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PREFACE 

This book is intended to serve as an upper-level undergraduate or introductory-level 
graduate text for students of Naval Architecture or related fields. It is not a book 
about design of marine vehicles, but rather addresses the question, “How can we 
predict the dynamic performance of the vehicle, given its physical characteristics?” 
Thus the material should be of interest to present and future designers, since 
evaluation of maneuverabilitylcoursekeeping ability and performance in waves is of 
course an essential (though sometimes neglected) part of the infamous “design 
spiral” in naval architecture. In addition, the material should also be useful to those 
interested in simulation of vehicle performance, for training purposes or to conduct 
engineering studies. The emphasis is on hydrodynamics, since these are the 
predominant external forces acting on marine vehicles. Knowledge of differential 
and integral calculus, elementary differential equations, and complex numbers is 
presumed, as is familiarity with basic fluid mechanics and potential flow theory. 
The treatment is not intended to be highly mathematical or theoretical; an outline of 
the theory is given but the emphasis is on exposition of practically useful results. 
To this end an attempt has been made to present results in the form of equations 
(“curve fits”) rather than plots that do not lend themselves to automatic 
computation. Several fairly detailed worked examples are included. 

Chapter 1 provides a background for the material to follow by introducing 
coordinate systems and giving the basic form of the equations of motion of a rigid 
body, with origin at the center of gravity and also at an arbitrary point. (It was my 
original intention to write a chapter entitled “Introduction” which would precede 
this and demonstrate the importance and practical usefulness of the material to 
follow; I ultimately decided that t h s  would be superfluous as this is patently 
obvious to all). Subsequently, Chapters 2, 3 and 5 consider the forces on marine 
vehicles at zero speed (hydrostatics and gravity), at nonzero speed in calm water, 
and in waves (zero and nonzero speed), respectively. Chapter 4 provides the 
necessary background in water wave hydrodynamics and the spectral representation 
of ocean waves; those who would like a more thorough treatment should consult 
C.C Mei’s The Applied Dynamics of Ocean Surface Waves, Volume 1 in this 
Advanced Series on Ocean Engineering. Chapters 1 - 5 constitute a fairly complete 
coverage of the subject matter for “conventional” marine vehicles (displacement 
craft and submersibles). Chapter 6 presents supplementary material on the 
maneuvering and seakeeping performance of “high-speed craft”, admittedly biased 
toward planing monohulls. The formulas presented there, mostly empirical in 
nature, should be of interest to practitioners but may be “beneath the dignity” of 
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vi Preface 

theoreticians; however, it will be of use to them for purposes of validation of hture 
theoretical predictions. 

One problem that arises in writing a book covering both seakeeping and 
maneuvering is that traditionally, different coordinate systems have been employed 
in these two areas: In almost all published works on maneuvering, body-fixed axes 
are used, with the x, y and z axes pointing forward, to starboard, and downwards, 
respectively. In seakeeping there is less uniformity, but usually derivations are 
carried out relative to fixed axes, and the vertical axis is inevitably pointing 
upwards. This is a natural choice since that is the coordinate system used to 
describe the waves. The maneuvering convention is adopted here as the “primary” 
coordinate system; however, most of the material in Chapter 5 is presented relative 
to “seakeeping axes” with a z-axis pointing upwards. This has necessitated the use 
of several fixed and moving coordinate systems, whxh unfortunately may cause 
some confusion. The maneuvering body axes are denoted by x,y,z as usual, and 
k,q,< are the corresponding “fixed” axes. In Chapter 4, &q,< are introduced; these 
are fixed axes with 6,q lying in the plane of the undisturbed free surface and < 
pointing up. Finally, “seakeeping body axes” x,y,z are applied in Chapter 5; in this 
case z is positive upwards and so y points to port. In problems in which 
maneuvering (“steady flow”) forces are negligible, you are encouraged to work 
exclusively with the seakeeping coordinates. However for simulation of ship 
performance we do not in general have the luxury of neglecting steady flow effects; 
so the necessary transformations are included. 

In closing I would like to acknowledge the steadfast support of my wife, 
Donna, and the patience of my daughters Teresa and Janet, throughout the more 
than five years that it has taken me to finish the book. Completion of this project 
would not have been possible without their continuous encouragement and 
understanding. 
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CHAPTER 1 

DYNAMICS OF RIGID BODIES 

In this text we will consider the ship to be a “rigid body”, that is, it is “composed of 
a continuous distribution of particles having mutual distances that are inextensible” 
(Shames [ 19611). While all ships undergo elastic and possibly plastic deformations, 
these are of much smaller magnitude than displacements of interest in maneuvering 
and seakeeping studies and thus can safely be neglected in such work. 

1. Coordinate systems and definitions 

Two general types of coordinate systems will be useful in the following discussions: 
fixed systems (relative to the earth) and moving systems, which usually have at least 
one axis fixed with respect to the moving body. Right-handed Cartesian coordinates 
6 ,  q, c will be taken to be fixed with 6 and q lying in a horizontal plane and 5 
vertical, positive downward. The latter may seem a bit strange, but it is consistent 
with the convention for body-fixed axes in maneuvering in which x is the 
longitudinal coordinate, positive forward; y is the transverse coordinate, positive to 
starboard; and (by process of elimination) z is “vertical” and the positive sense must 
be “downward” in a right-handed system. Most marine craft have a transverse 
plane of symmetry and the origin of this “body” coordinate system is generally 
taken to lie in that plane. The longitudinal location of the origin is sometimes 
chosen to be at amidships and sometimes at the LCG; for the moment it will be 
assumed to be arbitrary. It is convenient, for the time being, to take the vertical 
location of the origin to lie at the level of the undisturbed free surface when the 
body is at rest. In subsequent chapters the origin will be moved to the center of 
gravity of the vessel, which will greatly simplify some of the equations we will be 
dealing with later. 

Unfortunately there is no such universally accepted coordinate system 
convention in the seakeeping literature; furthermore, the vertical coordinate is 
almost always taken as positive upwards. The same coordinate convention will be 
retained throughout this text and the reader should be alert to the fact that the form 
of some of the equations in the seakeeping chapters may differ slightly from those 
found in other references because of this. 

1 



2 The Dynamics ofMurine Crcrfi 

Why is it necessary to have two coordinate systems? In maneuvering studies 
(perhaps more so than in seakeeping) the trajectory of the vessel is of interest, and 
this is of course described with respect to earth-fixed coordinates; the environment 
in which the vessel is maneuvering, including the shoreline, harbor, channels, etc. 
are most easily represented in earth-fixed coordinates. However, the mass (inertial) 
and hydrodynamic properties of the vessel are more conveniently expressed in 
terms of body-fixed coordinates; in such a system, for example, the moments of 
inertia of the body are generally constantsa. Most of the subsequent discussions will 
involve the body-fixed axes. 

Unit vectors associated with the x, y and z directions will be denoted i, j ,  and k, 
respectively. The velocity of the origin of the body axes will be expressed as 

U = u i + v j + w k  (1.1) 

where u, v and w are commonly referred to as “surge”, “sway” and “heave” velocity 
components. Similarly the angular velocity of the body axes can be written as 

R = pi +qj +rk (1.2) 

where p, q and r are roll, pitch and yaw angular velocity components. 

The origins of the fixed and moving systems will be denoted 0 and 0, and the 
position of o with respect to 0 is given by 

so 

and the position of an arbitrary point is 

A location of a point within the body with respect to o is given by 

p = x i + y j + z k  (1.5) 

a Of course, nearly all marine vehicles consume fuel and carry passengers who move around; thus neither 
mass nor moments of inertia are really constant; variations in these quantities will not be considered in 
this text. 
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Forces and moments about o will be expressed as follows: 

F = X i  + Yj + Zk (1.64 

(which is why we used Greek letters for the components of R!) and 

M = Ki + Mj +Nk (1.6b) 

A complication associated with using body-fixed coordinates is that the unit 
vectors change direction as the body moves; thus, when differentiating U (for 
example) with respect to time we will obtain terms associated with these direction 
changes. This will be addressed in the following section. 

2. Angular Displacements and Coordinate Transformations 

Specifying the location of o with respect to 0 is straightforward: the location is 
given unambiguously by the vector R. What about the orientation of the xyz system 
relative to cq<? It seems natural to express the orientation in terms of angular 
displacements. Starting with the two systems parallel, consider the orientation 
produced by first rotating xyz about q through an angle of -45 degrees. Axes x and 
z move to x' and z' as shown on Figure 1 . la.  Then rotate the system 90 degrees 
about < to produce the orientation x" y" z" shown on Figure 1.lb. In this final 
orientation, the x" axis lies in the q< plane, and is at an angle of 45 degrees, 
downward. 

Y 

...... . . . . . . .  ..... .... .... ............................ ............... ...... ~ i ........ ..... ...... 
90 deg 

..... ..... ..... 
"-3 x Y Y1 f l  : -..__ &-' 

,, 
2 

,, 
X 

\i/ I 9 
2' 

X 2 
2 

Figure 1.1 a Figure 1.1 b 

Now, starting from the initial position, reverse the order of the rotations: Rotate 90 
degrees about 5 (Figure 1.2a) and then -45 degrees about q (Figure 1.2b); the 
resulting orientation is quite different than that obtained by the first set of rotations. 
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Thus finite rotations are NOT commutative and although they have a magnitude and 
a direction, they are not vector quantities. However, if the rotations are 
infinitesimal, it can be shown that they do satisfy the commutative law of addition 
and can be considered to be true vector quantities. Thus the angular velocity vector 
R can be expressed as the time rate of change of the vector of infinitesimal 
rotations. 

