion will focus on these. To find the relative vertical motion, we
must subtract the wave elevation at the point of interest from the total vertical
motion there:

z(P)=z+¢gy—-O0x—-f(x,y) (5.212)

relative to seakeeping axes (z pointing up); relative to our standard (maneuvering)
axes we should write

z(P) =z + py - Ox + F(x,y) (5.212a)

because the positive sense of the wave elevation f is always taken to be upwards.
Strictly speaking, f should represent the total wave elevation, including the
diffracted and radiated wave systems as well as the deformation of the free surface
due to the steady velocity of the body. The elevation of the diffracted and radiated
waves can be evaluated from the total velocity potential at the point of interest (at
the undisturbed free surface level) using Eq. (4.9). The total potential is given by
the sum of Egs. (5.56) and (5.91). For points on the body we have to evaluate these
potentials anyway (with the exception of the contribution of steady motion, ¢)
when we solve the radiation and diffraction problems; however, notice that in the
radiation problem we obtain the potential for unit motion amplitude. Thus to obtain
the total radiation potential we have to go back and multiply by the responses; see
Eq. (5.56a). Perhaps for this reason, the values are usually not available in the
output of commercial software packages, and the waves generated by ship motions
and diffraction are generally neglected. Similarly, the ship motion should include
the mean heave and pitch (sinkage and trim) induced by the forward speed, which
are also usually neglected.

In terms of RAQ’s in the frequency domain, Eq. (5.212) becomes

Ha f(00,%) = H, (@) + ¥ Hyr(00,3) — X Hgp(@e,x) — €75 (5.212)

where again you are reminded that the RAO’s are complex. The last term accounts
for the phase of the wave at the point of interest. Note that this formulation yields
only the time-varying (sinusoidal, zero mean) portion of the relative motion; the
mean vertical distance from the still water level to the point of interest (e.g.,
freeboard or airgap) must be added to give the total distance.
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An example of a relative motion RAO is shown on Figure 5.26 below, at the
bow of a 200m ship moving at 16 knots in head seas. The behavior in the frequency
domain is almost the reverse of what we are used to for absolute vertical motion, i.e.
the relative motion goes to zero at zero frequency and approached 1 at high
frequency. This is however the expected behavior since at low frequency the ship is
“contouring” or following the wave profile, so that relative motion approaches zero.
Conversely, at high frequency, the ship “platforms”, or remains essentially fixed, so
that the relative motion consists entirely of the wave motion. At a wave frequency
of 0.5 rad/sec (wave period of 12.6 sec), which evidently corresponds to the pitch
natural frequency of the ship, the effects of heave, pitch and the incident wave
reinforce at the bow to produce a relative motion of nearly four times the incident
wave elevation. We might expect the bow motion of this ship to be particularly
severe in Sea State 6, which has a most likely modal period of 12.4 seconds. A
quick calculation using the RAO in Figure 5.26 with a Bretschneider spectrum for
Sea Staten 6 (H; = 5m; T, = 12.4 sec) yields an average relative bow motion
amplitude of about 4m.

The statistics of relative vertical motion can be used to calculate the expected
number of deck wetness or propeller emergence events per unit time in a given sea
state. The number of upcrossings per unit time across a threshold value X is given

by

N, =L [M2o-fxam) (5.213)
27\ m,

where my and m, are the moments of the relative vertical motion spectrum at the
point of interest. For evaluation of deck wetness or propeller emergence we would
set X equal to the freeboard at the bow or propeller submergence, respectively. Eq.
(5.213) can also be used to determine the minimum freeboard required for a
specified deck wetness frequency. A commonly specified maximum value is 30
events per hour (Beck et.al. [1989]), or 0.00833 per second. For our 200m ship in
Sea State 6, we find by numerical integration of the relative motion spectrum that
me ~ 11 m® and m, ~ 7.8 m%/sec’. Plugging these values into Eq. (5.213) and
solving for X yields a value of 7.8m, which means that the waves are expected to
reach an elevation of 7.8m thirty times per hour. This in turn means that the
required freeboard is 7.8m.

We mentioned above that Eqs. (5.212) do not account for the waves induced by
the motions of the ship, which are sometimes referred to as “dynamic swell-up”.
Thus the freeboard should be somewhat larger than indicated by Eq. (5.213) to
allow for these effects. But how much larger?
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Journée [2001] presents two simple methods to estimate the amplitude of the
radiated waves. The first, attributed to Tasaki [1963], gives the radiated wave
amplitude s, in head waves at the forward perpendicular, as

2
s=(032045] m;IWZJ@X (5.214)

which is applicable in the range

0.60 < Cp <0.80
0.16 <Fn<0.29
1.60 < o,’L/g < 2.60

Since no information is available on the phase of this contribution, it should be
assumed to be 180° out of phase with the relative motion. The alternative
formulation developed by Journée is based on the relationship between the damping
coefficient and the radiated wave amplitude presented in Section 2.4 above; see Eq.
(5.50):

s(x,y)=z,(x Jo. Balx,) (5.215)
pge.

where X, is the location of the cross-section that radiates the waves that reach the
point of interest:

Uo,

Xp = x+1y\

in deep water, and c, is the phase speed of the radiated waves,
Ce=g/ De.

The phase can again be taken as 180° with respect to the relative motion at the point
of interest (not quite true, but conservative).

Journée [1976a] also supplies an approximation for the combined effects of
sinkage, trim, and the bow wave (i.e., the steady-motion contribution) on the
relative free surface elevation at the bow, again attributed to Takagi [1963]:
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Af = 0.75B—L£—Fn (5.216)

€

which is to be interpreted as a static “swell-up” of the free surface at the bow; L. is
the length of entrance of the waterline. Journée states that “experiments at the Delft
Ship Hydromechanics Laboratory with a model of a fast cargo ship in full load and
ballast conditions has shown a remarkably good agreement between the
measurements and this empirical formula”.

8.3 Slamming

Slamming is a special case of relative motions, in which two conditions must be
simultaneously met:

*  The keel emerges at the bow (i.e., relative motion of keel at bow > 0), and
*  The relative velocity at this point exceeds a critical value.

Unfortunately the critical or “threshold” velocity cannot be predicted easily; Ochi

and Motter [1973] provide the following empirical estimate based on results for a
single ship:

Vo =0.0928,/gL (5.217)

The probability of simultaneous bottom emergence and critical velocity exceedance
is given by (Ochi and Motter [1973]):

-T2y 2
P(slam )= exp +—= (5.218)

Zmg,  2myg,,

where T is the draft at the station of interest (usually some distance aft of the FP),
and my,, and mg; denote the mean square relative motion and relative velocity at
this station, respectively. The number of slams per unit time is thus

2 _ 2
N, =L (B g 1"~V (5.219)
2n \ my,, 2mg,. 2mg,,

The impact pressure is also of interest; it is usually expressed in the form

ps=%pkiznf (5.220)
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where k is a constant which is a function of the hull section shape. The value of k
ranges from about 4 to around 30 for ship-like sections, with the smaller values
corresponding to narrow sections with a small percentage of flat bottom. Ochi and
Motter [1973] present formulas and charts for evaluation of k.

8.4  Shear force and bending moment

The internal shear force and bending moment on a ship hull can be computed using
the hydrodynamic forces determined by the methods described above, together with
the distribution of weight in the ship. This is similar to the problem of a beam
subjected to an arbitrary distributed load, treated in introductory strength of
materials courses; the added complication here is that the ship is moving, so that
“inertial forces” (i.e., the effects of acceleration) must be accounted for.

The procedure for calculation of the internal force and moment is the same as
that employed in beam theory; the ship is sliced transversely at the station of
interest, and a free body diagram is constructed of one portion of the hull. The
internal shear force and bending moment acting in the plane of the cut, added to the
forces and moments acting on the free body, are equal to its mass x acceleration or
moment of inertia x angular acceleration. Another way to look at this is to transfer
the mass x acceleration terms to the other side of Newton’s equation,

F=ma—-F-ma=0

where now “m-a” can be treated as another force, and the body can be considered to
be in equilibrium.

In most derivations of the shear force and bending moments in the literature, the
total force is first expressed as a force per unit length on a 2-D cross-section of the
ship, which Is integrated from the bow up to the station of interest. The total
vertical force per unit length acting on a section with longitudinal coordinate x can
be expressed relative to the seakeeping axes as

wlx)= - B )(Z <04 F(x) + peA )~ u(x) (5.221)

where F(x) is the sectional hydrodynamic force and p is the weight per unit length;
the first term is the inertial “force”. The last two terms represent the static loads;
note that they are not in general equal and opposite at any given station since the
load distribution does not necessarily match the section area curve. The shear force
and bending moment are then given by
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V)= [ wlehe M@= ook (5222)

The sign convention for the moment is consistent with beam theory, i.e., positive
corresponds to a “concave-up” deflection tendency. Note that both the shear force
and bending moment are equal to zero at the ends of the ship, as is the case at the
free ends of a loaded beam. This approach lends itself well to strip theory, where
the 2-D results developed above are used to find the sectional hydrodynamic force.
However, note that if the speed is nonzero, the additional terms that arise because of
coupling between the forward speed and body oscillations must be added, see Eqs
(5.79) and (5.131) for the effects on radiation and diffraction forces, respectively.
Note also that you will have to account for the “end terms” discussed in Section
2.6.2 above, since the section area at the end of the integration range is obviously
nonzero (except possibly at the stern); see the classic treatise by Salvesen et. at.
[1970], for example, for one form of the full expressions.

8.5  Motion sickness incidence and motion induced interruptions

8.5.1  Motion sickness and fatigue-reduced proficiency

Motion sickness can be regarded as a “derived response” since it is induced by the
ship motions. There have been several studies attempting to quantify this
relationship; Stevens and Parsons [2002] provide a recent summary. Probably the
most cited reference on the subject is the study by McCauley et.al. [1976], relating
Motion Sickness Incidence (MSI, defined as the percentage of subjects experiencing
motion sickness) to oscillation frequency, acceleration, and exposure time. In this
study a number of college students were placed in a “Motion Generator” and
subjected to various types of sinusoidal oscillations for a period of 2 hours, or until
they suffered motion sickness (i.e., they “experienced emesis”, or in layman’s
terms, vomited). For this the subjects were paid the generous sum of $10. One
significant conclusion of the study was that vertical motion is much more important
than either pitch or roll motion in inducing motion sickness. McCauley et.al.
obtained an analytical expression for MSI which seemed to fit their data, using a
bivariate normal distribution:

MSI(a, £, T) = ®(z,(a,1)) D2/ (t,2.(a,5) (5.223)

where
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® = standardized cumulative distribution function,
a = RMS vertical acceleration, g

f = frequency of oscillation, Hz,

t = exposure time, minutes; and

2 =10gloa—ua(f) _
a o, 7ot 5, r ot r——l—pz .

The parameters were determined by fitting this function to the data:

_logiot-m ., _Z—pZ,

() = 0.87 + 4.36 log,o(f) + 2.73 (logio(H)*
0, =047 6,=0.76 y,=146 p=-0.75

This representation is valid within the following approximate limits:

0 <t < 120 min.
0.025<a<0.75¢g
0.065 < f<0.8 Hz

and should be used with caution outside of this range. Figure 5.27 shows some 3-D
plots of the computed MSI as a function of frequency and acceleration, for exposure
times of 30, 60 and 120 minutes. Note that the highest MSI occurs at a frequency of
about 0.16 Hz (a period of 6.25 sec).

More recently, an alternative formulation based on a “motion sickness dose
value” (MSDV) for vertical accelerations has been developed (ISO [1997]). The

MSDV is defined as
T
MSDV, = | fa,* (thit (5.224)
0

where a,(t) is the frequency-weighted vertical acceleration and T is the duration
(between 20 min. and 6 hr.); the subscript “z” indicates vertical motions. The
frequency weighting function is shown on Figure 5.28. The motion sickness
incidence is determined from the MSDV as follows:

MSI(%) = K,, MSDV, (5.225)

where K, is a constant, K, = 1/3 for a “mixed population of unadapted male and
female adults”, and MSDV, is in metric units.
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FIGURE 5.27 Motion Sickness Incidence vs Oscillation Frequency and
RMS Acceleration for three exposure times

An advantage of the latter approach is that it can be applied to an arbitrary
acceleration signal in a straightforward manner. Calculation of MSI using
McCauley’s method, Eq. (5.223), is difficult in irregular waves because of the
explicit frequency dependence in the formulation. To apply this method in irregular
seas we could use the modal wave frequency of the acceleration spectrum in Eq.
(5.223) but this lacks theoretical or empirical justification.

At frequencies higher than about 1 Hz, “fatigue-decreased proficiency”
becomes a problem. This is much higher than the frequencies associated with
typical ship motions, but such vibrations can be induced by machinery or even
possibly by slamming. The International Standards Organization has published
guidelines on the effects of “whole-body vibrations” on health, comfort and
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perception as a function of exposure time, frequency, and acceleration (ISO [1997]).
The guidelines are in terms of weighted RMS accelerations. There are weighting
curves for vibrations in the head-to-feet (“z”) direction and the transverse directions
(x, forward and back; y, side to side) relative to the human body (real “body
axes™); there are additional weightings for seat-back measurements, rotational
vibrations, and “vibrations under the head of a recumbent person™.

10 v ———

01 E 4

Frequency weighting

1E3 PUR | a
0.01 0.1 1 10

Frequency, Hz
FIGURE 5.28 Weighting factor for vertical accelerations, used in evaluation of MSDV,

The guidance with respect to the effects of vibration on health is in the form of
a plot showing “caution zones” for the weighted acceleration as a function of
duration of exposure, see Figure 5.29. The guidance is applicable for a seated
person. The two sets of curves apparently correspond to two sets of data, one
indicating a square-root dependence on duration (“Equation B.1”) and the other
proportional to duration to the 1/4-power. The two caution zones agree for
durations of 4 to 8 hours, where most of the available data exists.
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Health risks are fikely |

Weighted acceleration, m/s2

Health effects not clearly documented
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FIGURE 5.29 Health guidance caution zones according to 1SO-2631

The effects of vibration will be further examined in the next chapter.
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8.5.2  Motion induced interruptions

Motion induced interruptions (MII) are cases in which a subject either loses balance
and stumbles or falls, or slides along the deck; the concept is applicable to objects
(cargo, machinery, vehicles) as well as people”. The methodology as originally
formulated (Graham et.al. [1992]) involved computation of the “horizontal force
estimator” (HFE), actually the total lateral acceleration parallel to the deck at the
point of interest:

HFE(P) = —a,(P) — g sing (5.226a)

relative to seakeeping (xyz) coordinates, where a, (P) is the acceleration in the y-
direction at the location of interest, computed as described in Section 8.1 above. It
will be convenient to define a “vertical force estimator” in a similar manner:

VFE(P) = —a(P) — g cos¢g (5.226b)

The lateral force m-HFE(P) acts at the center of mass of the person or object, a
distance h above the deck. The reaction forces at the deck provide the resistance to
tipping and sliding. Sliding is expected when

HFE >-uVFE or -HFE >—uVFE (5.227)

for sliding to port or to starboard, and, assuming two points of contact located a
distance 2d apart (in a transverse direction), tipping is possible when one of the
reaction forces drops to zero:

HFE > —%VFE or —~HFE >—%VFE (5.228)

in seakeeping coordinates (i.e., VFE is positive up). Here p is the friction
coefficient and the ratio d/h is sometimes referred to as the “tipping coefficient”.
The tipping coefficient for a human will obviously differ from that of a rigid body,
and is a function of many different factors, such as an individual’s ability to alter his
stance in response to the motions. Stevens and Parsons [2002] quote an average
value for “all tasks” 0 0.222, determined from experiments in a motion simulator.