It is necessary, however, to employ finite rotations to specify the angular 
orientation of the body (body-fixed axes) with respect to the fixed reference system. 
Given that rotations about more than axis will be required, and that such operations 
are not commutative, it is important to adhere to the established convention, whch 
(at least in aeronautics and ship dynamics) consists of a modified set of "Euler's 
angles" +, 8, w (Bishop [1967]). If the body axes are initially parallel to the fixed 
axes, the actual position of the body axes is obtained by the following three 
rotations: 

1. 
2. 
3 .  

A yaw w about the < (or z) axis: x, y, z => XI, y', z 
A pitch 8 about the y' axis: x', y', z => XI', y', z' 
A roll 4 about the x" axis: x", y', z' => x", y", z" 

to bring the body to its actual orientation. Note that these rotations are NOT about 
mutually orthogonal axes. 
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How can we obtain the fixed-axes coordinates of a point P whose body-axes 
coordinates are (x, y, z)? This can be conveniently done using a “transformation 
matrix” [TI. Let {p}and {R} denote column vectors whose elements are 

then 

where 

[TI = 

{PI = 

c o ~ ~ c o s e  

sin y cos 0 

- sin 0 

cos y~ sin 0 sin $ cosy sin 0 cos $ 
- sin y cos$ + sin y~ sin $ 
sin y~ sin 0 sin $ sin y sin 0 cos $ 
+ cos y cos$ - cos ysin $ 

cos 0 sin $ c o ~ e c o s ~  

A property of a transformation matrix is that its inverse is equal to its transpose; 
thus the inverse of [TI can be obtained by interchanging elements across the main 
diagonal. 

3. Velocity and Acceleration 

Now we are in a position to discuss the derivative of a vector quantity such as R. 
Consider a change in the location of P to P’, say, due to rotation of the body about 
an axis through 0. Ths can be expressed by three mutually orthogonal rotations 
do ,  dO, dY about the 6, q and t; axes, respectively. Then it can be shown that 

R(P’) = R(P) + (t; dO - q dY)I + (6 dY - 1; d@)J + (q dm - 6 dO)K (1.9) 

where 6, q and 6 are coordinates of P. Differentiating with respect to time yields, 
after some rearrangement, 
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E=,x. 
dt 

where 

dQ dO dY R = - I + -  J+-K = 61 + ~ J + Y K  
dt dt dt 

(1.11) 

(1.12) 

is the angular velocity expressed in terms of its fixed-axes components. 

The time rate of change of a vector fixed in the body, say the position vector 
p(P), can now be determined. Since 

we can differentiate with respect to time to obtain 

dp - dR dRo = Q x R - R x R ,  = R x ( R - R , ) = Q x p  (1.13) 
dt dt dt 

The axis of rotation was initially assumed to pass through 0 but in fact it can be 
shown that this result holds regardless of the axis of rotation or the orientation of R 
(Shames [1961]). 

The velocity of any point in a rigid body can be expressed as the superposition 
of the velocity of any other point in the body, and a velocity due to rotation about 
an axis passing through this other point. It is natural to choose o as the “other 
point”; thus 

U(P) = u + R x p(P) (1.14) 

relative to the fixed frame. Note that U(P) can be resolved into components in 
either the fixed or moving frame; the components in the two frames are related by 
the transformation matrix [TI, Eq.( 1.8). 

For completeness, we will note that if point P is not fixed in the body, its 
velocity can be expressed as 

U(P) = u + U,,,(P) + n x p(P) (1.15) 
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where Uxyz is the velocity of P relative to the moving frame. 

Another important relationshp can be obtained from these results. The 
expression 

applies not only to a position vector p but also to any vector fixed in the body. In 
particular it applies to the unit vectors i, j and k 

(1.16) 

The acceleration of point P relative to the fixed frame is determined by 
differentiation of U(P), Eq. (1.15), with respect to time: 

---+A dU(P) - dU dU (P) dlR W P )  (1.17) +- x p(P) + R x -  
dt dt dt dt dt 

The first term in Eq. (1.17) is the acceleration of o with respect to 0. The second 
term, the time rate of change observed in the fixed frame of the velocity relative to 
the moving frame, can be rewritten as follows: 

(1.18) 

And the last term in Eq. (1.17) can also be rewritten in a more convenient form: 

Combining Eqs. (1.17)-( 1.19), and using a dot to denote time derivatives, we obtain 

U(P) = u + UXF(P) + 2R x U,(P) + i-j x p( P) + n x (n x p(P)) (1.20) 

Remember that velocities and accelerations with the xyz subscript are relative 
to the moving coordinate system, and the other velocities and accelerations are with 
respect to the fixed frame and so could be referred to as the “absolute” reference 
frame. In most of the material that follows, we will be concerned with points which 
are fixed in the moving frame, U,, = U .+= 0. 
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A final exposition that should be made in this section concerns the relationship 
between the rates of change of the Euler angles, $,&I$, and the components of 
angular velocity relative to the body-fixed axes, p, q, r. Note that the 
“corresponding” components are NOT equal, principally because the Euler rotations 
are not taken about the orthogonal body axes, but about axes which are defined 
during the rotation process. The relationship can be obtained by relating unit 
vectors along the Euler rotation axes to the body-axes values; the result is: 

1 0  -sin 0 

o C O S ~  sin$cos8 

0 -sin$ C O S ~ C O S ~  

(1.21) 

The matrix in this equation is not strictly speaking a transformation matrix since the 
“Euler axes” are not orthogonal (so its inverse cannot be determined by the method 
described above). Inverting Eq. (1.21) gives 

1 s in+tan8 cos+tan8 

0 cos+ -sin+ 

0 sm+sec0 cos+sec0 

(1.22) 

4. Equations of Motion: Origin at the Center of Mass 

Now that we have established expressions for the acceleration of a rigid body we 
can write the equations of motion, which will be the starting point €or all of our 
subsequent studies of marine craft dynamics. When discussing the dynamics of a 
rigid body it is advantageous to begin by assuming that the origin of the body 
coordinate system is at the center of mass of the body. The reason for this is the 
fact that the center of mass of any system of particles acted on by any number of 
external forces accelerates as if it were a particle with the mass of the system, acted 
on by the resultant of the external forces. Thus “Newton’s law” for a particle can be 
applied directly to the rigid body if the reference is at the center of mass. 
Furthermore, we can then write separate force and moment equations since we don’t 
have to consider the moment produced by the resultant force in the moment 
equation (it is zero). The form of the equations (particularly the moment equation) 
is much simpler if the origin is at the center of mass. 



1.  Dynamics of Rigid Bodies 9 

The center of mass is not always the most convenient choice for the origin of 
the body coordinates, however. In some cases the exact location of the mass center 
(or center of gravity, CG) may not be known when calculations are being carried 
out, such as in the preliminary stages of design. In other cases one may wish to 
consider the effects of changing the CG location without recalculating all of the 
terms in the equations of motion. Finally, other considerations may dictate the 
choice of the origin; this is true in seakeeping studies, where the origin is almost 
always taken to be at the undisturbed free surface level. So we will also present the 
equations written with respect to any origin fixed in the body. 

The equation for linear acceleration of the center of mass has the familiar form 

F = m U  (1.23) 

relative to the fixed reference frame, which will be assumed to be an “inertial 
reference frame”; F is the resultant of all external forces. Recall that an inertial 
reference frame is by definition a frame in which this equation holds “with an 
acceptable degree of accuracy” (Pytel and Kiusalaas [ 19941). Strictly speaking, this 
means that the reference frame cannot be accelerating; for most maneuvering and 
seakeeping studies, “acceptable accuracy” is obtained by using an earth-fixed 
inertial reference frame (which will be done for the remainder of this text). 

It will generally be more convenient to work with accelerations in the body 
reference frame. We can use the rule established above in Eq. (1.14) to express 0 , 
the acceleration of the origin, in terms of body-axes acceleration components: 

u = (UX, + R x  u (1.24) 

Plugging into Eq. (1.23), and taking components, we obtain 

x = in(G + wq - w) 
Y = m(i/ + ur - wp) 
z = m(w+ vp-uq) 

(1.25) 

where u. v, and w are the body axes components of U and the time derivatives 
U, V, W are evaluated relative to the moving frame. 

The moment equation, or “moment-angular momentum relationship”, can be 
written as follows: 

(1.26) 
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where M(P) is the resultant of the applied moments (including moments associated 
with applied forces) about some point P, and h(P) is the angular momentum of the 
body about P, relative to the fixed frame. If the reference point P is taken to be the 
center of mass, the second term vanishes and we are left with 

M = h  (1.27) 

or 

M = h,,, + R x h (1.28) 

if h is expressed relative to the body coordinate system (this again follows from the 
rule for evaluating the time derivative of a vector fixed in a moving body, 
developed above). 

The angular momentum is defined as follows: 

(1.29) 

where the integral is taken over the volume of the body. If we write the vectors p 
and Q in terms of their body-axes components and write out the cross products, the 
components of the angular velocity vector can be expressed as follows: 

h y = - - p j x y d m  + q l ( z 2 + x z ) d r n  - i - l y z d m  

h . = - - p l x z d m  - q  I y z d m  + r j ( x 2 + y Z ) d m  

V V V 

V V 

(ll} = [ T ] p }  

The elements of the inertia tensor T are defined as 

(1.30) 

(1.31) 
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[ f ] =  

1 1  

V 

- j x y d m  

- lx rdm 
V 

- v  

- [xydm - [xzdrn 
J J 
n n 

I(z2’ + x2  )dm - jyzdm 

where the bar denotes that the origin is at the center of mass. The diagonal and off- 
diagonal elements are known as moments and products of inertia, respectively. 
Remember that we have for the moment taken the origin of the body axes at the 
center of mass; the expression for the inertia tensor applies for this choice of origin 
only. 

Most marine vehicles possess at least one plane of symmetry, namely the xz 
plane. In this case, if the mass distribution within the vehicle can also be assumed 
to be symmetrical, the products of inertia 1 yz = 1 zy and 1 xy = 1 yx are zero. This is 
because for every positive contribution (yz dm) or (xy dm) to the integrand, there is 
an equal but opposite contribution from the mass element on the opposite side of the 
symmetry plane. In fact, the third pair 1 xz = I zx is also often assumed to be zero, 
which is strictly true only for craft having two planes of symmetry such as some 
double-ended ferries. 

- - - - 

- - 

Now let’s plug these results into Eq. (1.28): 

or, writing out the components, 

K = I,,p + Jxy(q  -pi-)+ Jxz(f + pq)+ I, (q2 - r2)+ (Izz - 1,kr + rn[yG(w + vp - uq)-zG (G + ur- wp)] 

M = 1,q + IF(‘ - pq)+ Jyx(i) + qr)+ Izx(rz - p2)+ (Ixx - Izz)rp + m[zG(u + wq - vr)- xG(W + vp - us)] 
N = ~,,i + I,, (I; - qr)+ I ~ ( G  + rp)+ 1,jp2 - q 2 ) +  (I, - ~,,)pq + m[xG(+ + ur- wp)- yc (u + wq - vr)] 

(1.34) 

where, as in the force equation, the time derivatives are evaluated in the moving 
(body) coordinate system. An obvious advantage of using body-fixed coordinates 
here is that the moments and products of inertia are constant, so we don’t have to 
consider dlldt when evaluating the rate of change of angular momentum. The price 
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we pay is the addition of many additional terms produced by the rotating reference 
frame; however , as previously mentioned, we can use symmetry considerations to 
eliminate many of these additional terms. 

5. Equations of Motion: Origin at an Arbitrary Point 

To write the force equation with respect to an arbitrary origin fixed in the body, we 
will employ the expression already developed relative to the center of mass, and 
insert an expression for the acceleration of the center of mass relative to the new 
origin. Denoting the position of the center of mass by PG in the body system (the 
subscript indicates “Gravity” as in “center of gravity” which is used interchangeably 
with “center of mass” in many engineering applications), and noting that UGxyz = 

UGxw = 0 (the center of mass is fixed in the moving frame) we have 

u, = U + f i x p p , + R x ( R x p , )  

or 

u, = (UXF + Rx u + n x  pc +Rx ( a x  PG) (1.35) 

Substituting Eq. (1.23), writing out components, and carrying out the cross-products 
yields 

x = m[Li + wq - vr - x G  (q2 + r 2 ) +  y G  (pq - i .>+ z G  (pr + CI)]  
Y = m[c + ur - wp - y G  (r2 + p 2 ) +  z G  (qr - ~ j )+  X G  (qp + i)] (1.36) 

z = m [.i. + vp - uq - z G 6 + 9 )+ x G (‘p - 4 )+ y G (‘9 + fi)] 

where (xG, yc , zc) are the coordinates of the center of mass. 

It is again emphasized that all terms in this expression pertain to the body-fixed 
coordinate system. Consider for the example the side force on a ship executing a 
steady turn. “Steady” implies that the ship’s velocity and angular velocity are 
constant; relative to body axes, this means that all velocity and angular velocity 
components are constant (only u, v and r are nonzero for horizontal-plane motions) 
and so all acceleration components u, v... are zero in a steady turn! The centripetal 
acceleration, required for uniform circular motion, has seemingly disappeared, but 
inspection of the force equations reveals that it is indeed present, resolved into 
body-axes components: aY,= = ur. The other terms on the right-hand side of the Y 
equation represent “centripetal forces” and inertial reaction forces induced by 
acceleration of the center of mass relative to the origin (Abkowitz [ 19641). 
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Now for the moment equation. If we again start with the equation written with 
respect to the center of mass, we have to add the moment due to the resultant force 
which “acts” at the center of mass: 

M = MG + PG x F (1.37) 

The moment equation , Eq. (1.28), could then be written as 

(1.38) 

where the angular momentum is expressed with respect to the original body axes 
(with origin at the center of mass). The assumption will now be made that our new 
body axes are parallel to the system we originally considered; this permits us to 
write the angular momentum in terms of the new coordinate system by using the 
“parallel axis theorem” and “parallel plane theorem” for the moments and products 
of inertia, respectively. This assumption does not restrict the applicability of the 
results since the orientation of the original body axes was arbitrary (the convention 
that ‘‘x points through the bow”, etc., was not necessary in the subsequent 
derivations). The parallel axis theorem and parallel plane theorem can be stated as 
follows: 

- 
I ,, = I,, - m(yG2 + zG2); I xy = I,, + m xcyc (1.39) 

with similar expressions for the other elements. 

Writing out the components of the vectors in Eq. (1.38), inserting the 
expressions for the force components (Eq. (1.36)) and for the moments of inertia 
(Eq. (1.39)), and carrying out the cross products, yields the following set of 
equations: 

K =  Ixxc + Ixy(q - pr) + IJi + p9) + IyJq2 -r2)+ ( I ~  - 1,)i7r+ dyG(W+ vp- u9) - +(V + ur- 41 
M= I,,,,q+ IF(‘. -qp) + I,(p+qr)+ I,(r2 -p2)+(Im - Iz)rp+&& + wq-rv)- k(W+ vp- uq)] (1 .do) 

N=l~+I, , (p-rq)+I , (q+rp)+Ixy~ - q 2 ) + ( I y y - I x x b q + ~ ~ ( V + u r - ~ - y G ( u + w q - r v ) ]  

These three equations, together with the corresponding set of force equations, 
constitute the most general form of the equations of motion relative to a body-fixed 
coordinate system, if the mass and mass distribution does not change in timeb. 

Additional terms accounting for changing mass and moments of inertia can be found in Strumpf 
[ 19601. 
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6. A Third Coordinate System 

In our study of the maneuverability of high speed craft we will need yet another 
coordinate system, the origin of which is fixed in the body but which remains in a 
given orientation with respect to the earth-fixed system. Thus in this new system, 
the coordinate axes can change orientation with respect to the body. For 
convenience we will choose the origin of this system to be at the center of mass of 
the craft, which isn’t absolutely necessary but which will save writing many terms. 
It will be necessary to define a new quantity o to represent the angular velocity of 
the body, with respect to the fixed axes; R is the angular velocity of the body axes 
as before. Now the angular momentum of the body is 

and the moment equation is 

M = h , , + R x h  (1.28) 

in terms of the body coordinates as before. Now, however, the moments and 
products of inertia are fimctions of time; this must be accounted for when evaluating 
h ,  Plugging in the expression for h, Eq. (1.30), writing out components, and 
evaluating the cross product we obtain 

d -  
K = -(Ixxo, - ixymy -Txzmz)- rfiryoy -Tyzm, - ~ x y w , ) +  qfizzm, -T,,m, -Tyzcoy) 

dt 

The force equations are the same as those for axes fixed in the body with origin at 
the center of mass, Eq. (1.25). Note that when o = R, indicating that the axes move 
with the body, Eqs. (1.41) reduce to the body axes expressions, Eqs. (1.34). 



CHAPTER 2 

CALM WATER BEHAVIOR OF MARINE VEHICLES 
AT ZERO SPEED: HYDROSTATICS 

The discussions in Chapter 1 have focused on the “right-hand side” of the equations 
of motion, the inertia terms. In much of the remainder of this book, we will be 
concerned with evaluation of the left-hand side, which contains the resultants of the 
applied forces and moments. Some of these, such as weight and buoyancy, are easy 
to determine; others are much more difficult and we must resort to various 
approximate methods. 

The applied forces and moments which we will consider include gravitational 
(weight), hydrodynamic (including hydrostatic), and aerodynamic forces; other 
forces such as those due to mooring lines will not be specifically addressed but can 
easily be incorporated. Hydrodynamic forces can be subdivided into hydrostatic 
forces (buoyancy); forces associated with steady motion (including currents) such as 
drag and lift; forces arising from acceleration through the water (“added mass”); 
“control” forces exerted by rudders or other steering devices; thrust generated by the 
propulsion system; and wave-induced forces. Thus the applied force and moment 
resultants can be expressed in terms of their constituents: 

where the subscripts denote “gravity and buoyancy” (we will see that it is 
convenient to group these together); “steady”; “added mass”; “control”; 
“propulsion”; “wave-induced”; and “aerodynamic”, respectively. “Steady” may be 
a misnomer since these forces and moments (as well as most of the others) are 
generally functions of time; however a “quasi-steady’’ approach is often employed 
in their evaluation. 

15 
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1. Gravity and Buoyancy 

We will consider in this chapter the simplest case of a body floating at zero speed. 
A body-fixed coordinate system with origin at amidships on the static waterplane 
will be adopted. In this equilibrium position the xy plane will be assumed to be 
horizontal; the x-axis points forward, the y-axis to starboard, and the z-axis 
downward as described in the previous chapter. In addition, the body system will 
be assumed to initially coincide with the fixed 6, q, 4 axes (thus the 5, q plane 
corresponds to the undisturbed free surface). 