" fact possibly more applicable to objects, since people are usually treated as rigid bodies when making
predictions based on the theory.
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We can apply the methodology given in the previous sections to find the
expected number of MIls per unit time. To do this it is convenient to express Eqs.
(5.227) and (5.228) in the form

+HFE + aVFE > 0 (5.229a)

where o is the friction or tipping coefficient. Plugging in Egs. (5.226) and
assuming small amplitude motions (so that we can apply spectral analysis),

+{a,(P) + gp] - aa(P) >ag (5.229b)

Thus the total number of MII’s per unit time can be found using Eq. (5.213):

NMH =_1_{ 21_2_+e—(0;2g2/2m0+)+ &e_(ang/zmo—)] (5230)
2 V mo, V mo-

where my,, and my ;- correspond to the zeroth and second moments of the spectra of
the quantities on the left-hand side of Eq. (5.229b), with + and — signs before the
brackets, respectively.

8.6  Operability criteria

Operability criteria, defining conditions in which a vessel can carry out its mission
without degradation due to wave-induced motions, are generally specified in terms
of the derived responses discussed above. For example, the North Atlantic Treaty
Organization Standard Agreement 4154 (NATO [1997]) has established the
following operability criteria for naval vessels:

TABLE 5.7 Operability Criteria (NATO STANAG 4154)

Response Criterion
Motion Sickness Incidence 20% in 4 hours
Motion Induced Interruption 1 per minute
Roll amplitude (RMS) 4°
Pitch amplitude (RMS) 1.5°
Vertical Acceleration (RMS) 0.2g
Lateral Acceleration (RMS) 0.1g

Criteria for other types of vessels differ. Small high-speed craft routinely
experience high accelerations, particularly at the bow, so that a value of 0.65g RMS
is appropriate; for cruise liners, a value of 0.02g RMS has been recommended
(NORDFORSK [1987]). Establishment of such criteria thus requires consideration
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of the type of service the craft is designed for as well as the tasks and activities
being carried out by passengers and crew.

9. Some Nonlinear Effects

We have stated several times in this chapter that wave-induced forces and motions
on ships in Jow to moderate sea states can be predicted reasonably well using linear
theory provided that the roll damping is properly accounted for. However, for
moored or anchored structures, second-order wave forces play an important role.
These are proportional to the square of the wave amplitude, and in general involve
two wave frequencies. These effects are particularly important for moored
structures because they include a component that oscillates at a frequency
corresponding to the difference between the two wave frequencies. This low
frequency can coincide with the natural frequency of the moored structure in a
horizontal plane, and thereby produce larger-amplitude oscillations than the wave-
frequency forces.

It is instructive to examine the wave-induced pressure to second order in the
absence of a body. In terms of the velocity potential, using the Bernoulli equation

(Eq. (4.1)):

@ 0P 1 o) g
p® =_p P -5pV6" .V (5.231)

For monochromatic waves the solution is given in Eq. (4.69) for arbitrary water
depth; in deep water this expression reduces to

p® =—_pgAZe™ (5.232)

However if there are two waves with frequencies o, and ®,, we obtain
p® =—L0A 20,2 —LoA 20,2 L oA A,0,0,e9K cos(@, Q)
(5.233)

in deep water, where Q is the total phase of each wave, e.g.:

Ql =k1§—(,01t; Qz =k2510)2t+8 (5233a)
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and ¢ is a phase angle. Thus a new term appears, proportional to the difference
between the wave frequencies (if the waves are travelling in the same direction),
which would not be anticipated on the basis of the single-wave result. Thus we
should expect to find both mean and slowly-varying second-order forces if waves
with more than a single frequency are present.

The second order wave pressure is only one component of the total nonlinear
pressure acting on a floating body. The total second-order pressure is obtained by
inserting the total velocity potential (including radiation and diffraction effects) in
Eq. (5.231). In addition, to be consistent we need to account for the first-order body
motions, and integrate the total pressure on the body up to the actual instantaneous
free surface level, to obtain the force to second order. Details are provided in the
following sections.

9.1  Evaluation of second order force: Pressure integration

The direct way to calculate the total hydrodynamic force to second order is to
integrate the first- and second-order pressure on the instantaneous wetted surface of
the body. The total second order contribution can be written as (Pinkster [1980])

Fi(2) _ ”p(l)nr,-(l)ds+ ”‘p(z)nids+ J'J'p(o)nﬁ(z)ds_,_ ffp(l)nids (5.234)
So So So s

where Sy denotes the body surface below the static waterline and s denotes the
surface between the static waterline and the instantaneous free surface elevation.
The normal vector components n; and nr; are taken with respect to the body in its
static equilibrium position and instantaneous position, respectively; the subscript
“T” denotes “transformed”, indicating that it is necessary to apply the
transformation matrix [T] to the normal vector. Thus we could also write n; = np; .

Note the contributions of the zeroth and first order pressure to the second order
force. Recall that the “zeroth order” pressure is hydrostatic, so that the third term
represents the second-order change in the apparent hydrostatic force due to the
change in the orientation of the body (relative to the equilibrium condition).

The second order pressure is given by Eq. (5.231); however we have to deal
with the additional complication that the pressure is to be evaluated on the moving
body. The usual way to deal with this is to expand the pressure in a Taylor series in
space about the mean location of the body surface,

p(r + dr) = p(r)+ b § Vp(r)+ % (x . V)z p(r)+ - (5.235)
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where x = dr denotes the displacement of the point on the body surface relative to
its mean location given by r. We can also expand the displacement in a series,

x=exV+exP+ . (5.236)

as we have previously done for the pressure and the velocity potential (see Egs.
(4.66)). Thus the second order pressure on the moving body becomes

o6®
p? = —p—d;t —5 VP -V —px® . v, O (5.237)

where subscript t indicates partial differentiation with respect to time.

The zeroth and first-order pressure contributions are given by

a(b(l)

= (5.238)

p®@ =—pgt® p® =—pgr® -p

Now we can substitute Eqgs. (5.237) and (5.238) in Eq. (5.234) to obtain the second
order force. Before doing this it is convenient to express the “transformed normal”
nr in terms of the angular displacement components:

M )

ng =a® xn; Ny =a®xn (5.239)

where we define the angular displacement “vector” as

a=(y,0,¢) (5.240)

Thus the first term on the right-hand side of Eq. (5.234) is equivalent to

a®x [[p®n®Vds=a® xF® (5.241a)
)

where F is the total hydrodynamic (plus hydrostatic) force. As we mentioned
above, the third term represents the second order “correction” to the hydrostatic
force due to body motions:

J‘J‘p(o)n(z)ds =a® x(0,0,pgV) (5.241b)
So
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Evaluation of the last term in Eq. (5.234) is a little more complicated; it turns
out that the integral over the surface s can be converted into a line integral around
the equilibrium waterline:

[[p®nds="pg 4 0% nde (5.241c)
s WL

where f; is the relative wave elevation, which is simply the negative of the relative
motion z, of a point on the equilibrium waterline (see Eq. (5.212). This leaves only
the second term in Eq. (5.234). Here we plug in Eq. (5.237) to obtain

(2)
[[p®nas= []| - pa_dgt_ L ovo® .v® —px® v, O Jnds (5.241d)
So So

Thus the second order force comprises six terms, four of which are independent of
the second order quantities!

To illustrate how the second order force depends on the first order quantities,
we can (following Pinkster [1980]) examine the contribution of the relative wave

elevation, Eq. (5.241c). If we express the relative wave elevation in terms of its
response amplitude operator fiy,

fr ((,0, t) = AfrO (()‘))eimt = A|fr0 (O)X COS(Sr —OJt)
and consider a long-crested seaway in which
N
1t)= ZAJ cos(Sj —o)jt)
j=1

(see Eq. (4.125)), the square of the relative wave elevation can be written as

N
17 - ZZI%(AJ Fasllasl o lleosls; +8, -8, -84 +(o; - 01 }) (5.242)

+cos(6j+6q- +8y +0y +((0j+03k)t)]

N
k=

—_

-

so that the second order force will include slowly-varying (difference frequency)
and rapidly-varying (sum frequency) components. In the literature, these two
components are generally treated independently, with those interested in the
behavior of moored ships or structures generally focusing on the slowly-varying
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components, while others involved with fixed structures or very stiff mooring
systems (such as those associated with tension leg platforms) concentrate on the
rapidly-varying components. Here we will discuss only the slowly-varying forces
in detail; the development of the rapidly-varying components proceeds along a
similar path.

Using Eq. (5.242), we can express the slowly-varying component of the second
order force associated with relative wave elevation in the form

N
FP = z

J=1

AjA [ Ok cos((coj —o)k)t+6j—6k)+Tif3§( sin((mj —o)k)t+6j —8‘()]

(5.243)

Mz

1

=
l

where

(1)
roj

(1)
rOk

cos(S,j —Srk)nidf

T =—p cj.

(5.244)

(1)

Sl | ron Sm _Srk)ﬂ de

r0j

T = Pg Cj'

are the in-phase and out-of-phase components of the second order transfer function,
for the component of the second order force associated with the relative wave
elevation.

Similar developments are possible for the other components of the second order
force, so that the total slowly-varying second order force can be written in terms of
a second order transfer function:

Fi(z) ZN:EN:A [lek cos(co —a)k)t+6 -0 )+T ksm((m - )t+6 6_()]

=1 k=

—_

(5.245)

Note that when j = k we obtain

F® = AT (5.245a)

Lij i
i.e., a mean force, which is usually referred to as the mean drift force.

Pinkster [1980] has shown that of the terms given in Eqs. (5.241), the largest
contribution to the mean drift force comes from the relative wave elevation. The
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second-largest contributor (in magnitude) is the resultant of the “nonlinear
Bernoulli” pressure, given by the second term on the right-hand side of Eq.
(5.241d). However, this term generally opposes the force due to the relative wave
elevation; i.e. its direction is into the incident waves. It can be shown that the mean
value of the force due to the second order potential (the first term on the RHS of Eq.
(5.2414)) is zero; the remaining components are smaller in magnitude and evidently
can have either sign, depending on the particular configuration. The bottom line is
that the total mean drift force is roughly Aalf of the contribution of the relative wave
elevation, which suggests the approximation
E? ~05FY

Using Eq. (5.245a), the mean second order force, can be written as

N
E? =Y AMTE, (5.246)
1 J 7Ll

=1

This can be expressed in terms of the wave spectrum by noting that, according to
Eq. (4.125),

A2 =28 (0 )80,

so that, in the limit Aow—>0,
F? = ZQ]-Sﬁ (o)1 (0, 0 Mo (5.247)
0
The spectrum of the square of the wave elevation can be written as
S 2 (0)=8 5, (15 5 1 o (5248)
0

so that the spectrum of the slowly varying drift force is

Spi(0)= 8?8 7B+ o)T(w+o,p) du (5.249)
0

where
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o |2
T ik

lTi(Hﬂo,ulz = Ti(wj’mklz :‘Tfjk‘z +

(’0_] SU+0, O =H

(5.250)

In the time domain, the low frequency second order force can be written in terms of
the quadratic impulse functions using the second-order form of Eq. (5.2a):

Fi(”(t);]' [o@ (6, o)A (t-1 )7 (-t e, (5.251)

—0Q =00

where

h{® =—2ﬁ1—2 j _[ei(“’“'_”th)[Tf(ml,m2)+iTiS(m1,w2)}imldc)2 (5.252)

-~

Further details on the application of these expressions can be found in (Dalzell
[1976]).

9.2 Evaluation of second order force: Momentum conservation

An alternative method to find the mean second order force makes use of
conservation of momentum. This method is generally much easier to apply,
particularly for two-dimensional bodies; however, it is only applicable for the mean
force. It is usually referred to as the far-field method, because it involves
examination of the momentum flux through a control surface located far from the
body. This is advantageous because the flow field has a simple form here,
corresponding to a superposition of the incident waves and the waves radiated and
diffracted by the body. You will recall (I am sure) that we have made use of this
procedure previously, to express the power necessary to sustain forced oscillations
of a body in terms of the amplitude of the radiated waves (see section 2.4 above).

In the present case we again make use of a closed control surface consisting of
the body surface, free surface, sea bottom, and either a vertical cylinder or two
vertical walls located far from the body, for three- and two-dimensional cases,
respectively. Using the principle of conservation of momentum, we can show that
the average horizontal force on the body in any azimuthal direction is equal to the
net change in momentum flux in that direction.
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In two dimensions the problem is straightforward. The average mass flux in a
wave with amplitude A across a plane normal to the direction of wave propagation
is given by the volume flux, Eq. (4.72), multiplied by the density of the fluid:

1
average mass flux = pq = 5 poA? cothkh
The average momentum flux is just the mass flux multiplied by the group velocity:

M =L pA2V, cothkh =L pgA? ~£ (5.253)
2P e 2PN, '

Interaction of the incident waves with the body produces diffracted and radiated
waves, which move away from the body in both directions. The diffracted waves
are conveniently expressed in terms of reflection and transmission coefficients as
mentioned in Section 2.1 in Chapter 4. Thus in two dimensions for waves incident
from the -£ direction, the velocity potential far from a fixed body can be written as

A Re_ikgr—igA) coshklh+¢) cior  »_,

. o coshkh (5.254)
_ Teik§ —lgA) cosh k(h +§) e—imt, § S
0} coshkh

(see Eq. (4.15)), where R and T are complex reflection and transmission
coefficients. The amplitudes of the transmitted and reflected waves are

|T|A and |R |A
respectively; we can show using conservation of energy that
ITE+R[=1 (5.255)

Now the net average momentum flux into the control volume bounded by two
vertical planes located far from the (fixed) body is just given by Eq. (5.253). The
momentum flux out of the control volume is given by the same expression,
multiplied by |7 |* and |R [* for transmitted and reflected waves, respectively. The
mean horizontal force on the (fixed) body is equal to the ner change in average
momentum flux in the £ direction (Longuet-Higgins [1977]):
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— 1 V
R - pen? (1ol P 5259

Note that this can be combined with Eq. (5.256) to yield
= V,
F? =pgA? LR’ (5.257)
Vo

An analytical solution is available for the mean force on a thin wall extending
to a depth d below the free surface in deep water; recall that the solution for the
corresponding first-order force was given in Section 2.1 in Chapter 4 (Wehausen
and Laitone [1960]):

%1, (kd)
721, % (kd)+ K, (kd)

F? (kd)= 5 pgA’ (5.258)

where I, and K, are modified Bessel functions of the first and second kind (of order
1), respectively; the solution is shown on Figure 5.30 below. Note that at very low
frequencies, A >> d, the waves are unaffected by the presence of the wall and the
reflection coefficient is zero. At very high frequencies, the waves are completely
reflected and the normalized drift force attains its maximum deep-water value of
1.0.