The acceleration of gravity in the fixed coordinate system is 

The corresponding expression relative to body axes can be obtained using the 
transformation matrix, which in this case is the inverse of Eq. (1.8): 

yielding 

gxyz = -g sine i + g sin$ cose j + g cos$ cos8 k 

An expression for the gravitational force relative to body axes can now be written: 

FG xyz = -mg sine i + mg sin$ cose j + mg cos$ cose k (2.2) 

The moment relative to body axes is given by 

M G x y z  = PG x F G  

MG xyz = mg [(yG cos$ cos 8 - zG sin$ cos0)i + (-zG sine - xG cos$ cos8)j (2.3) 
+ (xG sin$ cose + yG sinf3)kI 

The hydrostatic force is determined by integration of the hydrostatic pressure, 

P = P85 

over the submerged portion of the hull surface: 
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(2.4) 

where n is a unit normal to the hull surface, directed out of the fluid and so into the 
body, and S denotes the submerged or “wetted” surface; recall that the subscript “B” 
denotes “buoyancy” and the scalar p is the water density. The corresponding 
expression for the moment is 

where R(S) is the position vector of a point on the surface S; recall that R denotes 
the position of the body axes origin). We can simplify these expressions somewhat 
by applying Gauss’ theorem from vector calculus, 

Qff n d S  = j j ]Vf d V  
S ’  vt 

where S‘ is a closed surface and V ’ is the enclosed volume; f is any scalar function. 
The vector V, in another unfortunate duplication of symbols, denotes the gradient 
operator. We can form a closed surface by including the projection of the free 
surface through the body; this has no effect on Eq. (2.4) since the hydrostatic 
pressure is zero at the free surface (< = 0). Application of Eq. (2.6) to Eq. (2.4) then 
yields 

F, = - K p g  JJJdV = - p g V K  
V 

(2.7) 

which is a statement of Archimedes’ principle, that the buoyant force is equal to the 
weight of the displaced fluid. The sign reversal is necessary because we have taken 
the normal direction into the body; Gauss’ theorem requires an outward-directed 
normal. 

An alternate form of Gauss’ theorem, applicable to the moment equation, is 

where Q is a vector function. Application of Eq. (2.8) to Eq. (2.5) yields 
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where P is a point within the volume V. The center of buoyancy, relative to the 
fixed axes. is 

so that Eq. (2.9) can also be written in the form 

which, by comparison with Eq. (2.7), can be written in terms of the buoyancy force: 

M ,  = ( R ,  - R ) X F ,  (2.1 1) 

Relative to the body axes, the hydrostatic moment is 

xyz = P B  ‘B xyz 

where pB represents the body-axes location of the center of buoyancy, 

(2.12) 

(2.13) 

The body-axes buoyancy force is obtained by application of the inverse 
transformation matrix to Eq. (2.7): 

FBxyz =[TI-’ F B  = pgV (sine i - sin4 cose j - C O S ~  cos9 k) (2.14) 

Inserting Eq. (2.14) in Eq. (2.12) and carrying out the cross product, we obtain 

MB xyz 1 -pgV [(YB C O S ~  cos 8 - ZB sin4 cos0)i + (-zB sin9 - xB C O S ~  cos0)j (2.15) 
+ (xB sin4 cos0 + YB sin9)kI 

Equations (2.14) and (2.15) should look very familiar; if they do not, you 
should re-read the paragraphs above on gravitational force and moment! The 
expressions are identical except for the presence of “-pV” in place of “m” and the 
coordinates of the center of buoyancy in place of those of the center of mass. For 

18
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this reason it is convenient to combine these expressions to obtain the “weight and 
buoyancy” force and moment: 

FG.B = g(m - pV )(-sin9 i + sin$ cos0 j + cos$ cose k) (2.16) 

MG-B = g { [(myG - pVyB)cos$ cos 9 - ( m z ~  - pVzB)sin$ cos0)li 
- [ ( m z ~  - pVzB)sin9 + (mxc - pVxB)cos$ C O S ~ ) ] ~  
- [(mxG - pVxB)sin$ cost3 + (myG - pVy&in9)]k} 

(2.17) 

in the body coordinate system; since we will be dealing almost exclusively with 
forces and moments in the body system we will henceforth drop the “xyz” subscript 
on these quantities. 

For floating bodies, in the absence of other forces and moments, a state of 
“hydrostatic equilibrium” must exista. This means that 

in the “static floating condition”, <=$=9=0. Equations (2.16) and (2.17) then give 
the conditions for static equilibrium: 

(2.18) 
(2.19) 

Eq. (2.18) is becomes a restatement of Archimedes’ principle upon multiplication of 
both sides by the acceleration of gravity. Eq. (2.19) states that the center of 
buoyancy and the center of gravity must be located along the same vertical line. 

Note that the submerged surface S and volume V in Eqs. (2.4) - (2.18) are the 
instantaneous values which are, in the presence of other “perturbing” forces, 
generally functions of time. It is convenient to express these quantities as the sum 
of the static values and increments due to the motions of the vessel. Thus we will 
define Vo , So as the static values corresponding to the volume and surface area of 
the body below the cq plane; thus 

V o = m / p  (2.20) 

a .  h i s  is not necessarily true for fully submerged bodies, as we will see 
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2. Small Perturbations 

In most theoretical treatments of maneuvering and wave-induced motions, the 
motions are assumed to consist of small perturbations from an equilibrium 
condition. In maneuvering, the equilibrium condition is usually straight-ahead 
motion with constant velocity, and the perturbations are in the velocity components; 
in seakeeping, the equilibrium condition is generally zero speed in calm water. The 
limitation to small perturbations might seem to be overly restrictive but we will see 
that the resulting “linear” theories work remarkably well for many practical 
applications. 

The assumption that the motion or velocity perturbations are small implies that 
the equilibrium condition is stable; otherwise the motions increase (usually 
exponentially) in time. We will discuss the conditions for stability below. 

The transformation from the body-fixed to the earth-fixed coordinate system 
was given by 

where the transformation matrix [TI is defined in Eq. (1.8). If the motions of the 
body relative to the reference static free-floating position are small, the sines and 
cosines of the Euler angles can be replaced by the angles themselves and 1, 
respectively; the transformation matrix then takes the form 

Neglecting the products of the (small) angles, we have, to first order in the angular 
displacements, 

[TI = 

1 

Y 

- 0  

- w  

1 

4 

(2.21) 
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Using Eq. (2.21), it can easily be shown that Eq. (1.7) can be written in the form 

R ( P ) - R = p + O x  p (2.22) 

where the “small angular displacement vector” 0 is defined as 

0 = $i + 0j + yk (2.23) 

Thus although the angular displacement defined by the Euler angles is not in 
general a vector quantity, it behaves as a vector (i.e., follows the rules of vector 
algebra) if the displacements are small. 

What we will next examine is the behavior of the buoyancy force and moment 
when the body is perturbed from its equilibrium position. For submerged bodies, 
Eqs. (2.16) and (2.17) can readily be applied, even for large motions, since the 
buoyancy and center of buoyancy are constant. However for floating bodies, as we 
have already mentioned, the buoyant force and moment depend on the instantaneous 
position of the body. The hydrostatic force can be expressed as the sum of the 
equilibrium buoyancy, given by pgV, and the weight of the additional water 
displaced due to the body motions, represented by the hatched area in Figure 2.1. 

Y 

FIGURE 2.1 Additional displacement due to small motions 

For small perturbations, the volume of fluid above the xy plane is 

where AWP is the static waterplane area; <(S) refers to the < coordinate of a point on 
the surface of integration. This can be written in a somewhat simpler form if we 
define the waterplane moments (Newman [ 19771): 
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(2.25) 
AWP A W P  

Combining (2.24) and (2.25) we obtain 

6 V =  <Awp - 0 Sx -+ $ S, (2.26) 

where we have used the fact that z = 0 on the (displaced) waterplane. 

We will now write the gravity-buoyancy force in terms of the small 
Plugging the expression for the total displaced perturbation from equilibrium. 

volume, 

v = v o  + 6 V  

in Eq. (2.16), and using Eqs. (2.20) and (2.26): 

where the sines and cosines in Eq. (2.16) have been replaced with the arguments 
and I ,  respectively, and products of the small displacements have been neglected as 
before. 

We will express the hydrostatic moment as the sum of the static equilibrium 
value, given by Eq. (2.15) with Vo substituted for V and with the understanding that 
the center of buoyancy coordinates correspond to this equilibrium condition, and the 
contribution of the additional motion-induced buoyancy: 

The moment increment 6MB is found by integration of the moment induced by the 
element of volume of fluid above the xy plane (Figure 2.2). The force dFB on the 
elemental volume is given by 

dFB = -pg dV K= -pg<(S) dx dyK = -pg(< - Ox + $y)(-Oi + $j + k)dx dy (2.28) 

where the small-perturbation transformation matrix, Eq. (2.2 l), was used to express 
the unit vector K in terms of body axes. The moment induced by this elemental 
buoyancy force is then 
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or 
~ M B  = -pg{([y - Oxy + $y2)i + (-[x + Ox2 - $xy)j}dS (2.29) 

where terms involving products of the small motions C;, 4 and 0 have been 
neglected. Integrating Eq. (2.29) over the static waterplane area, and defining the 
additional waterplane moments (Newman 19771): 

we obtain the following expression for the total hydrostatic moment increment: 

Adding the contribution 6MB to the total gravity-buoyancy moment in Eq. 
(2.17), and applying the equilibrium conditions [Eqs. (2.18) and (2.19)] yields the 
following expression for the total gravity-buoyancy moment for small motions: 

FIGURE 2.2 Moment induced by volume element 
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3. The Restoring Force Coefficient Matrix 

Note that each term in the gravity-buoyancy force and moment expressions is 
linearly proportional to the heave, pitch or roll perturbations. It will be convenient 
to express the force and moment in matrix form: 

(2.33) 

Examination of Eqs. (2.27) and (2.33) shows that the matrix C has 9 nonzero 
elements: 

These results apply to any floating body, initially in a state of hydrostatic 
equilibrium, which undergoes small motions. Because the diagonal terms are 
negative (except in the case of a very high center of mass; more on this later), 
indicating that the gravity-buoyancy force and moments oppose the perturbations, 
the elements of the matrix C are often referred to as “restoring force (or moment) 
coefficients”. 