12
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wavenumber kd

FIGURE 5.30 Mean horizontal force on a thin vertical wall in deep water

In finite water depths, the factor V/V,, is a function of frequency or wavenumber,
decreasing from a value of 1 at zero frequency to 0.5 at infinite depth. Thus the
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drift force on a fixed body in finite water depths will in general have a maximum
value near kh ~ 1, as shown on Figure 5.31.

When the body is free to move, we have to account for the radiated waves. If
we denote the total amplitude of the radiated waves in the far-field (accounting for
all modes of oscillation) by Ag, the expression for mean horizontal force becomes

_ \Y% 2 2
Fg:lpgAz_g.(H}MAR-' Jreag (5.259)
2 v,
1.2
1.0 4
VY
0.8 A '
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0.2 |
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0.0 0.5 1.0 1.5 20 25 3.0

wavenumber kh

FIGURE 5.31 Behavior of mean horizontal drift force with wavenumber
in finite water depths

The expression for energy conservation is

IT+AL P+ IR+Ag =1 (5.260a)
for a freely-floating body. However, if a damper or power takeoff device is
somehow connected to the body, absorbing some of the wave energy, conservation
of energy takes the form

IT+Ar [P+ |R+ AR P+Eg=1 (5.260b)

where Eg is the energy absorption efficiency (Mei [1989]). Thus a wave power
extraction device will absorb all of the energy in the incident waves if it can be
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designed so that the waves generated by its motions just cancel the reflected and
transmitted waves.

Because of the presence of the radiated waves, the behavior of the drift force on
a freely-floating body differs somewhat from that shown on Figures 5.30 and 5.31.
The salient difference is that peaks in the drift force are usually present near the
natural heave, roll and pitch frequencies of the body. However, the behavior at low
and high frequencies is the same as that for a fixed body, since no waves are
radiated in these limits (see the discussion of wave damping in Section 1.2 above).

In three dimensions, we must account for the fact that waves can be scattered
(diffracted) and radiated in all directions. Also, recall that the scattered and radiated
wave amplitudes approach zero far from the body, since the energy is being spread
out over a wider and wider area. Following Mei [1989], we can express the velocity
potential far from the body in the form

—igA ) cosh k(h +¢)[ &R cos X / 2 ikR-in/4
= + A4 —_ ,R—> 5.261
¢ ( ® J cosh kh © SR (X) kR ¢ ® )

where Agr includes the effects of all scattered and radiated waves. Note that Agy is
not the amplitude of these waves; the amplitude is given by

2
Asg (R, x)=Adg (x —= (5.262)

The component of the horizontal drift force in the direction of wave motion is

_ v, | 1 2z
B = —p%AZV—i[; Ojcosx'lAsx () d + 2 Re(ds (0 )] (5.2632)

and perpendicular to this direction

_ Vv, 1%
PO -p2azel [sin | sr (')} dx (5.263b)
k Vp @ h

Again we can quote one analytical result, which is the mean force on a bottom-
mounted vertical circular cylinder, in infinite water depth®® (Kagemoto and Murai
[2002]):

£ This 1s a very long cylinder, however “the results are ... practically applicable for a cylinder of finite
but large draft” (Kagemoto and Murai [2002]).
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2
FO - _pea? { nfn+1 } ! (5.264)
’ (ma) Z 1,9 (ca) [, (ka)

where H," is the n™-order Hankel function of the first kind (which we have already
encountered in Chapter 4, in connection with the first-order force on a cylinder),
and the prime indicates the derivative with respect to the argument; “a” is the radius
of the cylinder. The derivatives of the Bessel functions can be determined using the
so-called “recurrence formulas” (see Gradshteyn and Ryzhik [1980] or Hildebrand
[1976], for example). The series converges very rapidly, particularly for small ka;
five terms were found to be sufficient for ka as high as 3.0. Computed results are
shown on Figure 5.32. The limiting value at high frequency (normalized as
indicated on the figure) is about 0.66.

0.7
F;Z) 0.6
pgaA’

0.5 W

04 4
0.3 ﬂ
0.2

01 ﬁ

0.0 T — T

0.0 0.5 10 15 20 25 3.0

Wavenumber ka

FIGURE 5.32 Mean horizontal force on a bottom mounted vertical cylinder
in infinite water depth

It is interesting to examine the ratio of the mean drift force to the magnitude of
the first order wave exciting force that we computed back in Chapter 4, see Eq.
(4.52). In deep water the ratio is a function only of ka (or, alternatively, A/d where
d is the cylinder diameter) and a/A, as shown on Figure 5.33; note the logarithmic
scale. The figure shows that the mean force can exceed the magnitude of the first
order force in high or very short waves.
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FIGURE 5.33 Ratio of mean drift force to magnitude of first order
force on a cylinder, infinite water depth

9.3 Newman’s approximation

Evaluation of the second order transfer functions required for prediction of the
slowly varying second order force is computationally time consuming, because

(1) the contribution of the second order potential must be computed,
which is difficult, and
(11) if we want results at n frequencies we need to compute the second

order transfer functions at n’ frequency combinations (differences).

In this connection it should be pointed out that the coefficients T, in Eq.
(5.245) are not uniquely defined for j # k. We can rewrite that equation as follows:

5 N N N
F2 =2 A TS+
1

j=

j-1

2, AjA, [(Tfjk + Ty )cos((a)j -0y )t +8; -8y ) (5.265)

+(Tfjk ~TY, )sin((ooj —0 Ji+8; —6k)]

—

In this form it is evident that there is effectively one in-phase and one out-of-phase
coefficient corresponding to each frequency difference; we can distribute the total
between T and T;y; in any way we see fit. The generally accepted convention is to
define the coefficients such that
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TS, =TS,
Rk T (5.266)
s S
Ti, ik = 7Lk
so that the opposite elements contribute equally. All published results that we are
aware of follow this convention.

Newman [1974] argued that since “slow drift” motions are associated with very
low frequencies, the principal contribution should be associated with the elements in

Eq. (5.265) which are near the main diagonal j ~ k, we can write

Tk =4 TijTiw +terms of order (coj -0 ) (5.267)

which is a good approximation for Tjj provided that we select only terms involving
small differences (w; —,). He then showed that the double summation, Eq. (5.265),
could be replaced by the low frequency part of the square of a single summation:

2
N
Fi(2) =~ low frequency part of z A ,/2T1~’J»J- cos(u)jt +5; )} (5.268)

=

which reduces computation time substantially, since only the mean force
coefficients are involved, so that the second order problem does not have to be
solved, and only a single summation must be computed. However it is important to
keep in mind that the low frequency part of this expression must be extracted, by
filtering for example.

This approximation, or at least Eq. (5.267), is apparently adequate for some
practical applications. Pinkster [1980] indicates that, at least in the cases he
examined, most of the difference between T;; and T;j comes from the contribution
of the second order potential to the latter; thus the approximation can be expected to
be satisfactory for cases in which this contribution is small. In two examples
examined by Pinkster, this occurred when most of the wave energy was above a
frequency of about 0.4 rad/sec for a tanker and 0.8 rad/sec for a semisubmersible
platform. The latter is fairly restrictive, limiting applicability to the lowest sea
states.
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9.4  Effects of forward speed: Wave drift damping and added resistance

All of the results presented in this section thus far pertain to a body at zero speed.
However, like the first order forces, the second order forces are functions of speed.
As mentioned above, a moored body may undergo large-amplitude excursions due
to slowly varying second order forces; the effect of this “slow drift velocity” on
these forces must be considered. A second case¢ in which speed effects are
particularly important is in the evaluation of the mean longitudinal force on a ship
running in waves, usually referred to as the “added resistance”.

9.4.1 Wave-drift damping

In the case of a moored body undergoing slow oscillations, the speed effect is
usually expressed in terms of wave-drift damping coefficients (Tanizawa and Naito
[1997]):

2
o _ aFi( )

§ ;| .

(5.269)

where Uj are the components of the “slowly varying” velocity. It is conventional to
adopt a coordinate system moving with this velocity; thus the free surface boundary
condition must be modified (similar to Eq. (5.58) for the linear case) and we expect
analogous “frequency of encounter” effects. Solution methodologies have been
presented by Triantafyllou [1982], Faltinsen and Zhao [1989] and in a series of
papers co-authored by Grue (e.g., Finne and Grue [1998]); the latter papers present
results for some particular cases.

The total damping for slow drift motions includes the wave-drift damping and
viscous drag. In low sea states the viscous effects dominate the damping forces, but
in high seas, the wave-drift damping is dominant. For example, Faltinsen [1995]
states that the wave-drift damping on a 235m long ship is 85% of the total damping
in waves with a significant height of 8.1m but negligible in waves with a significant
height of 2.8m. He goes on to show that if the damping is small (as is typically the
case for slow drift motions), the mean square of the slow drift motion for a single
degree of freedom can be approximated by

o0

2
Ois ~Sg; ((0 Os )_f

2
Xis
F(’z) (‘“# de =Sg; (('00,5 )—’L‘— (5.270)
)2

2B;i Ciis
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where Sy is the spectrum of the slowly varying force, Eq. (5.249), wqi is the natural
frequency of the slow oscillations in mode i, C; is the linear restoring force
coefficient (due to the action of the mooring system), and the total drift damping
coefficient By, is assumed to be independent of frequency. This simple
approximation confirms that large low frequency motions are to be expected when
the damping is small; surprisingly, the motions are independent of the inertia (mass
plus added mass) of the body! By multiplying both sides of Eq. (5.270) by the
square of the restoring force coefficient, we obtain an approximation for the mean
square of the total mooring force,

C.
ypil Sy (0, Ji. (5.271)

MF, F, ( O,s)ZBii’S
which increases linearly with the mooring system stiffness. It is emphasized that
Egs. (5.267) and (5.268) are rough approximations only, since we know that the
damping is frequency dependent, the mooring system stiffness is generally not
linear and coupling among the motions cannot be neglected; however these
formulas do provide an indication of the salient effects of damping and stiffness.

The data presented by Faltinsen and Zhao [1989] indicates that the maximum
value of the wave drift damping force coefficient for a semi-submerged circular
cylinder of radius a is about

2
By, <3P i tasl

e

The first order wave radiation damping coefficient is also maximum near this
wavenumber; its value is approximately

By = O.Spoma2

so that the ratio of the slow drift damping force to the first order wave damping
force is roughly

BYU
2V _,A U JAU

1
B,,0x%, a \/E;(XZ/A)N a \/g;

where we have used [x,/A| ~ 0.5 at ka = 1.0 to arrive at the final expression. Thus
the relative importance of the wave-drift damping increases linearly with the wave
amplitude and drift velocity.

(5.272)
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9.4.2  Added resistance

The longitudinal component of the mean second order force on a moving ship is
usually referred to as the added resistance due to waves or added resistance for
short. Actually, strictly speaking, added resistance also includes the effects of
reduced propulsive efficiency due to increased loading and unsteadiness of the flow.
This effect is “automatically” included in simulations if the propulsion system has
been properly modeled (see Section 4 in Chapter 3).

You should keep in mind that the added resistance is generally only partially
responsible for the speed reduction of a ship in a seaway, particularly in higher seas;
this portion is called “involuntary speed loss”. The other portion comes from a
conscious decision of the captain to reduce speed, usually because of the severity of
the motions or the occurrence of frequent slamming and/or deck wetness.

A commonly used strip theory estimate for the mean longitudinal second order
force on a moving ship in regular waves is that developed by Gerritsma and
Beukelman [1972]:

F? R k dA 53 (x
_iT:_[:TW:ELJ'[BB(X)_UO _dig}|wr(x}2dx (5.273)

Here |w,| is the amplitude of the relative vertical velocity. This formulation is based
on the relationship among the mean drift force, the amplitude of the radiated waves,
and the (first order) damping coefficient; the effects of scattered waves are
neglected. Comparisons of this prediction with model test data are presented by
Journée for an S-175 containership [2001] and a cargo ship [1976b]; in both cases
the prediction is remarkably accurate for wave incidence within 60 degrees of head
seas. Figure 5.34 shows some of this data; the agreement is good above a
wavelength to ship length ratio of about 0.8. In shorter waves the effect of wave
reflection probably accounts for most of the difference. The high peak near A/L ~ 1
is characteristic of added resistance curves and occurs at the frequency at which the
relative vertical velocity is maximum,

At high frequencies the ship motions go to zero, and the waves are completely

reflected from the bow. In this limit, the expressions presented by Faltensen [1990]
suggest that the added resistance should approach

20U
R,, ~%pgA2(1+M)B sin @ (5.274)
g
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in deep water at high encounter frequencies, where o is the “half-entrance angle of
the waterline” (or more accurately an average value of the angle of the waterline.

— I Head seas
psA” BZ/L Fn =025

ML

FIGURE 5.34 Comparison of predicted (Eq. (5.273)) and measure added resistance for a
containership (Journée [2001]). Line: prediction; Symbols: test data (two test

programs).

The value of the added resistance in irregular waves can be calculated using Eq.
(5.247) which in the present context is written as:

Raw =2[Sy (a))-R:V—Z(m) do (5.275)
0

10. Mooring systems

We conclude this rather long chapter with a brief discussion of mooring systems
(basically @ mooring system). You might argue that mooring systems do not really
belong in a chapter about wave-induced forces; however the discussion will not be
lengthy enough to merit a separate chapter. This is as good a place as any since the
mooring forces are involved in the low frequency horizontal-plane motions just
discussed.
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10.1 Static catenary line

We will focus here on a simple catenary mooring system, which is probably the
most common type for offshore applications. In this system the restoring force
comes primarily from the weight of the line (usually a heavy chain), the end of
which rests on the sea bottom. If the body is moved away from its equilibrium
position, more chain gets lifted up off of the bottom, thus inducing a force
transmitted through the line that acts to pull the body back. The line usually
terminates at some sort of anchor; however it is desirable that the line be long
enough to avoid applying a vertical force to the anchor.

Most analyses of mooring systems begin with a free body diagram of an
element of the line, showing the forces that act on it (Figure 5.35): Tension, weight,
buoyancy, and drag are the most important ones. The figure shows an element with
initial (unloaded) length ds, cross sectional area A, with a weight per unit length in
water of w and elastic modulus E; T is the tension, F and D are the axial and
tangential components of drag, and 0 is the angle with the horizontal. We will
neglect line dynamics and assume that the line lies in a vertical plane; coordinates x
and z are horizontal and vertical distances relative to an origin on the undisturbed
free surface. Bending stiffness will also be neglected, which is not a bad
representation in most practical cases.

T+dT - pgAz — pgA dz

ds + (T/AE)ds 0 +do

T - pgAz w ds

dx ————p

FIGURE 5.35 Small element of a mooring line

By summing the forces in the tangential and normal directions, we can obtain
two equations that determine the shape of the line and the distribution of tension
along its length:
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dT - pgAdz = [w sinb — F(1 + T/AE)]ds (5.276a)
(T - pgAz) d9 = [w cos® + D(1 + T/AE)]ds (5.276b)

No closed-form solution exists for Eqs. (5.276). However in many cases the axial
stiffness AE is much larger than the tension so we can safely neglect those terms.
Furthermore, the drag force can be neglected if the currents are not significant;
Faltinsen [1995] states that “for many operations it is a good approximation to
neglect the effect of current forces F and D”. Under these assumptions, Eqgs. (5.276)
can be integrated along the length of the line and solved for the horizontal
displacement of the moored body as a function of the tension in the line (see
Faltinsen [1995], for example, for details). For the configuration shown on Figure
5.36, the solution has the form

X=L—h‘/1+2%+acosh—1[1+3) (5.277)
a

where X is the horizontal distance from the anchor to the point of attachment on the
body, L is the total line length, h is the water depth, and

a=Ty/w (5.278)

where Ty is the horizontal component of the line tension at the point of attachment
to the body. It should be noted that in addition to the assumptions given above, the
line weight per unit length is assumed to be constant in this solution. This implies
that the line is submerged for its entire length (i.e., strictly speaking the point of
attachment to the body must be at or below the waterline). The vertical component
of the line force at the point of attachment to the body is equal to the submerged
weight of the suspended portion of the line Ly=L ~ X:

Ty =wL, (5.279)
L

S~ \
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FIGURE 5.36 Mooring arrangement
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Eq. (5.277) is not particularly easy to work with when carrying out simulations,
since in these cases we need the force for a given displacement; this involves
solving Eq. (5.277) iteratively. As an alternative we have developed an explicit
approximation that is probably sufficiently accurate for most applications. First we
write Eq. (5.277) in dimensionless form and add 1 to both sides:

h+X-L

1+ cosh![ 142 —1/1+2i (5.280)
h h a h

Notice that the quantity on the left-hand side ranges from 0 (the case where the line
hangs vertically and makes a right angle at the bottom) to 1 (corresponding to a very
long line so that X =~ L), and that the right-hand side is a function only of a/h. By
generating a data table and applying nonlinear regression analysis, we obtain the
following explicit expression for the horizontal component of the line force:

0.29462{&}1*]

2
1—1.97085(“%)+0.97085(h—+§i)

Ty =wh (5.281)

Figure 5.37 shows a comparison of this formula with the exact (implicit) expression,
Eq. (5.277).

Some other useful formulas for catenary mooring problems are listed below.
Tension as a function of distance from sea surface (z is positive downward):
T=Ty+wh+ (w-pgA)z (5.282)
The maximum line tension thus occurs at the surface, z = 0:
Tiax = Ty T wh (5.282a)

Length of suspended portion of the line:

L, =vh? +2ha (5.283)

Horizontal distance from point of attachment to body, to point of contact with
bottom:
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x =acosh™ (1 +£) (5.284)
a

25

20 4

15

T,/ wh

10 - Approximation (Eq. (6.281)
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o

0.4 06 08 1.0
{(h+X-L)h
FIGURE 5.37 Comparison of explicit approximation for catenary force with exact formula

Again, these expressions are for an inelastic line of constant weight per unit
length, and line dynamics are neglected. The latter effects are important in cases
where transverse oscillations may develop due to vortex shedding, for example.
The tendency for vortex shedding is characterized by a dimensionless quantity
called the Strouhal number,

St = s (5.285)

where Fs is the frequency of vortex shedding in Hz, d is the line diameter, and U is
the velocity normal to the line. Vortex shedding occurs when St = (.20, at Reynolds
numbers (based on line diameter) ranging from 10* to 10°. If the vortex shedding
frequency coincides with one of the natural frequencies of the line, large amplitude
oscillations could occur.
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These formulas may also be applied to towing cables, which are essentially
horizontal. Here, the sag of the cable replaces the water depth h, and the length L,
is now half the length between connection points (L; is the length to the point where
the line becomes horizontal). Elasticity may be important in such cases, since the
wire rope or synthetic line used for towing is much lighter and more elastic than a
mooring chain. In the case of an elastic catenary line, we cannot obtain X as a
function only of the horizontal force Ty as was done in the inelastic case; solution of
the elastic catenary equations yields Eq. (5.277) but with an additional term:

L
X=L-h1+22 +acosh™ ) 2wk (5.286)
h a) EA

which involves the unstretched cable length L. This can still be expressed in terms
of the vertical force at the attachment point using Eq. (5.279); however, the
relationship between L, and a, Eq. (5.283), must be replaced with the following
implicit relationship:

2 2
L L
12 1+(—Sj +—ZESAT (5.287)
a a

Thus for given cable properties and water depth (or cable sag), Eqgs. (5.286) and
(5.287) must be solved for the horizontal force, the unstretched length L, and the
distance X. One way to solve the equations would be to create a table of values of
L,, use Eq. (5.287) to find the corresponding values of a, and finally plug L, and a
into Eq. (5.286) to determine the corresponding X.

10.1.1 A simple example

As a simple application of the catenary formulas, we will find the equilibrium
position of a ship moored with a single anchor chain in a 2 knot current. The water
depth is 18m. We will employ the merchant ship example that we examined
previously in the examples in Chapter 3 and above.

The first step is to find the total longitudinal force on the ship (assuming that
the ship will align itself with the direction of the current). We can find the
resistance at a speed of 2 knots using the methods described in Chapter 3 and
Section 5.1 above. However we must remember to add the drag of the locked
propeller, which may actually exceed the drag of the ship. The propeller drag can
be approximated using
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X,(RPM = 0) ~ ~%pU.’A,C, (5.288)

where Ap is the “expanded blade area” of the propeller and C, is a propeller drag
coefficient, C, » 1 (MIL-HDBK-1026/4A [1999]). Using the propeller data given
in Section 5.1 above we find

A, = (expanded area ratio) x nD¥4 =21.38m’

and
X,~11.6 kN.

The Holtrop [1984] method yields
R=7.0kN

at 2 knots which is indeed less than the drag on the propeller. Thus the total
horizontal force on the mooring line due to the current is

Ty =18.6 kN.

We will assume that the ship is moored with a 2.5 inch chain, which has a
submerged weight w = 769 N/m. Neglecting elasticity, we can find the suspended
line length using Eq. (5.283):

L;=34.6m

which is also the minimum length of the line to avoid applying a vertical force to
the anchor (note that since the formulas assume that some portion of the line rests
on the bottom, they do not apply to the case L < L;). Witha=Th/w =24.2m and a
line length L = 50m, Eq. (5.277) yields

X =43.4m.

This data can also be used to estimate the natural frequency of the low
frequency longitudinal motions. The natural frequency is given by

Cu

et § S 5.289
m+A ( )

Wy =

where C,, is the restoring force coefficient in surge:
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c, =21 (5.290)

where x is relative to the body axes fixed in the ship; x. represents the equilibrium
location, corresponding to X = 43.4m in this example. If the ship remains aligned
with the anchor, x and X differ by a constant and so 6/0x = 6/0X. We can obtain an
expression for the derivative using Eq. (5.281):

1—0.97085(

2
{1 _ 1.97085(h—+§i) + 0.97085(5”;;ﬂ }

h+X—LJ

T _ 520460 (5.291)
oX

The value at X =43.4m is

oTy

oX

=6937N/m

X=434

The mass and surge added mass of the ship can be found in Table 5.3 above. Now
the natural frequency and period in surge can be calculated:

wo = 0.018 rad/sec; Ty = 349 sec = 5.8 min.

10.2  Stability of a towed or moored ship

Another interesting mooring problem, which we can treat (approximately) using the
theory developed in Chapter 3, concerns the sfability of the ship moored using a
single line in a steady current, as in the previous example. The methodology is also
applicable to the case of a body being towed along a straight line at constant speed.

We wish to examine the behavior of the towed or moored ship subsequent to a
small yaw or sway disturbance. We can thus use the linearized surge-sway-yaw
equations, Eqs. (3.141a). For simplicity we will assume that the line tension is
constant, which is tantamount to neglecting surge motion (this is reasonable in a
steady current or at constant towing speed); we then need only to deal with the yaw
and sway equations. To these we must now add the force exerted by the mooring
line, which we can obtain geometrically, using the layout shown on Figure 5.38.
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Here L, is the horizontal projection of the unsupported line length, assumed to be

constant (equal to x, Eq. (5.284), for a catenary mooring line).

Note that the angle between the longitudinal axis of the ship and the mooring

Iine is (8 + ¥), where 6 is defined on Figure 5.38; recall that ¥ is the yaw angle
with respect to the fixed coordinate system (xyz). The component of line tension in

the transverse direction is
. A +a'¥
Yy =Ty sin(3+ %)= T, — ~ Ty, (” + lp) (5.292)
Ly L
for small deflections; here “a” is the x-coordinate of the attachment point of the
mooring line. The yaw moment is just
Ny =a¥Yy (5.293)
Ty 5.-';8 +¥
/SN i
’ \ H
s X\
2/\ 4 )
f I’ ] i
1 ] ] * X
] 5
/ /
II ,’I /' I’
" i ! !
h L 1 ‘T;‘] ’I
I/, e

FIGURE 5.38 Geometry for moored or towed ship
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Notice that Eq. (5.292) expresses the force in terms of the lateral displacement
and yaw angle relative to the “fixed” (§EnC) coordinate system. Thus we really need
to convert the yaw/sway equations to a consistent coordinate system in order to
make use of Eqs. (5.292) and (5.293). For small perturbations, the force and
moment relative to the fixed system will not differ from those relative to the moving
system to leading order; thus it will suffice to transform the variables (v,r) with the
aid of the small perturbation transformation matrix, Eq. (2.21):

Arv+Uwa v+ U, v+ U, ¥

. (5.294)
VYar; ¥~r

where U, is the steady current velocity or forward speed. Plugging Eqs. (5.294)
into the yaw/sway equations (3.141a), adding the mooring force and moment (Egs.
(5.292) and (5.293)) to the right-hand sides yields, after some rearrangement,

.. - . . T
(m+A22)y+(me +A26)\P ’b1Y“[b3 ‘(An Ay )U0]‘~P+1—H—y
L

+ [Tﬂ(i + 1) + bon}‘P =0
LL

(mXG +A62)5}+(Izz +A66)\P _[fl +(A11 ‘Azz)Uo]}"‘ffil*‘THfa’y
L

(5.295)

+ [Tﬂa(Li+ 1)+ £U, +(Ay, —AZZ)UOZ}I’ =0
L

It is convenient to normalize these expressions by dividing the first by (Y2pU,*L?)
and the second by (Y4pU,’L*), where L is the length of the ship (we will also
normalize y, a and L by dividing by L):

. . - Ty
(m'+A22 ')}’ '+(m' Xg'+tAg |)lP'_b1 ' Y'_[bs '_(An —A, ')]\P"'”EH—, y'
L

+[TH'[L+ 1] +b, }ql =0

(m'xg "+ A g )i+, + A g - [, +(A, A, ')]}"'—fsli"+TH'fa_- Y
L

(5.295a)

L

+ {TH'a'(% + 1) +£,+(A,,-A, ')J‘P =0
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The solution strategy is the same as that employed for such equations in Chapters 2
and 3: We assume a solution of the form

Y'=Ye; W=y, (5.296)

Plugging these expressions into Egs. (5.295a) yields simultaneous equations for the
amplitudes Tq and Wy, which can be written in the form

v 12 () [ 112 'c' Y 0
B,'c 2+B3 ¢'+Bs' B,'c 2+B4 o+Bs'|] Yo ={ } (5.297)
F'c'"+F'c'tFs'  F,'0'"+F,'c"+F¢' [|¥o 0

where B,' = (m' + Ay'), By’ = (m'Xg' + Ayg'), etc. Nontrivial solutions exist only if
the determinant of the coefficient matrix is zero; this requirement yields a fourth-
order equation for the stability indices o":

(Bl 'F,'-B,'F) )0'4+(B1' F,/'+B;'F,'-B,'K'-B,'F ')0"3
+(B,'E,'+B, F,'+B;'F,'-B,'F,'-B,'F,-B,'F, o’ (5.298)
+(B,'Fy'+Bs'F,'-B,'F'~By'Fy Jo'+(B5'Fs—B, ;') = 0

For stability we require that all coefficients of ¢' in this equation have the same
sign (we will assume that they are positive, which can always be achieved by
multiplying the equation by —1 if necessary), and that the values of the “Hurwitz
determinants” (Appendix C, Chapter 3) formed from the coefficients in Eq. (5.298)
to be positive; there are four of them for a fourth-order equation. This may seem
rather intimidating, but it is easy to set up and evaluate the Hurwitz determinants
using mathematical software such as Mathcad®"™. Then, the stability “region” can
be mapped as a function of, say, line length and attachment point location, by
varying these quantities and observing the effect on stability.

The constant term in Eq. (5.298) is, in terms of the coefficients in Eq. (5.295),

" When the coefficients are normalized as indicated here, the values of the Hurwitz determinants will be
very small, resulting in an indicated value of zero unless you increase the precision of the displayed
results. It may be convenient to multiply the result by a large number (say 10%).
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(BS'F(,'—B6'F5‘)=P—H[TH'a'(Li'H)H] ‘+(A”’-A22‘))

[
LL L

a' t
—TH'K[TH’(SL—'H}MI'H
T 1
= fH—. [fl '+(A11 '—Ay, ')‘a'bl v]
L

which is positive if

f; '+(A11 —A ')
b,

]

a'> (5.299)

since b;' is always negative. This turns out to be a stability criterion for a moored or
towed body that possesses controls-fixed directional stability, as pointed out by Eda
[1972], for example”. Thus a stable ship could be unstable under tow if the towline
is attached too far aft (although it is hard to imagine why this would occur; it is
generally most convenient to tow from a point at or near the bow).

A more interesting case is that in which the towed or moored body is not
directionally stable. In this case, the body can be made stable by suitable
adjustment of the line tension and/or length, provided that the criterion of Eq.
(5.299) is met. Mooring line tension can be increased by applying reverse thrust,
for example, if the moored vessel has a propulsion system; this isn’t very practical
for towing, however.

As an example, we will again employ our trusty merchant ship. The required
hydrodynamic coefficients were computed in Chapter 3 (see Section 7.2.2 and
Table 3.5 therein). You should remember that the “steady flow” coefficients in that
table, which were predicted using Egs. (3.44), actually contain the effects of some
of the added mass terms:

b,'=b,’

ba'=ba’ A’ (5.300)
f1'=f1""(A11'—1‘\22')

fy'=13'-A '

i This criterion is not always sufficient, as we will demonstrate later.
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The required added mass coefficients can be found in Table 3.3. Writing B; and F;
in terms of the hydrodynamic coefficients as indicated above, and plugging in the
known values from Table 3.5 leaves three remaining unknowns in Eq. (5.298): the
mooring system parameters a', Ty' and L.

We found this ship to be directionally stable in Section 7.2.2 of Chapter 3. The
mooring/towing stability criterion, Eq. (5.299), is in this case,

av=£>f_1i(A;l"‘°‘_22_)=Il_=o,406 (5.301)
L b,' b,

so that the towline has to be connected relatively near to the bow:.

To look at what happens in the (more interesting) case of an unstable ship, we
will look at another ship whose characteristics and coefficients are identical to those
in the example above except that the coefficient bs' is reduced by 50%. Using Egq.
(3.156) we now find that

C'=-1.333x10°<0

so that this configuration is indeed unstable. Now with Eq. (5.298) and the stability
criteria, we can show that if the condition in Eq. (5.299) is met, the towed or
moored unstable ship is stable for a range of Ty and L; combinations. In fact there
is a “critical” value of Ty above which the towed ship will be stable regardless of
the length of the towline. Figure 5.39 shows the range of moored/towed stability for
this unstable ship, for two locations of the attachment point that satisfy Eq. (5.301).