The center of flotation (CF) is defined as the point on a freely-floating body 
which undergoes no vertical motion under the action of horizontal moments. This 
point lies at the centroid of the waterplane: 

(2.34) 

(and zCF = 0). If the origin were to be placed at the CF, the waterplane moments S, 
and Sy would be zero, eliminating the “hydrostatic coupling” between the heave 
motion and the pitch and roll motions. 

Most marine vehicles possess at least one plane of symmetry. For a body with 
a vertical plane of symmetry, which we will assume coincides with the xz plane, the 
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waterplane moments S, and Sx, are zero. This eliminates four of the nine nonzero 
coefficients of the C matrix. Thus the components of the gravity-buoyancy force 
and moment, applicable for small perturbations from equilibrium of bodies with 
port-starboard symmetry, are: 

Eq. (2.35a) states that if we displace the body a small amount 1; (in the positive 
direction, i.e. downward) without a change in trim, there will be an upward 
(restoring) force equal to the weight of the (approximate) additional volume 
displaced. If in addition a pitch perturbation is imposed, the magnitude of the 
restoring force can be increased or reduced depending on the direction of the pitch 
change and the location of the CF. For example, it is obvious that if the origin is at 
the stem of a vessel (xCF is positive), the restoring force will be reduced if the bow 
is allowed to rise, and increased if the bow is forced downwards, for a given heave 
displacement. 

Eq. (2.35b) is generally written in terms of a “transverse metacentric height” 
GMT : 

where A is the “displacement” 

By comparison ofEqs. (2.35b) and (2.36), 

(2.37) 

The quantity (GMT4 ) can be thought of as the lever arm of the buoyant force 
relative to the center of mass. 

Similarly, Eq. (2 .35~)  can be written in terms of a “longitudinal metacentric 
height” GML, 
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so that 
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GML = Z G  - Z B  +- s,, 
VO 

(2.38) 

(2.39) 

4. Hydrostatic stability 

We have discussed the necessary conditions for hydrostatic equilibrium to exist. 
Under what conditions will equilibrium persist? To answer this question, we will 
examine the behavior of the vessel subsequent to a small perturbation from the 
static floating equilibrium condition. The equilibrium condition is said to be stable 
if the small disturbance tends to diminish in time; the condition is unstable if the 
disturbance grows in time. The intermediate condition is neutral stability, in which 
the disturbance persists, neither increasing nor decreasing in time. The small 
perturbation equations developed above can be applied in an investigation of 
hydrostatic stability; however we will also need the full equations of motion 
developed in the previous chapter. 

The equations of motion relative to body axes with arbitrary origin, Eqs. (1.36) 
and (1.40), will be used. The origin will be assumed to lie in the xz plane at the 
equilibrium waterline, as in the discussions above. In addition to the assumption of 
port-starboard “geometric” symmetry of the hull, we will assume symmetry of the 
mass distribution about the xz plane as well; thus 

yG = I,, = I,, = 0 (2.40) 

With these assumptions, and neglecting products of the small velocity 
perturbations, the equations become 

x = m(u + z,q) 
Y = m ( + - z G p + x G i )  
z = m(k  - x , ~ )  
K = I,,p + Izxr - mz,+ 
M = IYyq + m(z,li - X ~ W )  

N = Izzr + I,,$ + mx,V 

(2.41) 

In addition, we will need the relationship between the rates of change of the 
Euler angles and the angular velocity components p, q and r. From Eq. (1.21), 
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substituting the angles and 1 for the sines and cosines and neglecting products of the 
small angular displacements and velocities, we obtain simply 

P = +  
q = e  
r = $  

Similarly, from Eqs. (1.7) and (1.8), for small perturbations, 

U = k  

V = i l  

W = <  

(2.42) 

(2.43) 

We will assume that the body has somehow been displaced from its equilibrium 
position, by a small amount (5, q, c, +, 8, y), and examine its subsequent behavior 
using Eqs. (2.41). Inserting the gravity-buoyancy force and moments, Eqs. (2.35a), 
(2.36) and (2.39), in Eq. (2.41), and using Eqs. (2.42) and (2.43) yields the 
following set of simultaneous linear, homogeneous, second-order differential 
equations: 

(2.44) 

Note that no other applied forces or moments have been included in the 
development of Eqs. (2.44); in fact we will see that other hydrodynamic forces, 
associated with the waves which are radiated from the body as it oscillates, do act; 
however neglectin! these effects will not impact our conclusions regarding 
hydrostatic stability . 

Note the order in which Eqs. (2.44) are listed: X, Z, M; Y, K, N. The first 
three equations involve only 6, < and 8 and their derivatives, and the second three 
involve only q, + and w and their derivatives. Thus the equations for (small) surge, 

~ 

These effects are important in predictions of the time history of the motions, however, as we will see in 
the next chapter. 
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heave and pitch motions are uncoupled from the equations governing (small) sway, 
roll and yaw motions for bodies having port-starboard symmetry. This permits us to 
solve two sets of three simultaneous equations rather than one set of six 
simultaneous equations. 

The solution of second order linear homogeneous differential equations with 
constant coefficients is well known. For example, 

(2.45) 

with similar expressions for the other independent variables; the coefficients <k are 
constants depending on initial conditions. Stability of the motions is determined by 
the signs of the exponent factors o k .  For the equilibrium condition to be stable, the 
crk must all be negative; the condition is unstable if any of the (Jk is positive. Zero 
values indicate neutral stability. 

The (Jk may also be imaginary or complex, corresponding to oscillatory motion. 
In the latter case stability is determined by the sign of the real part, and the 
imaginary part corresponds to the frequency of the oscillations. 

We will first examine the equations governing sway, roll and yaw motions, the 
fourth, fifth and sixth of Eqs. (2.44). Substitution of the expressions 

into these equations yields three simultaneous equations for the coefficients l]k, $k, 

and vk which can be written in matrix form as follows: 

Eq. (2.46) has nontrivial solutions only if the determinant of the coefficient matrix 
vanishes. Setting the determinant equal to zero yields, after some algebra, the 
following sixth order “characteristic equation” for the exponent coefficients (sk: 

(2.47) 
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Note that t h s  expression is independent of the location of the origin, as one would 
expect. There are six solutions; we anticipate three pairs corresponding to the three 
“modes of motion” (sway, roll, yaw). In this case four of the solutions are zero 
because of the factor c4. These four solutions can be associated with sway and yaw 
motions; in the absence of hydrodynamic damping (which we have neglected) these 
modes are obviously neutrally stable. 

The remaining two solutions, corresponding to roll motion, are the roots of the 
factor in the outer braces in Eq. (2.47): 

- I,,AGM, d- L X L Z  - - Tzx 

o = +  (2.48) 

The product of inertiaiZx is much smaller than T,andT,,for most ships. If we 

say that this quantity is negligible in comparison with the product ti,, Eq. (2.48) 
can be written in the simpler form 

(2.49) 

Thus real solutions will always represent instability since one of the solutions will 
be positive. The best we can hope for is a pair of imaginary solutions corresponding 
to oscillatory motion with constant amplitude. Since the displacement and moment 
of inertia are positive, the solutions will be imaginary if GMT is positive. Thus the 
condition for an equilibrium condition which is not unstable is 

GM, > 0 (2.50) 

Technically this corresponds to neutral stability. However, this differs from the 
case of o=O in that the oscillatory motions are small (since the initial perturbation 
was assumed to be small); thus the body will remain within this small distance of its 
initial location. In fact we will see that the presence of damping causes these 
motions to decrease in time so Eq. (2.50) represents the condition for stability. 
Further, the solution given by Eq. (2.49) represents a good approximation to the 
undamped natural frequency of rolling motionc. 

The transverse metacentric height, defined in Eq. (2.37), is very sensitive to the 
beam of the vessel because of the presence of the waterplane moment Syy. Thus an 

It is an approximation in that the effects of “added inertia” (see Chapter 4) must be included in the 
denominator of Eq. (2.49); however this is generally a small effect in the case of roll motion. 
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effective means of increasing GM and thus stability is to increase the beam. GM 
can also be increased by reducing the height of the center of mass. 