Another approach to this problem is to actually solve Egs. (5.297) for various

values of the mooring line parameters Ty, L and a. In fact, these equations can be
re-cast in the form of a standard eigenvalue problem,

[([A]=ALI]H{x} = {0}

where {x} is a vector of “generalized coordinates”, corresponding to the yaw and
sway displacements and velocities:

t=lywyal

Egs. (5.295) can be written as a set of four coupled linear first-order differential
equations in these variables:
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FIGURE 5.39 Stability of a moored or towed ship that is unstable without the mooring line,
as a function of line length and tension.

dy dy . .
My, ?Z"'MIZ ‘d_\ltj“+B11Y+B12‘P+K11Y+K12W =0
dy dys . .
My —=+My —=+By y+ B¢+ Ky y+ Ky =0
dt dt
(5.302)
dy
dt
dy _
dt

where Mj; = m + Ay, etc. Note that the velocities are treated as independent
variables in this formulation.

We will now make use of the assumed solution, Eq. (5.296), to express the
derivatives in terms of the stability indices:

df

— =of
dt
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where f represents any one of the variables in Eqs. (5.302). Now those equations

can be written in the following form:

(5.303)

where

[M]E|:Mll Mlz},etc.
My My

Now we can multiply the second set of equations by [M] ™' and rearrange to obtain

r |

0 0 10
y y| |0
A VoYL (5304
. ‘ . . . y y 0
~[m]"[B] -M" K] vl ) (o

which is in the standard form of an eigenvalue problem. Most mathematical
software packages (MATLAB®, MATHCAD®) have built-in functions for solving
such problems. The four eigenvalues correspond to the stability roots, ie., the
solutions of the characteristic equation (5.298). For a moored or towed ship, two of
the roots will generally be distinct real numbers, indicating exponential decay or
growth of the perturbations, and two will be complex conjugates, corresponding to
oscillatory modes.

To provide a graphical illustration of the behavior of the stability indices, we
can plot their “trajectories” in the complex plane (i.e., plot the imaginary part vs. the
real part) as we vary one of the parameters. Such a plot is called a “root locus”,
which is a common tool used by designers of various types of control systems. The
root locus for the unstable moored ship, with a = 0.5L and L, = 2L, is shown on
Figure 5.40; the parameter is the line tension (all quantities in the plot are
dimensionless). The stability indices of the unmoored ship are indicated by the
large open circles, at (-3.333,0) and (0.0225,0); these are the eigenvalues at zero
tension. As the tension is increased, the lower (negative) real root moves to the
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right (“Root I” on the figure), and three branches emanate from the upper (positive)
root. One of these remains real and moves to the left (“Root II””), passing zero and
becoming negative at a very low value of the tension (Ty' = 1.3 x 107 in this case).
The other two branches represent the complex conjugate roots; they remain in the
right half-plane until a value of Ty' of about 0.0009 is reached. Thus the
configuration is unstable up to this value of the tension, which is consistent with
Figure 5.39.

Ll a=0.5L
oy bp=2n

-\ ARootI.
e

Im(c)

N

“Rooti~

fams

4 -3 -2 -1 0 1
Re(o)
FIGURE 5.40  Root locus of the moored or towed ship that is unstable without the mooring

line, as a function of line tension. Open circles represent stability indices of
unmoored vessel. Numerical values correspond to Ty

As the tension is increased further, Roots I and II appear to converge toward a
value of ¢’ = 0.28, and the complex roots appear to be asymptotic to o' = 1.4, with
the imaginary parts diverging to infinity (i.e., the oscillation frequency increases
with increasing tension).
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Figure 5.41 is an enlarged view of the root locus in the vicinity of the origin;
the locus corresponding to a = 0.45L is also shown. Note that the complex
conjugate branches for a = 0.45L enter the left half-plane at a lower value of tension
than for a = 0.5L, as also indicated by Figure 5.39.
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FIGURE 5.41 Root locii near the origin, of the moored or towed ship that is unstable
without the mooring line, as a function of line tension. Numerical values
correspond to Ty

The root locus obtained by varying the location of the attachment point, a, is
shown on Figure 5.42, for Ty' = 0.001 and L; = 2L.. Here we show only the roots
which are located in the vicinity of the origin (“Root I”” is not shown; it is real and
remains near ¢' ~ —-3.2). In this case real Root II is critical. As the attachment point
is moved forward from x = 0, the root progresses to the left from 0.42, crossing the
origin at a value of a  0.41L. Note that the complex conjugate roots cross into the
right half-plane near a = 0.6L, moving back into the stable region at a somewhat
higher value of a. These magnitudes might be unrealistic since they represent
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attachment points that are located forward of the bow; however the exercise
demonstrates that the stability condition given in Eq. (5.299) is not necessarily
sufficient.
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FIGURE 5.42 Root locii near the origin, with attachment point as parameter



CHAPTER 6

DYNAMICS OF HIGH SPEED CRAFT

In the “traditional” maneuvering and seakeeping analyses described in the preceding
chapters, it is assumed that the geometry of the “wetted” hull surface is constant.
For high-speed craft, dynamic lift is developed which results in a speed-dependent
reduction in draft relative to the static condition, accompanied by a change of trim.
Some of the consequences are:

¢ Al hydrodynamic (and “hydrostatic”) coefficients are strongly dependent on
speed, even when normalized using speed squared.

* Longitudinal and lateral motions are coupled, since changes in trim and heave
affect the underwater geometry, which in turn affects lateral as well as vertical
and longitudinal forces.

* In waves, the underwater geometry may change significantly during the
passage of a single wave; in extreme cases the craft might even become
airborne. Thus nonlinear seakeeping behavior is more significant compared
with displacement ships.

Thus the methods presented in the previous chapters for prediction of hydrodynamic

forces and moments should be applied with caution in the regime where dynamic

lift is significant.

In this final chapter we will briefly summarize some of the available methods
for prediction of the maneuvering and seakeeping behavior of high-speed
monohulls. We will define “high speed” as that at which the effects of dynamic lift
become significant; this generally occurs above a Froude number of about 0.7-0.8.

1. Maneuverability

1.1 Transverse/directional stability, general

As we stated above, there is a high degree of coupling among the various motions of
high-speed craft. Thus the surge-sway-yaw equations cannot be reliably used for
trajectory predictions, as is commonly done for displacement craft. Because of the
complexity of this coupling and the strong dependence of the coefficients on speed,

361
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there is at present no reliable general method to predict the maneuvering
performance of high-speed craft. However, for stability analyses, in which we
consider the fate of small perturbations, the equations can be linearized about the
steady trim and heave values at a given speed. Furthermore, if these values are
“small” (which is usually the case in practice), the coupling between longitudinal
and lateral modes will be of second order. Thus the sway-roll-yaw equations can be
considered independently for the analysis of transverse/directional stability.

The equations of motion appropriate for analysis of the behavior of high speed
surface craft are developed by the author in Lewandowski [1994], corresponding to
a form of the “third coordinate system” presented in Section 6 of Chapter 1. These
equations are written relative to a coordinate system with its origin at the center of
gravity of the craft:

X=m(l'1+wqa —vra)

Y=m(\’/+ura—wpa) (6.12)
Z=m(W +vp, -uq,)
K= %(Ixxmx -1, L0y~ Ixz(oz) ra(Iyy(ny — Iyz Ixymx)+ qa( 20, — 1,0 — Iyz(ny)
M =%(Iyy(ny -1, Ixycox) pa(Izz(nz -L,0 )+ ra(Ixxu)x -lyo,- Ixzu)z) (6.1b)
N :—;i—t(lzzo)z -1,,0, Iyzcoy) qa(Ixxcox xy y Ixzmz)+ pa(I),ycoy — IyzcoZ - Ixymx)

where (you will recall) ® represents the angular velocity of the body with respect to
the axes and Q = (p,Qar.) is the angular velocity of the axes; we have added
subscript “a” to distinguish these components from the usual body-axes values. In
addition, to streamline the notation we have dropped the bars denoting that the
moments of inertia are evaluated with respect to axes passing through the center of
mass. Note that since the body can move relative to the axes, the moments of
inertia with respect to these axes will in general change in time. The moments of
inertia relative to the coordinate axes, relative to the conventional body-axes values,
are obtained as follows:

= [T] [ L] (T]" (6.2)

where [I;] represents the moment of inertia matrix relative to body axes and T is the
transformation matrix going from body axes to the coordinate axes, e.g. Eq. (1.8)%

* The moment of inertia [ 1] is a “second rank tensor”, which require two matrix multiplications for the
transformation, as opposed to vectors which require only a single multiplication by the transformation
matrix.
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We can combine Eqs. (6.1b) and (6.2) to express the first set of terms in the
moment equations in terms of the body-axes moments of inertia (which can
generally be assumed to be invariant) and the angular acceleration components of
the body with respect to the axes. The general form of these expressions is
complicated; however, if we assume small deflections and neglect terms higher than
first order in the perturbations, the expressions are simplified considerably.

For surface craft it is convenient to let the xy plane remain horizontal. Then we
have r, = ,= y and p, = q, = 0; also o, = ¢ and oy =90, where ($,0,y) are the
rotations of the body with respect to earth-fixed axes, as before. Thus the

transformation from body axes to this “boat coordinate system” involves only the
pitch and roll angles:

cos® sinOsing sinOcosd
T={ 0 cos¢ —sin ¢ (6.3a)
—sin® cosOsing cosOcosd

which for small deflections becomes

1 0p ©
T=| 0 1 —¢ (6.3b)
-0 ¢ 1

Plugging into Eq. (6.2), and neglecting terms of second order and higher in the
angles, we obtain the following expression for the moments of inertia relative to the
boat coordinate system:

xxb +2Ixzbe _Ixzb¢ Ixzb _(Ixxb —Izzbb
[I]z —Ixzbd) Iyyb (Iyyb _Izzb}b (64)
Ixzb _(Ixxb _Izsz (Iyyb _Izzb)i) Izzb _ZIxzbe

assuming port-starboard symmetry. We can write this in the form

[T]1=[IJ+[8l] (6.5)

where
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2Ixzbe _Ixzb¢ _(Ixxb —Izzbb
8l ~ Lt 0 (Iyyb —Izzb)b (6.6)

_(Ixxb _Izzbb (Iyyb _IZZbM) ZIXZbe
Thus the time derivatives appearing in Eqgs. (6.1b) can be expressed as

d . d .

where the last form is obtained by neglecting terms of second order and higher, as
before. Thus we do not need to wotry about the changes in the moments of inertia
(induced by motion relative to the boat coordinate system) when examining the fate
of small perturbations®.

Inserting all of the results of the previous paragraph in Egs. (6.1) and retaining
only linear terms, we obtain the linear equations of motion relative to the “boat
axes”:

X =mu

Y= m(\'/ + Uo\j/)

Z=mw

K= Ixxbd;_lxzbq./ (68)
M =10

N= Izzb\.‘} - Ixzb(";
where U, is the steady forward speed as before.

Focusing on the linearized sway / roll / yaw equations, which govern transverse
and directional stability, we can express the hydrodynamic force and moments as
iinear functions of the velocity and acceleration components, as we did for other
craft back in Chapter 3:

Y = YoV + Yy v+ Vb + Yo+ Yoo + Yy + Yy
K=K,V +va+K$$+K¢¢+K¢¢+KW +K (6.9)
N= N‘«,V+NVV+N$$+N¢¢+N¢¢+N¢®+N¢\jj

" Recall that we have assumed that the mean heave and pitch (trim) are also small (of the same order as
the perturbations).
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where the coefficients may be functions of speed, and trim and draft (which are
themselves speed-dependent).

Combining Eqgs. (6.8) and (6.9) and collecting terms we can write the sway /
roll / yaw equations in the form

b1V +b,yv+byd+byd+bsh+be+byy=0
div+dyv+dsd+dsd+dso+dgi+dy=0 (6.10)
£V + v + £30 + £40 + f50 + foif + £y =0
where by =Y, —m, etc. You should by now have the ability to solve this set of

equations in your sleep (hopefully this book has not put you in that condition,
however!): Assume solutions of the form

v= voeicrt
o =dge' (6.11)
\.’.J — \:erict
and substitute into Egs. (6.10) to obtain
Gbl +b2 02b3 +Gb4 +b5 Gb6 +b7 Vo
ody+d, o?dy+odg+ds odg+dy [, b=0  (6.12)

ofy +f, o’fy+ofy+fs ofg+f; ||y,
As before, the condition for nontrivial solutions is that the determinant of the

coefficient matrix equals zero, which leads in this case to a fourth-order
characteristic equation in o:

Ac*+Bo’+Co’+Do+E=0 (6.13)

The coefficients are given in terms of b, d; and f; in Eqs. (6.14).
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A= by(dsls — f3ds) + by(def; — dyfe) + be(daf) — f3d))

B = by(dsfs — f3de) + b\(dufs + dsfy — fudg — f3d7) + ba(def) — dife)
+ba(dsf) + dgfy ~ dof — dif7) + by(dsf) — £3d)) + be(daf) + dafs — fud; — f3dy)

C= bz(d4f6 + d3f7 - f4d6 - f3d7) + bl(d5f6 + d4f7 - f5d6 - f4d7) + b5(d6f1 - dlf()) (6 14)
+ ba(dsf) + defy — dafs — dify) + bs(dsfy, — dofy) + bodafy + dsfy — fudy — f3d2)
+ be(dsf) + dafy — fsd; — fudy)

D = by(dsfs + daf; — f5ds — £4d7) + by(dsf; — f5d7) + bs(dyfy + def; — dofs — dyf7)
+by(dsf; — dafy) + by(dsfy + duf, — fsd) — fada) + be(dsfy — fsd2)

E= by(dsf; — fsdy) + bs(dsf; — dafy) + by(dsf, ~ fsd2)

To evaluate stability we once again apply the Routh-Hurwitz criteria (Appendix
C, Chapter 3) which results in the following conditions (see Section 7.2.3 in Chapter
3):

A,B,C,D,E>0,BC~AD >0, and B(CD - BE)- AD*> 0 (6.15)

1.2 Transverse/directional stability, planing boats

Unfortunately there are at present no theoretical methods available for the
evaluation of the hydrodynamic coefficients for high-speed craft. However, the
author has developed semiempirical methods for evaluation of all of the coefficients
in the linear sway / roll / yaw equations, applicable to hard chine planing craft in the
planing regime (i.e., the water breaks cleanly from the chines and transom).
Lewandowski [1996] describes a semiempirical method to determine the roll
restoring moment coefficient ds for these craft, including both static and dynamic
contributions. The contribution of appendages to the roll restoring and damping
coefficients is given in Lewandowski [1997], where it is shown that the appendages
actually reduce the roll restoring moment at positive trim angles.