The characteristic equation for the surge-heave-pitch motions, described by the 
first three of the six Eqs. (2.44), is of the form 

02{04A + 02B + C} = 0 

which has two zero roots corresponding to the neutrally-stable surge mode. The 
remaining four solutions are the roots of the fourth-order equation in braces, which 
i s  really a quadratic equation in disguise: 

ACX’ + BCX + C; cx = O* 

Thus there are really only two remaining roots, each of which is repeated since 

It can be shown that the quantity B is always positive, so that the condition for 
stability is 

or, in t e r n  of the coefficients of Eqs. (2.44), 

Since each term in the first factor is positive, this is equivalent to 

(2.51) 

We would anticipate the first term from the result for transverse stability, Eq. 
(2.50). The presence of the second term may be somewhat surprising; indeed, it is 
often omitted in discussions of hydrostatic stability, the tacit assumption being that 
xCF = 0. The need for this term is clarified by substitution of Eq. (2.38) in Eq. 
(2.51): 

(2.52) 
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The last two terms in braces together correspond to the waterplane moment about 
an axis through the CF. Thus the second term in Eq. (2.51) is a “correction” to the 
waterplane moment for pitch axes whch do not pass through the center of flotation. 

The waterplane moment S,, is a large positive quantity for relatively slender 
bodies like ships so that the criterion of Eq. (2.52) is almost always satisfied for 
such vessels. 

5. Example: Hydrostatics of a simple barge 

As a practical application we will consider the hydrostatics of the simple barge 
shown on Figure 2.3 below. The barge has a rectangular cross-section; the bow has 

h- ~ 0 ~ = 3 3 m  -4 

FIGURE 2.3 Profile of simple barge 

a 45” rake and the stem is plumb. The following quantities are given: 

Length overall 33m 
Beam 1 Om 
Depth 3m 
Displacement 6.25 MNd 

The acceleration of gravity and the density of seawater will be taken to be 9.81 m/s2 
and 1025 kg/m3, respectively. 

The first task will be to determine the static draft (level trim will be assumed). 
For this purpose it is convenient to have a relationship between the draft and the 
displaced volume; for this simple configuration we find that 

Vo = LKBT + !4BT2/tancc = LKBT + %BT2 (2.53) 

The Newton (kilonewton, meganewton) will be used as the unit of force as opposed to tonnes or 
kilograms to avoid confusion with mass. 
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where LK is the length along the keel, 30m in the present case; a is the rake angle 
and B and T are the beam and draft. The displaced volume corresponding to the 
given displacement is 

Vo = 6.25x1O6/(1O25x9.81) = 621.6m3 

Plugging this and the numerical values in the table above into Eq. (2.53) yields a 
quadratic equation for the equilibrium draft, 

5T2 + 300T - 621.6 = 0 => T = 2.00 or -62.0 m 

Obviously the latter root is to be rejected so that the equilibrium draft is 2m in salt 
water. 

The center of the displaced volume, which is the center of buoyancy, can now 
be determined. We will set up a body-fixed coordinate system with the origin at the 
static waterline, 15m forward of the stem (at the center of the rectangular portion of 
the profile). The location of the center of mass of the displaced fluid is 

XB = [(30~10~2)(0)+(%~2~10~2)(15+2/3)] / 621.6 = 0.504m 

ZB = [ (30~10~2)(1)+(%~2~10~2)(2 /3) ]  / 621.6 = 0.987m 

The condition for hydrostatic equilibrium, Eq. (2.19), determines the longitudinal 
coordinate of the center of mass, 

The location of the cargo andor ballast must be adjusted to achieve this LCG 
position if level trim is desired. 

The maximum permissible height of the center of mass is determined by the 
stability condition, Eq. (2.50). Using the definition of the transverse metacentric 
height, Eq. (2.37), the condition for transverse stability can be written as 

The waterplane moment is calculated using Eq. (2.30), 
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which is the second moment of the waterplane area about the x-axis. 
rectangular waterplane area it is easily shown that the second moment is 

For a 

syy = ~ ~ ~ ~ ~ 1 1 2  

which in the present example gives a value of 

S, = (32)(10)3/12 = 2667 m4 

Plugging this and the center of buoyancy value into the stability condition, Eq. 
(2.54), yields 

ZG > 0.987 - 2667 / 621.6 = -3.303m 

which means that the CG must be lower than a point 3.303m above the static 
waterline. In practice an appropriate margin would be applied to this value to allow 
for the effects of other applied moments such as those due to wind and waves as 
well as possible uncertainty in the determination of the center of gravity location. 

We will next check the longitudinal (pitch) stability using Eq. (2.52). The 
second moment of the waterplane about the transverse axis, S,,, is 

S,, = B Lw2/12 = (10)(32)3/12 = 27,307m4 

The center of floatation of the barge is at the centroid of the waterplane, 16m from 
the ends, or 

and the waterplane area is (32)(10)=320m2 so that the “correction” to the second 
moment of the waterplane area is 

-AWPxc: = -320m4 

which is small relative to S,, as is generally the case. At the maximum CG height 
for transverse stability, the left-hand side of Eq. (2.52) is 

pg[621.6(-3.303 - 0.987) + 27,307 - 3201 = 24,320 pg >>O 

so that pitch stability is certain. 
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CHAPTER 3 

CALM WATER BEHAVIOR OF MARINE VEHICLES 
WITH FORWARD SPEED: MANEUVERING 

In this chapter we will apply the equations developed in Chapter 1 to study the 
behavior of marine vehicles moving in calm water. After setting up the equations of 
motion, we will examine the various constituents of the hydrodynamic forces and 
moments, including “added mass” effects, “steady” forces, forces associated with 
resistance and propulsion, control forces, and forces induced by wind and current. 
After developing general expressions for these effects, we will look at ways to 
estimate the forces and moments for a given surface ship or submersible. Finally, 
the equations will be solved to investigate controls-fixed directional stability. 

1. Equations of Motion 

We will begin by considering a body moving ahead with constant velocity U where 

U =Uoi + Oj + Ok 

with U = ~2 = fi = 0 and = 0 = y~ = 0 (“steady level flight”). We will employ 
equations of motion with respect to body axes with arbitrary origin, Eqs. (1.36) and 
(1.40). As in the previous chapter, we will first consider the motions of the body to 
consist of small perturbations, but now the perturbations are relative to steady, level 
flight. Thus after the perturbation occurs, we have 

U = (Uo+u*)i + vj + wk 

= p i  +a +rk=$i + b j  + q k  

where u* is the longitudinal velocity perturbation; the asterisk is to distinguish it 
from u = Uo + u* (since the other velocity and acceleration components are zero in 
steady level flight, they all represent perturbations and no asterisk is necessary). 
The equations of motion are given by Eqs. (1.36) and (1.40), upon substitution of 
(Uo+u*) for u. 

35 
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x = m[i + wq - vr - xG(q2 +r2)+ yG(pq-i)+ zG (Pr + 4)] 

z = m[+ + vp - (u, + u *h - zG (p2 + q2)+ xG (rp - 4)+ yG (rq + ~j)] 

Y = m[+ + (u, + u *)r - wp - yG(r2 +p2)+ zG(qr -~j)+ xG(qp + i)] (3 4 

(3.3) 

The applied forces and moments consist of the components given in Eqs. (2.1). For 
the moment we will consider only “gravity-buoyancy” (see Chapter 2 ) ,  “added 
mass”, “steady”, “control”, and “propulsion” effects; aerodynamic forces will be 
treated in a later section, and wave effects are the subject of Chapter 5. 

2. Added Mass and Added Moment of Inertia 

According to ideal fluid or potential flow theory, a body moving at steady speed 
through an unbounded fluid experiences no force (“D’Alembert’s paradox”); but if 
the body is accelerating, it experiences an opposing hydrodynamic force 
proportional to the acceleration. This can be thought of as the force necessary to 
accelerate the fluid surrounding the body “out of the way”. We will define the 
“added mass” or “added moment of inertia” Aij as the magnitude of the 
hydrodynamic force in direction i due to unit acceleration in direction j .  The indices 
i and j range from 1 to 6, corresponding to the surge, sway, heave, roll, pitch and 
yaw directions. Thus for example the “surge-induced heave added mass” would be 

The negative sign is required because the added mass force is assumed to oppose a 
positive acceleration. The units of Aij are mass for i and j ranging from 1 to 3; 
moment of inertia for i and j ranging from 4 to 6; and (mass x length) for other 
cases. It can be shown that the added mass matrix is symmetrical, 
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regardless of the symmetry of the bodya. The presence of these off-diagonal 
elements implies that the direction of the added mass force is not necessarily 
coincident with the direction of the acceleration. 

In order to write a general expression for the added mass force relative to body 
axes induced by an arbitrary acceleration, it is convenient to define the “added mass 
vectors” 

Aj = Alj i + A, j +A3j k (3.5) 

(3.6) Aj = A, i + A, j +A, k 

where j ranges from 1 to 6 as before. With this notation it can be shown (Newman 
[ 19771) that the added mass force and moment can be written in the following form: 

6 

F A M  = -C (U j A j + U jn x A j ) 
j=l 

(3.7) 

6 

MA, = -c (U jAj + UjR x Aj + UjU x Aj) (3.8) 
j = I  

Here Uj represents the (linear or angular) velocity component in direction j. 

We will now invoke our assumption of small perturbations and port-starboard 
symmetry to simplify these expressions. Plugging the velocity and angular velocity 
from Eqs. (3.1) into Eqs. (3.7) and (3.8), and neglecting products of the 
perturbations, we obtain 

6 

M,, = - c [UjAj  + UoUj(- A,jj + AZjk)]- U0@x A, + 6U x A,)  (3.10) 
j=l 

where 

a Strictly speaking, this is true only when free-surface effects can be neglected, which is the case in many 
maneuvering problems. It is true in general for a body oscillating at zero forward speed. More on this in 
Chapter 6. 
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6U = u*i + vj + wk 

is the “perturbation velocity vector”; thus U = Uoi + 6U. 

For bodies with port-starboard symmetry, the flowfield induced by vertical 
motions of any cross-section, due to heave or pitch, is symmetrical about the 
centerplane. Thus the pressure field is also symmetrical, so that the force on one 
half of the section will be a mirror image of that on the opposite side. The 
horizontal components are thus oppositely directed so that vertical motions (heave 
and pitch) induce no transverse forces. It can then be concluded that 

and, due to the symmetry of the added mass matrix, 

The same argument could be made for longitudinal motions, which also produce a 
symmetrical flowfield; thus 

The number of independent added mass matrix elements, or “added mass 
coefficients”, is reduced from 21 in the general case to 12 for bodies with a plane of 
symmetry; also, there are no coupling terms between the surge-heave-pitch motions 
and the sway-roll-yaw motions, as was the case for the restoring force matrix. 

Writing out the components of the force and moment in Eqs. (3.9) and (3.10), 
and accounting for symmetry as described above, we obtain the following 
expressions for the added mass forces and moments of bodies having port-starboard 
symmetry, due to small accelerations: 

K,, = -A4,V - A44p - + A5,Uor - A3,U0v 

MA, =-A,,U - A,,w - A55q + A,,(Uo2 + 2U0u *)+ (A33 - A,,)Uow + A,,U,,q 
N,, = -A62+ - A64p - A,,i - (Az2 - A,,)U,v - (A24 + A,,)Uop - A2,U0r 

(3.12) 
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Many of the terms in these equations are directly analogous to inertia terms on the 
right-hand side of the equations of motion, Eqs. (1.36) and (1.40); in fact we will 
later exploit this similarity by combining similar terms when we write the complete 
equations of motion. 

For a submersible having two planes of symmetry (xz and xy), the following 
added mass coefficients are zero in addition to those resulting from port-starboard 
symmetry: 

leaving A26 = A62 and A35 = A53 as the o d y  surviving off-diagonal terms. 

Some additional comments are warranted on the following moment terms: 

M = (A33 - AlI)Uw 
N = -(A22 - A1 ~)UV 

which represent the moment experienced by an elongated body when it moves at an 
angle of attack. This moment, called the “Munk moment”, is always destabilizing 
for such bodies, tending to rotate them broadside to the flow. It is a consequence of 
the potential-flow pressure distribution arising fiom the flow around the ends of the 
body (see Figure 3.1). Note that the moment is present in steady flow, llke several 
other terms in Eqs. (3.11)-(3.12)b. The presence of the Mu& moment is the 
principal reason for the necessity of stabilizing fins on submarine and torpedo hulls. 

Figure 3.1 Munk moment 

Thus the added mass force and moment are not necessarily zero in steady flow, because of these terms. 
They are grouped with the “added mass forces” because they are functions of the added mass coefficients 
and can be evaluated using potential flow theory. 
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2. I Evaluation of added mass coeficients: Hull 

The added mass coefficients, which are dependent on body geometry, can be 
calculated using potential flow theory. Analytical solutions are available for 
ellipsoids (in terms of elliptic integrals) and for a variety of simple two-dimensional 
shapes; in general, numerical methods must be applied to obtain values for actual 
hull forms. These techniques require a “digitized” hull model which may not be 
readily available (along with the potential flow software); thus, two approximate 
methods are widely used: The method of the “equivalent ellipsoid”, and “strip 
theory”. The contribution of appendages is generally computed separately and 
added to the hull contribution as described in the following section. 

The principal motions of surface ships in a vertical plane (heave and pitch) are 
oscillatory; steady-state sinkage and trim are generally small. For oscillatory 
motions with a free surface, the added mass is a function of the frequency of 
oscillation, as will be discussed in the following chapter. The steady or “zero 
frequency” added mass is of limited interest in these modes and so for surface ships 
the following discussions will focus on the lateral modes. 

Solutions for the added mass coefficients of ellipsoids are available in terms of 
elliptic integrals. However, if two of the axes are equal (spheroid), the solution can 
be expressed in terms of simple functions. In the “equivalent ellipsoid” method, 
which actually should be called the “equivalent spheroid” method, one assumes that 
the nondimensional added mass coefficients of the hull (normalized based on the 
mass or moment of inertia of the fluid displaced by the actual hull) can be 
approximated using those of a spheroid having the same waterline length and draft 
(for lateral motions) or beam (for vertical motions). For a surface ship it can be 
shown using the “method of images” (Newman [1977]) that the flow is equivalent 
to that in the lower half-plane about a “double body” consisting of the actual hull 
plus its reflection about the waterplane, in an infinite fluid‘. The “equivalent 
spheroid” in this case represents the double body and thus its added mass will be 
twice that of the actual hull. 

Because of its symmetry, the only added mass coefficients which are nonzero 
for a spheroid are 

relative to an origin at the center of the spheroid (the roll-induced roll added inertia 
is zero because a rolling spheroid creates no flow disturbance). The coupling 

The situation is slightly different in the case of oscillatory (wave-induced) motions, in which case the 
method of images is valid only in certain limiting cases. 
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coefficients can be approximated, however, by assuming that the lateral added mass 
force “acts” at the center of buoyancy of the hull: 

(3.13) 

where the subscript H denotes hull contribution. The added mass coefficients are 
usually expressed in terms of nondimensional quantities k,, k2 and k‘ which are 
known as “Lamb’s accession to inertia coefficients”: 

A22 H A33 H = pVok2 

A44 H = zB2A22 H (3.14) 

where IiioF is the moment of inertia of the displaced fluid about the i-axis. The 
second terms in the added moment of inertia expressions are parallel-axis theorem 
corrections to the first terms. The accession to inertia coefficients are functions 
only of the eccentricity of the rotated ellipse, 

(3.15) 

where a and b are the semi-major and semi-minor axes; d and L are the maximum 
diameter and length overall. For a prolate spheroid, which is representative of the 
hulls of most marine craft, the accession to inertia coefficients are given by 

where 

(3.17) 
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and 
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(3.18) 

The behavior of the inertia coefficients with length to diameter ratio is shown 
on Figure 3.2. 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  

Length / Diameter 
I I 

Figure 3.2 Lamb’s inertia coefficients for ellipsoids 

A second method, known as “strip theory”, involves numerical integration of 
two-dimensional results over the length of the hull. The hull is divided into a 
number of transverse sections or “strips”, usually at each station shown on the body 
plan. The added mass coefficient of each section is estimated using available 
analytical solutions for similar sectionsd. The tacit assumption is that the effects of 
longitudinal flow are negligibly small, so that adjacent sections do not interact (i.e., 
the flow is essentially two dimensional at each section). Obviously this assumption 
is invalid for longitudinal motions of ship-ldce bodies, and is questionable near the 
ends of the hull for lateral motions. However, strip theory has proved to be an 
extremely useful tool, particularly in seakeeping applications which we will discuss 

Of course, the added mass of each section can be calculated numerically; however with the availability 
of fast computers and three-dimensional potential flow codes, this is at present not much more efficient 
(and is less accurate) than a fully three-dimensional calculation. 
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in the next chapter. 
introduced which can (at least partially) account for three-dimensional effects. 

Further, a “three dimensional correction factor” is often 

In addition to analytical solutions or tabulated numerical results for simple two- 
dimensional shapes such as flat plates, circles, ellipses, and rectangles (see Kennard 
[I9671 for example), analytical results are available for the lateral and rolling 
motions of a series of ship-like sections called “Lewis forms” which can be 
obtained from a semicircle through “conformal mapping”. The only parameters 
required in the mapping are the section half-beam to draft ratio, 

H = B(x) 12T(x) 

and the section area coefficient, 

p = A(x) I B(x)T(x) 

The offsets y and z are expressed in terms of these quantities and a parameter 8 as 
followse: 

y = [(l + a) sine - b sin38][B(x) / 2(1 + a + b)] 
(3.19) 

z = [( 1 - a) cos8 + b cos38][B(x) I 2( 1 + a + b)] 

where d 2  2 8 &d2.  The quantities a and b are given by 

a = (b + l)q 
(3.20) 

with 

7I H - 1  p = p - - ’  q =- 
4’ H + l  

The non-dimensional 2-D added mass coefficient A2Zr(x) is given by 

The parameter 0 is physically meaningless; it corresponds to the polar angle of the given point prior to 
conformal transformation from a semicircle. 
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A,,(x) - (1-a)’ + 3 b 2  A,,’(x) = - 
pxT(x)*/2 (I-a+b)’ 

(3.2 1 )  

which is the ratio of the added mass of the section to the mass of water displaced by 
a semicircle whch has the same draft. Some Lewis forms are illustrated on Figure 
3.3, and the behavior of the added mass coefficient A2Zr for various values o fH  and 
p is shown on Figure 3.4. 
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Figure 3.3 Lews forms with H = 0.5 
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Figure 3.4 Behavior of A22 with p and H 
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Not all combinations of p and H result in realistic ship forms. In particular, 
p=1 implies a rectangular section; however, Lewis forms cannot have sharp comers 
(angles are preserved in conformal transformations; the original circle has no 
angles!). Thus the Lewis form develops “bulges” at section area ratios near 1; 
portions of the section contour extend outside of the rectangle defined by the local 
waterline beam and draft to “make up” for the area “lost” due to the radius of the 
bilge (Figure 3.5a). At small section area ratios, the contour can extend above the 
waterline or across the centerplane forming a “loop” (Figure 3.5b). In the former 
case the sections are physically possible (albeit unlikely); in the latter case the 
sections are physically impossible and should never be used. Examination of the 
slope of the section contour at the keel and at the waterline results in the following 
criteria for “reasonable” sections: 