Brown and Klosinski [1990, 1991a] describe an extensive series of captive
model tests of prismatic hull forms having deadrise angles of 10, 20 and 30 degrees.
The models were towed at a range of speeds, drift angles, roll angles, trim angles,
and turning radii (including straight-course). This data has been analyzed using
functional forms suggested by Smiley [1952] to determine the coefficients
Y,. Yy Ky, Ky, Ny,and Ny ; the resulting expressions are given in Table 6.2.

Table 6.1 contains some preliminary results required in the evaluation of these
quantities. The coefficients are expressed as functions of the beam (specifically, the
“average wetted chine beam” B) and deadrise B of the craft, and the speed, running
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trim angle 1, wetted keel and chine lengths Ly and L¢, and transom draft T, see
Figure 6.1.

The added mass and added inertia terms for sway and yaw are estimated by a
“strip theory” approach using the theoretical value for flow past a two-dimensional
wedge. The contribution of appendages to the added mass can be found using the
formula for added mass of a plate as was done in Chapter 3. The resulting formulas
are also given in Table 6.2. Formulas for the effects of appendages are presented in
Table 6.3.

A series of dynamic roll extinction tests was also carried out using the prismatic
hulls (Brown and Klosinski [1991b, 1992]). The empirical expressions for roll
damping and added inertia of the hull given in these references are also included in
Table 6.2.

FIGURE 6.1 Definition of mean trim angle 1, wetted keel and chine lengths LK and LC,
and transom draft T, for a planing hull.

1.2.1  Dynamic roll moment

The expression for dynamic roll moment in Table 6.2 was developed using the
formulas for lift on a planing surface presented by Brown [1971]; this formulation is
convenient because in it the “static” and “dynamic” contributions are distinct. Here
“static” denotes the contribution that is not explicitly dependent on speed; however
it is dependent on the trim and heave, which do depend on speed. This static
contribution can be computed using the method developed for displacement ships,
except that the instantaneous (speed-dependent) waterplane area and center of
buoyancy must be used. Furthermore, since the flow breaks from the hull at the
transom, the pressure at the stern is atmospheric; thus the total “static” force and
moment are expected to be less than a truly static condition (same trim and draft but
at zero speed). A static force reduction factor of 0.624 was obtained by Brown
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[1971] based on experimental data; applying this same factor to the static roll
moment we obtain:

Ksy = —0.624pg[V(zG ~ 25)+S,y] = —0.624[pgB>(Lg + 3Lc)/48 + (KB—KG) A]

where A represents the instantaneous static lift (see Table 6.2). However, more
recent roll moment data (Brown and Klosinski {1990, 1991a], Lewandowski [1996])
suggest that this expression underestimates the magnitude of the roll moment at
lower speeds (speed coefficients Cy below about 2.5). A possible explaination is
that at these speeds the flow is not separating fully from the chine and transom,
resulting in “side wetting” and a consequent increase in static pressure. Thus a
“side wetting correction factor” f, was developed (Lewandowski [1997]) which
restores the full static pressure to the portion of the hull subject to side wetting,
which can be predicted using a relationship presented by Savitsky and Brown
[1976]; the formulas are given in Table 6.2. Thus the final expression for the static
moment rate is

Ksy = —0.624f,,[pgB’(Lg + 3Lc)/48 + (KB-KG) A] (6.16)
TABLE 6.1 Definitions for planing craft
Quantity Definition
B Average wetted chine beam
B deadrise angle amidships
T Dynamic trim (positive bow up)
Lk Wetted length of keel
Lc Wetted length of chine
T Transom draft
T T/B
KG' KG/B
Cy Speed coefficient U/N(gB)
LCG Measured from transom
LCP Center of pressure measured from transom
A Appendage planform area
c Appendage mean chord
b Appendage span

Ur Flow velocity at appendage

Coordinates of appendage in body system

(xe, Ve, 2¢) with origin at CG
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TABLE 6.2 Preliminary calculations, dynamic stability of planing hulls

Quantity Formula

A Mean wetted length/beam ratio, [Lx + L]/ 2B

Cy Speed coefficient U/ J/gB

k(B) Hull added mass function: 0.06641+0.00716B+ 0.0003861p>, B [deg]
h, Transfer of axes lever arm: (KG-0.3927B tanf)(KG-0.306 B)

A “Static” lift: 0.25 p g A% sin2t B®

KB Estimated vertical center of static lift: B tanf [0.5 + Lo/ Lg]/ 6

Dynamic lift

Lp %pUsz{SmZT

L —(1- s1n[3)cos1:—x—+ikcosrsm 2tcosf
2cosfP| 4 1+A2 4

Roll-induced change in dynamic normal force (one side); T in radians

] o
Fy - 5 {(1 sin B\ il 133}+1 smp__ 1 5 Lou?p?
4cos” B +A oo cosP 2(1+1)* ) 2
h, Lever arm for dynamic hull force: 0.8nB/(8 cosp) — KG sinf3
Kpy Dynamic roll moment rate = 2h,F,
Side wetting correction factor:
fiu fow = 1 if U? > gB(A — 0.16 tanp/tant)/3 sint
fsw =1+ 0.603L,/AB if U? < gB(A — 0.16 tanf/tant)/3 sint

Le, Lc—3U?sint/ g

o ]

Appendage added mass function

e ot AR Ac / 4V(1 + AR?)
AR Appendage effective aspect ratio:
b¥/A, isolated from hull; 2b*/A, against hull
A Appendage lift rate (per radian):
0.5pUs* A [1.87/(142.8/AR)]
b, Lever arm for appendage roll moment
yrSindr + (ZpcoST - XpSint)cosdy
o Appendage cant angle relative to vertical

(XF, YE» ZF) Coordinates of appendage in body system with origin at CG
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TABLE 6.3 Hydrodynamic coefficients in linear sway / roll / yaw

equations for hard-chine planing hulls

Coefficient Formula
Y, —B?p tanP k(B) [ Lx + 2Lc] / 12
Ky ~0
Ny —B?p tanp k(B) [Li + 2LgLc+ 3Lc2] / 48
Yy Ny
Ky 0
Ny —B?ptan k(B) [Ly’ + 2L Let3Lc L + 4L / 120
Yd; 0
Kj -0.010237pB’A (1-sinB) + h, Y,
Ny ~0
Y, —0.5pUB?[ 0.6494 B°° T'2 C, 2]
K, Y, [-KG+ 1.5145 B/ B °**]
N, Y, [-LCG+12.384 B T'**/ (1+ 5.28)]
Yy, 0.5pUB2L[ 55.439 B%° T'%] [0.02754 - 0.5949 T'/ (t+ 5.28)]
Ky ~0
Ny 0.5pUB3L[ 73. 918 B%° T° 1 [0.00638 + 6.714 T2/ (v + 5.28)*]
Yq') ~0
K — (1-sinB)(0.029Cy + 0.021) pgB*V(B/g)+ h,Y,
N, ~0
Y, 2Fsinf
Ky Kpy + 0.624 £, [-pgB*(Lg + 3L)/48 + (KG-KB) A]

Y, (LCP - LCG)
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TABLE 6.4 Contribution of appendages to hydrodynamic coefficients

Y, -mFCOSZ(bF

K, mrh; cosdr

Ny -mFXFCOSZ¢F

Y\-l-, -mFXFCOSZ¢F

Ky mghsxp cosdr

Ny -mFXF20052¢F

Y; mg(zrcosPr—yrsindr)cosdr
K -mghz(zpcosdr—yrsindr)
N;  mexe(Zecosdr—yrsingr)cosdr
Y, —Acos’de/U

K, A bh; cosdx/U

N, —AXFCOSZ(I)F/U

Y\l/ —Axpcosz¢,.~/U

Ky A h; xpcosdp/U

Ny —Axpcos’p/U

Y Acosdp(zrcosdr—yrsingg)/U
K —A hy(zrcospr—yrsingy)/U
N Axpcosp(Zrcosdr—ypsingp)/U
Y, —AT cos’y

K, At h; cosdr

Ny —-A1 choszd)p

Considering now the dynamic component, when the craft rolls to a small angle
8¢, the “effective deadrise” increases on the port side (for a positive roll angle) and
decreases on the starboard side; see Figure 6.2. The normal force on each surface
decreases with increasing effective deadrise angle; thus the dynamic force on the
“rolled down” side is larger than that on the “rolled up” side (Figure 6.3). Thus it
might appear that the dynamic roll moment contribution is always stabilizing;
however, unlike the waterplane contribution in hydrostatics, this is not a pure
couple. Thus if the line of action of the total dynamic force passes beneath the CG,
the dynamic forces will have a destabilizing effect.

An approximate expression for the location of the lateral center of dynamic
pressure on a deadrise surface was developed by Smiley [1952]:
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c_EB_nB
P 2cosp  8cosp

(6.17)

where cp is measured from the keel (Figure 6.2). Thus the lever arm about an axis
through the CG is

hy =—"2 __KGsinp (6.18)

8cosf

FIGURE 6.2 Cross-section of a planing hull at a roll angle, showing effective deadrise
angles and dynamic normal force

The rate of change of the normal force (Fp or Fg) with roll angle is given in
Table 6.2 (note that this is the full nonlinear expression; note that contrary to the
usual planing boat convention, 1 is taken to be in radians in this expression). It can
be seen immediately that this rate is always negative as indicated above. Thus the
sign of the dynamic component of the roll rate depends only on the sign of the lever
arm h, (Eq. (6.18)); thus the dynamic component increases stability if
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bi

———>KG' (6.19)
8cosBsinf

The only assumption involved in the development of the dynamic roll rate from
Eq. (6.18) and Brown’s expression for dynamic lift for a prismatic hull (see Table
6.2) that the keel wetted length Ly is constant for small changes in roll angle®. The
expression is apparently linear in the trim angle. Actually this is true only at
constant mean wetted length to beam ratio A, which is itself a nonlinear function of
trim. For a prismatic planing hull

Ly -Lo =2 1anP (6.20)
T tanT
SO
oLk _tanp (6.21)
B 2ntant

Thus we run into problems with the prismatic hull equations if we try to make the
trim angle foo small. This could have been anticipated based on Figure 6.1, since
eventually the bow will enter the water and the hull can no longer be regarded as
“prismatic”. At any rate, we will forgo attempting to linearize the lift expressions
with respect to trim, at the cost of strict mathematical consistency, since there is
little if any additional computational effort involved in retaining the fully nonlinear
expressions.

To illustrate the behavior of the roll restoring moment with speed we will
consider the case given in Table 6.5. The trim and mean wetted length to beam ratio
can be computed from this data using the classic Savitsky[1964] method, for
example; the results are shown on the upper panel of Figure 6.3. These results,
along with the data in Table 6.5 below, are next substituted in the expression for K,
in Table 6.2 to obtain the roll moment rate coefficients that are plotted in the lower
panel of the figure. Recall that roll stability is reduced as the roll rate becomes less
negative.

¢ This latter assumption is supported by experimental evidence (Brown and Klosinski [19901); this
assumption is applied in computing the behavior of A with roll angle using the effective deadrise concept.
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TABLE 6.5 Planing hull example

Length overall,m 32
Beam at chine, m 4.15
Deadrise, deg 15
Weight, MT 37.6
LCG, m 9.14
KG, m 2.0
Thrust line height at LCG,m 2.0
Drive shaft angle, deg 8

Trim, deg

©C -~ N W DU~
/
I

! —1 J }

o

Static
-0.1 F Dynamic 7]
K
— TOTAL
-0.2 4
Pg I
-0.3 + 4
P Estimated static value
0.4 1 1 1 1 1
0 10 20 30 40 50

Speed, knots

FIGURE 6.3 Components of roll moment rate for the example case

The figure shows that the “static” contribution to the roll moment rate decreases
significantly in magnitude with increasing speed. This is mostly due to the
reduction in waterplane area as speed increases. The dimensionless waterplane
area, normalized using the square of the beam, is equal to the mean wetted length to
beam ratio A; the reduction of the static moment is practically linear with A (there is
also a small contribution of the reduction in height of the center of buoyancy). This
loss is compensated for by the dynamic contribution, which is negative (stabilizing)
and increasing in magnitude with increasing speed. Then net effect is that the roll
moment rate has a maximum (the magnitude is minimum) near 40 knots in this case,
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decreasing (becoming more negative) at higher speeds. The estimated” roll moment
rate at zero speed is indicated by a circle. The reduction in magnitude of the “roll
restoring moment” with increasing speed is significant.

Figure 6.4 shows the effects of CG height and deadrise angle on the roll
moment rate. As might be expected, the increase in CG height leads to an upward
shift in the static component of the roll moment rate, with a relatively small effect
on the dynamic component. Increasing the deadrise also leads to a reduction in the
magnitude of the roll moment rate. At lower speeds, this is due to the smaller chine
wetted length (relative to the lower deadrise hull); at higher speeds, the roll moment
is reduced because the dynamic lift is lower and the lever arm h, is smaller than for
a lower deadrise hull.

0.00

-0.05

-0.10
pr4 KG =2m

B =25 deg

-0.15

-0.20 4

KG =2m
B =15 deg

-0.25 T T T T
10 20 30 40 50

Speed, knots

FIGURE 6.4 Effect of CG height and deadrise on roll moment rate

Note that the concepts of “righting arm” and “metacentric height” are not
meaningful when dynamic lift is present, since the static and dynamic contributions

have distinct lever arms; the two moment components must be computed separately
and added.

1.2.2  Dynamic stability; effect of appendages

If the trim and wetted lengths of the chine and keel are known as a function of
speed, the sway / roll / yaw stability of a hard-chine prismatic planing hull can be
computed using the formulas in Tables 6.2 - 6.4 and Egs. (6.14) and (6.15); in fact,
the ambitious reader can even (numerically) solve Eq. (6.13) to obtain the stability

¢t is an estimate because the value depends on the geometry of the bow, which will be submerged at
zero speed; the bow shape has not been specified.
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indices (see Abramowitz and Stegun [1972], Section 3.8.3 for example). The other
required input quantity is the transom draft T, which is related to the trim and keel
wetted length by

T=ILgsint (6.22)

as is evident from Figure 6.1. This has been done using the data for the example
case above (assuming no appendages); the results are shown in the form of a root
locus plot® on Figure 6.5. There are of course four roots; one pair represents
oscillations with decreasing frequency and increasing damping as speed increases;
these roots become real above about 59 knots. The other pair of roots represent
oscillation at a lower frequency, which first increases and then decreases with
increasing speed. These roots become real above a speed of about 25 knots; the real
roots get respectively larger and smaller with further increases in the speed. Thus
below 25 knots we should expect oscillatory motion in all three modes; at 20 knots,
for example, there are two frequencies: 1.45 rad/sec and 0.51 rad/sec (periods of
4.3 and 12.3 seconds).

20 T T T T 1 I

05 F

Im(o)

BAR RBI H R 9 g g B
0.0 X

05 -

20 1 1 1 1 1
-12 -10 -8 -6 -4 -2 0

Re(o)

FIGURE 6.5 Root locus plot for example planing boat. Numbers correspond to
speed in knots. Units are radians/sec.

¢ Strictly speaking, this is not really a root locus, which actually is supposed to show the behavior of the
roots as a single parameter is varied; here, the primary parameter is speed, but trim, wetted lengths Lg
and L¢, and transom draft all vary with speed. A plot could be constructed for variation of any one of
these parameters, but most of the points on it would represent impossible (non-equilibrium) conditions.
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Figure 6.6 shows the corresponding plot for the roots of the roll equation
considered as a single degree of freedom, and for the sway/yaw equations without
roll coupling, are shown superimposed on the results in Figure 6.5. This figure
shows that the first pair of roots discussed above, corresponding to higher
frequencies (shorter periods), are associated with the roll motion, and the second
pair is associated with sway/yaw motions. The salient feature in Figure 6.6 is the
large difference in the behavior of the roll root for the coupled and uncoupled
systems. Using the single degree of freedom expression leads to a substantial
under-prediction of the magnitude of the real part of the stability roots. The effect
of coupling in this case is to increase the apparent roll damping.

2 T T T T T T T T T T 1 T
( ~—e— Coupled
o Rol
O SwayYaw
il
Im(s) T
0
A
2 1 1 1 ] 1 1 ] 1 1 1 1
12 -11 10 9 8 -7 -6 5 -4 3 -2 -1 0
Re(s)

FIGURE 6.6 Comparison of root locus plots for coupled system with single degree of
freedom roll and two degree of freedom sway/yaw systems.
Units are radians/sec.

. To examine the effects of appendages, it will be assumed that the boat is fitted
with two rudders, oriented normal to the hull surface and in the propeller stream.

The rudder dimensions are given in Table 6.6. The flow velocity at the rudder, to
be used in the expression for the appendage lift function A, is

8 K
Ug =(1-w) 1+——LU (6.23)
x y2

We will assume here that w =~ 0 and
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K
2T 202
JZ

so that
Up? ~1.5U?

Interestingly, the contribution of the rudders to the roll restoring moment is
positive for positive values of the lever arm h; and trim angle (as is almost always
the case), thereby reducing the magnitude of the total roll restoring moment. This is
easily verified physically, since it can be seen that when the boat is trimmed and
heeled, the rudder force induced by the combination of trim and heel will act to
further increase the heel angle (it’s easier to visualize this if you make a small
cardboard model). This suggests that addition of rudders or similar appendages will
reduce the transverse stability of a planing boat, which was pointed out by the
author [1995]. However, this is one of the pitfalls of considering roll as a single
degree-of-freedom. What really happens that the appendage force also induces
yawing motion, which generally overwhelms the effect of roll (the lever arm
associated with yawing is typically much larger than h;) and the net result is
increased stability.

TABLE 6.6 Rudders for planing hull example

Number of rudders 2
Orientation Normal to hull
Span, m 0.61
Chord, m 0.53
Location of centroid, m:
Forward of transom 0.267
Lateral 0.609
Below keel -0.152

The effect of the rudders on stability is best illustrated by examination of the
critical (least negative) stability root; this is shown on Figure 6.7 for the hull with
and without rudders. The figure shows that with the exception of a small range of
speeds near 30 knots, addition of the rudders does indeed enhance stability. Note
that to the left of the abrupt change in the slope of the curve, the roots are complex
(the motion is oscillatory) whereas to the right the roots are real. Figure 6.8 shows
the corresponding results for the uncoupled roll plus sway/yaw equations. Here it is
incorrectly predicted that the rudders will reduce stability at the higher speeds, as
mentioned above.
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0.0 — —T— T T T L
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—8— With rudders

Critical root

10 20 30 40 50 60
Speed, knots

FIGURE 6.7 Critical stability roots for sway/roll/yaw motion of a planing boat
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FIGURE 6.8 Critical stability root, neglecting coupling between roll and sway/yaw
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1.3 Heave / Pitch Stability

While on the subject of stability, we should briefly discuss “longitudinal” or
heave/pitch stability. High speed craft may develop an instability consisting of
combined pitching and heaving oscillations known as porpoising. Porpoising
occurs as a result of running at too large a trim angle; based on experiments with
seaplane floats, it was shown that the trim at which porpoising occurs can be
expressed as a function of Cy and a “loading coefficient” C, where

AW

CA = 3
pgb

(6.24)

and A, is the “load on water”, the weight minus the vertical component of thrust.

Based on data from a now celebrated series of model tests conducted by two
undergraduates at Webb Institute’ (Day and Haag [1952]), Savitsky [1964]
developed a plot of the limiting trim angle as a function of

JCa _ [

Cy 2

where C; is a lift coefficient, for deadrise angles of 0, 10 and 20 degrees (Figure
6.9). The following expression represents these curves fairly well:

T, =-1.87+ 12.54@ + 80.87—(:2—L +0.1933 - 0.00173% - 0.3125, /% (6.25)

which is applicable for

[c
0.13< —2L- <03 and 0<B<20°.

Solutions to a porpoising problem include reducing the trim angle by shifting
the CG forward or adding trim tabs or a transom wedge.

Another pitch instability referred to as “bow drop”, which is non-oscillatory, is
associated with operation at low trim angles when the curved forward sections
become immersed. The longitudinal flow around the curved areas induces low

"Day and Haag employed planing surface models that had a four-inch beam, showing that carefully
conducted tests of “small” models can produce useful results.
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dynamic pressures, which may tend to pull the bow down further. A boat with
highly curved buttocks is more prone to develop the local low pressure areas that
lead to this type of instability (Blount and Codega [1992]). These low pressure
areas may also reduce the roll restoring moment, and furthermore, any slight port-
starboard asymmetries may induce heeling and possibly yawing motions, resulting
in broaching (“chine tripping”) or “corkscrew” oscillations. These instabilities
appear to be a function of hull loading and LCG location as well as the curvature of
the buttock lines; a proposed general guideline (Blount and Codega [1992]) states
that such instabilities are likely under the following conditions:

Dynamic instability likely if:
Ap/ V<58 and CAp - LCG <0.03L

where Ap is the projected bottom area bounded by the chines and the transom, and
CAp is the centroid of this area. Thus the “problem boats™ are relatively heavily
loaded with forward LCG locations. This combination of heavy weight and forward
LCG requires a forward center of buoyancy location which is usually associated
with very full waterlines and severely curved buttock lines in the bow. A well-
designed planing hull will not have such features and thus would not be expected to
experience the “bow drop” phenomenon.
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FIGURE 6.9 Porpoising limits for prismatic planing hulls (after Savitsky [1964])
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1.4  Turning Performance

Prediction of the turning performance of high speed craft is generally more difficult

than for slow-speed displacement ships. Reasons for this include:

o The hydrodynamic force and moment coefficients are highly speed-dependent
(even after normalization using U%);

e All motion modes are strongly coupled;

e No techniques exist to predict any of the nonlinear force or moment
coefficients for horizontal-plane motions.

Turning performance of high speed craft can of course be assessed using captive

model test data; the strong speed dependence of the coefficients means that data are

required at each speed of interest. Free-running tests can also be used as for

displacement ships; here the combination of smaller scale ratios and larger

prototype speeds generally results in much higher model speeds than for

displacement ship models of the same size. This means that a more powerful model

propulsion motor is generally required, sometimes necessitating the use of internal

combustion engines which are more difficult to control than heavier, battery-

powered motors which can be used in slower displacement ship models.

A simple expression which can be used to roughly approximate the steady
turning radius of small craft equipped with conventional propeller and rudder
arrangements has been derived by the author from the full-scale data presented by
Denny and Hubble [1991] and other sources:

2.85
STD 117+ o.ozzzFV(L] (ﬁ) (6.26)
L v/3 8

for

03 <Fy<4
45<L/VP<7

where the volumetric Froude number

Fy = U
[gvl/3

is based on approach speed, and 6 is the rudder angle in degrees. The formula
reflects a linear growth of turning diameter with Froude number; the dependence on
1/ is consistent with linear theory. The formula indicates that turning performance
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improves with increasing displacement for a given length, which is consistent with
observations and theoretical predictions for displacement craft (Crane et. al.
[1989]). Other factors which may influence turning diameter, such as deadrise
angle, length to beam ratio and trim, are not included in this equation because there
simply is not enough data available to isolate these effects. In addition, Equation
(6.25) contains no specific dependence on rudder geometry. It has been shown for
high speed small craft that steady turning diameter is in fact not strongly dependent
on rudder geometry, provided that the total rudder planform area is greater than
about 1/30 of the product of static draft and waterline length (Sugai [1963]).

2. Seakeeping

Prediction of the wave-induced forces and moments on high speed craft is also more
difficult than is the case for displacement vessels, primarily because the underwater
hull shape is so strongly speed dependent because of dynamic lift and the associated
moments. In addition, because of the relatively small size of these craft, the fraction
of the hull that is in contact with the water can vary substantially in each wave
encounter; in fact some wave components may not be encountered as the hull
“skips” over them. Thus the essential assumptions of (relatively) “small” waves
and proportionally small motions are questionable for such craft. However, at low
speeds (below Cy = 1.5 or so) the approach of the previous chapter is probably
adequate.

Data from a comprehensive series of model tests carried out at Davidson
Laboratory (Fridsma [1969, 1971]) in head seas show that while responses increase
linearly with wave height at a speed coefficient of 1.3, at speed coefficients of 2.7
and 4.0 the responses are noticeably nonlinear. A nonlinear approach for
computation of surge, pitch and heave motions of planing craft, based on strip
theory, was formulated by Zarnick [1978]. This approach is based on the following
expression for the sectional dynamic normal force:

()= sl Copbeh ()} 627

where w is the velocity relative to the fluid normal to the baseline; this is of the
same form as the Morison formula, Eq. (4.59). The theory was developed for V-
shaped sections; Cp is a “crossflow drag coefficient” which Zarnick took to be

Cp.= 1.0cos(B)

and for the added mass coefficient he used
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Az (X)=gpb2

based on the value for an impacting wedge. He accounted for the wave force by
including the vertical wave particle velocity in the computation of the relative
velocity w (and by the effect of the waves on the wetted length and draft);
diffraction is neglected.

The total dynamic normal force is computed by integrating Eq. (6.27) over the
instantaneous wetted length of the hull. The longitudinal and vertical forces, relative
to the “boat axes” described above, are obtained by resolving the normal force. The
pitching moment is obtained by multiplying by the x-coordinate of the section prior
to integration, as in the strip theory discussed in the previous chapters. To these the
instantaneous hydrostatic force and moment are added (also determined by
integrating over the instantaneous wetted length). Zarnick employed pressure
reduction factors of 0.5 for the buoyancy force based on Shuford [1957], and 0.25
for the pitch moment “to obtain the proper mean trim angles”.

Correlation of the predicted heave and pitch motions with the regular wave data
of Fridsma [1969] is “remarkably good” (Savitsky and Koelbel [1993]). However,
in irregular waves, the predicted vertical accelerations are “substantially smaller”
than the experimental values in severe seas, although the motions are reasonably
well predicted. Unfortunately, the accelerations are of principal interest to
designers.

2.1 Impact accelerations

As an alternative to the theoretical predictions, at least two pragmatic empirical
formulas for prediction of acceleration statistics in irregular seas are available. One
method, from Savitsky and Brown [1976], is based on a regression analysis of
Fridsma’s [1971] data. The formulas are applicable to hard-chine prismatic planing
hulls in the following parameter ranges:

Parameter Range
Cv 13-4
L/b 3-5
Trim, deg 3-7
Deadrise, deg 10 -30
Ca 0.38-0.72

H;/b 0.2-0.7
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Average impact acceleration at CG:

Z H Cy?
—€ = 0.009781| —*+0.084 —ﬁj v (6.28)

Average impact acceleration at bow (10% of LOA aft of the FP):

L 1.13\/L_/E(L/b—2.25)} 629)

Zhow = Z
bow cglr CV

In these formulas L is the overall length and the trim is the running trim at the given
speed in calm water. Figures 6.10 and 6.11 show comparisons of these predictions
with the original data on which the formulas are based. The formulas indicate that
low trim, high deadrise, and high loading are advantageous with respect to impact
acceleration.
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FIGURE 6.10 Comparison of prediction formula with data, average CG acceleration

Note that the wave spectra in the model tests were of the Pierson-Moskowitz
form, characterized by a fixed relationship between wave height and modal
frequency (Eq. (4.113)). So the waves get longer as they get higher, and
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consequently the average slope doesn’t change much with increasing height. This
assumption is thus built into the empirical formulations, Eqs. (6.28) and (6.29)
(perhaps explaining why the equations do not exhibit a strong nonlinearity with
significant wave height). Steeper waves would be expected to result in higher
accelerations.
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FIGURE 6.11 Comparison of prediction formula with data, average bow acceleration
Another formulation was developed by Hoggard and Jones [1980], based on

regression analysis of model and full-scale data for 14 hard-chine planing hulls with
widely varying hull forms. The range of parameters for this data is:

Parameter Range
Fn 03-18
Ly/b 2.66 - 643
Deadrise, deg 10-24
Ca 0.17-1.27
H,/b 0.12 -0.80

Here Lp is the length between perpendiculars. The Hoggard and Jones formulas
give the average of the one-tenth highest acceleration peaks at the CG and at the
bow:
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Average impact acceleration at CG:

5 0.25
z H F
M=7TS(1+%] _le_s (6.30)
g (L, /0)
Average impact acceleration at bow (10% of LBP aft of the FP):
. 0.50 0.75
z H F
leO.S——S—[Hl v (6.31)
g b 2 L,/b

Savitsky and Koelbel [1993] note that this formulation shows no dependence on
deadrise and a very weak dependence on trim, in contrast with the Savitsky/Brown
formulas. They speculate that trim and deadrise may not have been independent
variables in the Hoggard/Jones database (higher deadrise hulls run at lower trim
angles, other factors being equal) so that the two effects may cancel. In addition,
we note that the speed dependence is quite different in the two methods.

In order to compare the results of these two formulations, we need to know how
the average of the 1/10-highest accelerations is related to the average value (of the

peaks). Fridsma [1971] found that his acceleration maxima were well represented
by a simple exponential distribution:

P(3 > 7)= e 0/ 2 (6.32)

Thus we can compute the average of the 1/n-highest accelerations using the method
of Section 4.1.3 in Chapter 4:

Zyn =#(1+1nn) (6.33)
So the average of the 1/10-highest acceleration peaks is
Zy1o =3.30Z (6.34)

When applied to Fridsma’s data, using this factor, the Hoggard/Jones formulas
generally underpredict the accelerations, particularly the larger values. For
example:
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Parameter Value
Cv 2.66
L/b 5
Trim, deg 6
Deadrise, deg 10
Ca 0.6
H./b 0.444

Measured Egs. 7.28-29 Eqgs. 7.30-31
CGaccel, g 1.70 1.46 0.55
Bow accel, g 5.57 5.27 1.95

This is of course not a fair comparison of the accuracy of the methods but it does
provide an indication of the potential differences in the predictions.

2.2 Application: Habitability

Habitability refers to “the acceptability of conditions on-board a ship in terms of
vibration, noise, indoor climate, and lighting as well as physical and spatial
characteristics, according to prevailing research and standards for human efficiency
and comfort” [ABS, 2001]. Vibration, in particular, is a concern for high-speed
craft because of the relatively high slamming accelerations that they experience.
We briefly discussed the effects of vibration in the previous chapter, where we
presented some of the criteria contained in ISO International Standard 2631. We
will now apply these criteria to evaluate the habitability of a planing boat with
respect to vibrations.

As discussed briefly in Section 8.5.2 in Chapter 5, ISO 2631 addresses the
effects of vibration on motion sickness incidence, health, comfort and perception.
Criteria are based on weighted accelerations; there are different weighting functions
for different axes of motion (relative to the human body). The weighting functions
are specified in the frequency domain and are equivalent to filters to be applied to
the time-domain data. The weighting functions W, and W; applicable for
vibrations in the “vertical” (head-to-foot) direction, for evaluation of effects on
health, comfort and perception (Wy), and motion sickness (Wy) are shown on Figure
6.12. The figure shows that the frequencies that contribute to motion sickness are
much lower and narrow-banded than those contributing to the other factors. The
peak of the weighting curve for motion sickness occurs at 0.17 Hz whereas that for
W, occurs at about 5.5 Hz.
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Frequency weighting

Frequency, Hz
FIGURE 6.12 Frequency weighting curves, from 1SO 2631

A typical time history of bow vertical acceleration (in this case about 21%L aft
of the FP) on a 1/10-scale model of a 19m planing boat in head seas is shown on
Figure 6.13. The full-scale speed in this example is 26 knots and the significant
wave height is 1.25m (borderline between Sea States 3 and 4) with a modal period
of 8 sec. The total run time was 30 seconds model scale which corresponds to 95
sec full-scale; there were about 53 wave encounters during the run. This is not
considered to be long enough for a valid statistical analysis (a rule of thumb is that
at least 100 wave encounters are required). Figure 6.14 shows the evolution of
some of the statistics; note the remarkable effect of the slam that occurred at 19.1
sec on the skewness (measure of asymmetry) and particularly on the kurtosis
(measure of flatness of the distribution). However, the figure shows that the RMS
acceleration is notably consistent after about 20 seconds (the upper panel shows the
RMS acceleration with an expanded vertical scale). Thus the RMS acceleration is
probably representative of the value that would be obtained from a longer run.

A rough spectrum® of the acceleration was obtained by applying three
overlapping FFT’s to the data; see Figure 6.15. The corresponding Wy- and W-
weighted or filtered spectra are also shown. Because of the relatively high
encounter frequency, there is not much energy at low frequencies; consequently the
Wieweighted spectrum is small. At the other end of the spectrum, there is also not

€ The spectrum is given by the expected value of the squared magnitude of the FFT divided by the record
length, which is approximated using an average of the values from several records. The random error of
the spectral estimate is proportional to the inverse of the square-root of the number of records used in the
average; se¢ Bendat and Piersol [1993], chapt. 3.
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much energy above about 1 Hz so that the W,-weighted spectrum is also relatively
small.

Acceleration, g
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FIGURE 6.13  Time history of acceleration near the bow of a model of a 19m
planing boat. Speed: 26 knots. Significant waveheight:
1.25m. Head seas.
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FIGURE 6.14 Evolution of some statistics of acceleration shown in previous figure

The effects of vibration on health, comfort and perception are determined based
on the RMS of the weighted acceleration for the duration of exposure. This is given
by the area under the weighted spectrum; it could also be calculated directly from
the time history of the filtered signal. The motion sickness incidence is a function
of the “motion sickness dose value” calculated using Eq. (5.224); however this is
equivalent to multiplying the RMS of the weighted acceleration by the square root
of the exposure time. The RMS accelerations are tabulated below.
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FIGURE 6.15 Spectra of original and weighted acceleration

Results for bow vertical acceleration
RMS, g RMS, m/sec’

Unweighted 0.423 4.15
Weighted, W, 0.198 1.95
Weighted, Wy 0.108 1.06

“Health guidance caution zones” are shown on Figure B.l in ISO-2631,
reproduced in the previous chapter as Figure 5.28. Recall that this is applicable to
seated persons, where the vibration “is transmitted to the seated body as a whole
through the seat pan...the effects of vibration on the health of persons standing,
reclining or recumbent are not known” [1SO-2631, 1997]. The W -weighted RMS
acceleration is shown superimposed on this figure in Figure 6.16. The figure shows
that the present results fall in one of the two caution zones for durations of about
0.05 hr. to about 0.45 hr. (3 min. to 27 min.), and in the other caution zone for
durations of about 0.45 hr. to 1.25 hr, (27 min. to 75 min.). Recall that the two
caution zones result from two sets of data that indicate different time dependencies.
Thus it can be concluded that for this sea state, speed and location in the vessel,
health risks are likely for exposures longer than 75 minutes; caution is indicated for
durations between 3 and 75 minutes.

This is the so-called “basic evaluation method”. The basic method is applicable
only if the “crest factor”, defined as the ratio of the maximum instantaneous peak
weighted acceleration to the RMS value over the duration of the measurement, is
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less than 9. This requires examination of the time history of the weighted
acceleration, which can be obtained from the weighted spectrum by an inverse-FFT
provided that the phase spectrum is also available. If the crest factor exceeds 9, or if
the vibration contains “occasional shocks” or “transient vibrations”, one of two
additional evaluation methods must be applied; refer to ISO-2631 for details of
these methods.
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FIGURE 6.16 Evaluation of health risk

Relative to comfort, the Standard provides the following guidance:

RMS of weighted acceleration  Comfort level

Less than 0.315 m/s” Not uncomfortable

0.315 m/s* to 0.63 m/s” A little uncomfortable
0.5 m/s” to 1 my/s? Fairly uncomfortable

0.8 nvs® to 1.6 m/s* Uncomfortable

1.25 m/s? to 2.5 m/s* Very uncomfortable
Greater than 2 ny/s” Extremely uncomfortable

Thus in the present example the comfort level is “Very uncomfortable”. Note that
in general, there are vibrations in all three directions, and the guidance applies to the
“vibration total value” which is the combined value; however, there is a weighting
factor to be applied to each component.
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The American Bureau of Shipping also has whole-body vibration criteria.
According to the ABS Guide for Crew Habitability on Ships [2001], the maximum
weighted RMS accelerations under normal operating conditions in manned crew
spaces is not to exceed 0.4 n/s” for the HAB notation, and 0.315 /s’ for the HAB+
notation. The criteria apply to operations in the most probable sea state based on
the geographical area of vessel operation.

For perception, the ISO Standard states only that “Fifty percent of alert, fit
persons can just detect a Wy weighted vibration with a peak magnitude of 0.015
m/s>.” Thus we can safely conclude that in the present example, the occupants will
perceive the vibration.

As we stated above, the incidence of motion sickness is determined using the
Motion Sickness Dose Value, equivalent (as also stated above) to the RMS value
multiplied by the duration of the measurement; only vertical vibration is considered,
and the W weighting curve is used. The method is applicable to longer durations if
it can be assumed that the RMS value is constant, as would be expected at constant
(mean) speed and heading in a given sea state. In this case we have

MSDV, = Zgps VT (6.35)

where T is the duration of exposure in seconds and the acceleration is in m/sec’.
The motion sickness incidence (MSI), or the “percentage of people who may
vomit”, is then given by

MSI =K, MSDVz (percent) (6.36)
where the constant Ky, = 1/3 for “a mixed population of unadapted male and female

adults”. The MSI for the present example, assuming constant RMS acceleration, is
shown on Figure 6.17.
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FIGURE 6.17 MSI for the planing boat example
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As we mentioned above, vibration is only one aspect of habitability; the ABS
criteria (ABS [2001]) also address accommodations, noise, indoor climate and
lighting, for example. However these factors are outside of the somewhat outside of
the scope of the present discourse.

2.3 Bottom pressure

Like the vertical accelerations, semiempirical expressions have also been developed
for prediction of “design pressure” on the hull bottom in waves. The most
commonly used formulations are based on the total “load on water” which includes
the weight of the vessel as well as the effects of vertical impact acceleration. This
load is divided by a reference area to yield an “average bottom pressure”, which is
then multiplied by a coefficient representing the ratio of maximum to average
pressure. The first of these is due to Heller and Jasper [1960], based on data
collected during trials of an extensively instrumented 33.5m planing hull. The
following expression has been derived from the Heller/Jasper data:

P max =9.9pgb%CA[l+E] (6.37)
g

A procedure for calculation of design pressures was developed by Allen and
Jones {1978]. They start with the same expression for maximum pressure but
employing what boils down to a higher value of the coefficient:

Prmax = 24pgb%CA[1 +E] (6.38)
g

where the average of the 1/10-highest accelerations is generally used for design.
This value of pyay is not used directly, however. It is first multiplied by a pressure
reduction factor, to account for the fact that the pressure is distributed over a
“design area”. For plating, the design area depends on the aspect ratio of the plate;
however in “virtually every case” the appropriate value is given by

Ap = 257 (plating)
where s is the span of the plating, which is the spacing of the longitudinals
(Savitsky and Koelbel [1993]). For longitudinal stiffeners or transverse frames, the

design area is the area supported by the member. The pressure reduction factor is a
function of the ratio of the design area to the reference area,

Ar=0.3bL (6.39)
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The pressure reduction factor Kp is shown on Figure 6.18 as a funs:tion of the
area ratio Ap/Agr. The curve is well represented by the following expression:

K =0.1375+0.2784e 975640/ Ax 1 02445 71507A0/Ar 4 0.0991e 739940/ A
(6.40)

The design pressure is given by

Pp = KnDumax (6.41)
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FIGURE 6.18 Pressure reduction factor for planing hulls

3. Concluding Remarks

There are of course many other types of “high speed craft” in addition to those we
have discussed above. These include catamarans and other n-marans (where n is a
whole number greater than one), surface effect ships (SES), air cushion vehicles
(ACV), and hydrofoils, to name a few. Each of these hullforms has advantages and
disadvantages and some are certainly more suitable for some applications than the
planing monohull. We have concentrated on the monohull because this form is very
common (for example, the majority of recreational boats currently in use are
planing or semi-planing monohulls) and because enough systematic data exists for
the semiempirical analyses that we have presented to be carried out. In addition, the
other high-speed hullforms have additional “complications” associated with
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multiple hulls, cushions, seals, etc. that preclude a simple approach. This might
become feasible in the future with further development of the database, theory and
computational power...perhaps even in a later edition of this book (although the
author would advise the readers not to “hold their breath”...).
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added mass, 36, 209

added mass coefficients, 38

added moment of inertia, 36
added resistance, 342

advance ratio, 83

aerodynamic drag, 82

aerodynamic force, 100
aerodynamic force coefficients, 100
angular momentum, 9, 10, 11, 13, 14
anti-roll tanks, 296

appendages, 71, 377

ATTC line, 80

azimuthing thrusters, 96

B

bandwidth, 176

bending moment, 319
Bernoulli equation, 140
bilge keel efficiency, 277
bilge keels, 50, 82, 274
blockage coefficient, 49
boat coordinate system, 363
body-fixed axes, 1, 2, 4, 8
bow drop, 380

bow thruster, 97
Bretschneider spectrum, 181
B-series, 84

buoy, 208

C

catenary, 312, 344, 346, 347, 348, 351
center of flotation, 24
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centripetal acceleration, 12

controls-fixed directional stability,
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convolution, 200

coordinate systems, 1, 2

correlation allowance, 81

crest factor, 391

critical damping coefficient, 208

crossflow, 61

cross-flow drag, 61

cross-spectral density, 201

current, 100

D

damping, 162, 206, 209, 265, 274, 340
design maximum value, 307

design pressure, 394

design wave height, 187

diffraction, 247

diffraction theory, 162

dispersion relation, 144

drift force, 334

dynamic lift, 361

dynamic roll moment, 367

E

encounter frequency, 253
encounter spectrum, 255, 303
energy absorption efficiency, 335
ergodic process, 171

error function, 176

Euler angles, 8, 225

Euler integrator, 104

extreme value distribution, 189
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F

fetch, 183

fin-hull interference, 72

flapped rudders, 93

flow straightening factor, 74
fraction of critical damping, 267
Frechet distribution, 190

free surface tank, 291

frequency of encounter, 233
Froude-Krylov hypothesis, 248

G

gas turbines, 89

Gauss’ theorem, 17

global truncation errot, 105
gravity-buoyancy force, 22
Green’s theorem, 211

group velocity, 150

Gumbel distribution, 190, 193

H

HAB notation, 393
habitability, 388
Haskind relations, 249
heavy torpedoes, 127
hemisphere, 206
high-speed craft, 361
Hydrostatic stability, 26

I

impact acceleration, 385
impact accelerations, 384
impulse response function, 200
inertia tensor, 10, 11
irregular waves, 298

J
JONSWAP, 184

K

Keulegan-Carpenter number, 160

Index

Kramers-Kronig relations, 216

L

Lamb’s accession to inertia
coefficients, 41

Lewis forms, 43

lift curve slope, 71

loading coefficient, 380

local truncation error, 104

M

magnification factor, 272

mass transport velocity, 165

mean wetted length to beam ratio, 373
median ranks, 192

memory function, 219

metacentric height, 25

method of moments, 192

mirror image, 38

model-ship correlation line, 81
moments (of spectra), 299

moments of spectra, 174

momentum theory, 92

mooring force, 341

mooring systems, 343

Morison’s formula, 159, 161

most likely maximum response, 306
motion induced interruptions, 324
motion sickness, 320

motion sickness dose value, 321, 390
motion sickness incidence, 390
Motion Sickness Incidence, 320
motions at a point, 312

m-terms, 226

Munk moment, 39

N

natural frequency, 207

N-coefficient (damping), 275

Newman’s approximation, 338

Nonlinear coefficients, 69, 79, 83, 88-
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numerical stability, 105



o

Ochi-Hubble spectrum, 182
operability criteria, 325

P

parallel axis theorem, 13

phase velocity, 143
Pierson-Moskowitz spectrum, 173
point spectrum, 171

porpoising, 380

pressure reduction factor, 394

Q
quadratic impulse function, 332

R

radiation force, 216

Rayleigh probability distribution, 176

reflection coefficient, 157

relative motions, 314

relative wave elevation, 329

Response Amplitude Operator, 200

restoring force, 24

return period, 187

roll decay test, 265

roll decrement, 269

root locus, 357

Routh-Hurwitz stability criterion, 113

rudder (effect on transverse stability),
378

rudders, 92

Runge-Kutta, 107

Sea states, 179

seakeeping body axes, 224

second order force, 327

second order transfer function, 330
shear force, 319

shoaling, 153

significant waveheight, 177
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slamming, 318

slender body theory, 64

small perturbations, 20

spectrum, 170-187

spreading function, 171

stability derivatives, 64, 68, 78
Standard Ship Motion Program, 213
standing wave, 148

static “swell-up”, 318

steady tumning radius (small craft), 382
Stokes Theory, 163

strip theory, 40, 52, 232, 367
Strouhal number, 347

substantial derivative, 141

T

thrust, 83

tipping coefficient, 324
transformation matrix, 5, 6, 8
transmission coefficient, 157

U

undamped natural frequency, 207
U-tube tank, 291

v

vertical circular cylinder, 158
vertical wall, 156

vibration, 388, 390, 391, 392, 393
viscous roll damping, 265
vortex shedding, 347

W

waterplane moments, 21
wave breaking, 167

wave exciting forces, 238
wave power, 217
wave-drift damping, 340
wavemaking damping, 209
Weibull distribution, 190
weighting function, 388
wind, 100