3% -(2 - H); H 5 1 
o t  [{[2-$); H < I  

It is a good idea to plot the sections using Eqs. (3.19) to make sure they look 
reasonable. Alternative formulations for the sway added mass of rectangular and 
triangular sections are given at the end of this section. 
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Figure 3.5a Lewis form with H = 0.5, p = 1.0 Figure 3.5b Lewis form with H = 0.5, p = 0.4 

Somewhat more obscure are the results for added roll inertia and sway-induced 
roll added inertia (equal to roll-induced sway added mass) for Lewis forms. This 
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obscurity is possibly due to the fact that zero-frequency roll motions are of limited 
interest; nevertheless these results are a convenient approximation in the case of low _ _  
frequency motions. 
[1961]: 

The following zero-frequency results are given by Tasai 

(3.22) 
[:: a ’ ( l +  b)Z + - a b ( l +  8 b)+ 

A44 (XI = H 4  - 9 A 44 ‘(XI = 
PX T (XI /8 (I + a + b)4 

4 12 + - b - - b 2  
5 A 24 (’) - 16 - A Z 2 ’ ( x )  (3.23) A 24 = 

p ~ T ( x ) ~ / 2  3~ [(l- a)’ + 3b’ 11 - a  + b)  

Figure 3.6 shows the added roll inertia coefficient as a function of p and H. The 
added inertia is zero for H = 1 and p = 0.785 which corresponds to a semicircle. 
Notice that the added inertia for H = 1 is less than that for H = 0.5 and H = 1.5 
regardless of the value of p. 

100 

10 

a 

1 

0.1 

2.5 

0.4 0.5 0.6 0.7 0.8 0.9 1 

Section area coeff. p 

Figure 3.6 Roll added inertia coefficient for Lewis forms 

As mentioned above, the added mass is obtained by integration of the 2-D 
values over the length of the hull: 



3. Calm Wuter Behavior CfMururine Vehicles: Muneuvering 41 

1 "  
A,,, = JA4,(x)dx = - p n ~ T i 4 A 4 , ' ( x i ) ? j x i  

8 i=l L WL 
(3.24) 

'A,," = k, j A 2 2 ( ~ ) ~ d ~  =-pnk,f:Ti2A2,'(xi)xiGxi 1 

2 i=l L WL 

= = - JA2,(x)xdx = --pnCTi3A,, '(xi)xi6xi 1 "  
2 i=l  L WL 

A,,, = k' b,, (x)x2dx = - p n k ' t  1 T i 2 A 2 2 t ( ~ i ) X $ ~ i  
2 i = l  L WL 

The subscript "i" in the summations indicates a value at the i* strip; the quantities 
6xi represent the width of the i* strip. The coefficients k2 and k' for the "equivalent 
spheroid", introduced in these expressions by Jacobs [1963], can be regarded as 
"three dimensional correction factors" because they force agreement of the strip 
theory results with the analytical results in the case of a spheroid. 

As will be further discussed in Chapter 5, because of the form of the free 
surface boundary condition, the techniques used to obtain these coefficients cannot 
be applied for vertical motions at "zero" frequency; these coefficients are seldom 
required in the study of maneuvering motions of surface ships, however. For 
submersibles, the equivalent ellipsoid method is generally quite adequate for both 
horizontal and vertical motions. 

Comparison of the expressions for the total added mass force and moment, Eqs. 
(3.1 1) and (3.12), with the various prediction equations, Eqs. (3.13)-(3.14) and 
(3.22), shows that the only added mass coefficient for which no prediction is given 
is the heave-induced surge added mass (or surge-induced heave added mass), AI3 = 

AS,. These coefficients are expected to be relatively small (they are zero for a 
submersible which has xy-plane symmetry) and it is usual to assume that A13 = A31 
= 0 (Humphries and Watkinson [ 19681). 
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The added mass of two dimensional rectangles and triangles‘ can be found in 
the literature; however the former is not available in closed form and the latter is 
expressed in terms of the Gamma function which may be inconvenient. As an 
alternative, the following “curve fit” formulations are offered: 

Rectangle: 

Triangle: 

Azz’(x) = %pB(x)T(x) [0.512d + 0.928d3]; 0 5 d 5 1.7 (3.26) 
= %pB(x)T(x) [d - 0.4931 / [2.666-0.849d]; 1.7 _< d 2 3 

where d is the deadrise angle in radians. 

2.2 Shallow water effects 

The formulas given above pertain to “deep” water, about five times the draft or 
deeper. At shallower depths the added mass coefficients generally increase, due to 
the fact that the flow induced by the body motion is “restricted” by the bottom and 
thus additional force must be applied to the accelerating body to push the 
surrounding fluid “out of the way”. 

The effect of water depth on the added mass of a 2-D flat plate is shown on 
Figure 3.7. By the method of images, the flow induced by lateral motions of a plate 
with draft T in water of depth h (at zero or very low frequency) is equivalent to that 
induced by a plate of height 2T between walls a distance 2h apart. As shown on 
Figure 3.7, the 2-D added mass becomes infinite as T+h; the reason for this is that 
since flow around the plate is prevented at zero clearance, and since water is 
incompressible, the entire mass of fluid must accelerate with the plate. This is 
physically unreasonable in a 3-D world, where the water is “free” to flow 
longitudinally around the ends of the body. Thus an adjustment to the 2-D section 
added mass must be made before applying strip theory in shallow water. 

One way to look at this problem is to say that the “relative lateral inflow 
velocity”, the velocity of the water relative to the body in a transverse plane, is 
reduced in the real 3-D world relative to the 2-D problem, due to flow around the 

‘The reference actually presents results for a rhombus moving parallel to a diagonal, which can be 
considered as the triangular section and its reflection above the free surface. 
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ends of the body. This flow reduction can be expressed in terms of a “blockage 
coefficient”. It turns out that the lateral added mass coefficient, accounting for 
reduced lateral velocity or blockage effects, is directly related to the blockage 
coefficient. A numerical method to determine the blockage coefficient for arbitrary 
cross-sections was presented by Taylor [ 19731. 
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Figure 3.7 Effect of water depth on the added mass coefficient of a flat plate 

Approximate formulas for the influence of water depth on the added mass 
coefficients of typical ship forms for sway and yaw accelerations are given by Clark 
et. al. [1982]: 

where 
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0.0775 0.01 10 K O  =1+--- 
f 2  f 3  

0.0643 0.0724 0.0013 K +--- 
f f 2  f 3  

1 -  

0.0342 
f 

K2 =- 

and 

These formulas appear to be applicable down to WT c 1.2. 

2.3 Evaluation of added mass coefficients: Appendages 

The contribution of appendages such as rudders, skegs and bilge keels to the added 
mass and added moment of inertia can be estimated using the formula for the added 
mass of a rectangular plate for accelerations perpendicular to the plate: 

(3.28) 

where cf and Af are the mean chord and planform area of the appendage (“fin”), and 
a, is its effective aspect ratio, 

a, = bf I cf, for an isolated fin 

a, = 2bf/  cf, for a fin located against a ship hull (3.29) 

a, = bf, 1 cf, for a “submarine-type” tail fin 

where bf is the (geometric) span of the fin. The effective aspect ratio is larger for 
fins located against the hull because the hull acts as a “reflection plane”, meaning 
that the flow about the fin is equivalent to that about an isolated “double fin” 
formed by reflecting the fin about its root chord. Thus more force can be developed 
near the reflection plane than near the free end because there can be no flow around 
the attached end. For “submarine-type” tail fins, for which the local hull diameter is 
comparable in magnitude to the span of a fin, it is appropriate to base the aspect 
ratio on the “total semi-span”, bf,, measured from the hull centerline. 

50
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The contributions of a horizontal (subscript “h”) or vertical (subscript “v”) 
appendage to the added mass coefficients A, of Eqs. (3.11)-(3.12), for a vehicle 
with port-starboard symmetry, are summarized below. 

A22 f = mf” 
A24 f =  A42 f =  -A22 f zfv 
A26fz A62f= A22f~fv 
A33 f = mfh 
A35 f = As3 f = -A33 f xf h 

A55 f = A33 f xf h 

A66 f = A22 fxfv 

A44f=mfZfZ 

2 

(3.30) 

Here xf and zf are the coordinates of the centroid of the fin. For the roll added 
inertia, both horizontal and vertical fins contribute, Surge and surge-induced added 
mass coefficients of the appendages are negligible if the appendages are thin (which 
is generally the case). 

The total added mass of the hull and appendages is then the sum of the 
individual contributions, i.e., 

where the summation includes all appropriately-oriented fins (see Eqs. 4.30). 

The sway and heave added mass of fins whch are at angles other than 0” or 90” 
to the vertical can be approximated as follows: 

(3.3 1) 2 AZ2 = mf cos2 Of ; Aj3 = mf sin Of 

where Of is the “orientation angle” of the fin relative to the z-axis, positive 
clockwise. 

2.4 Calculation of Added Mass: Example 

To illustrate some of the methods described above, we will calculate some of the 
added mass coefficients for a merchant ship. We will examine a case for which 
some experimental data are available: Model Ship C described by Motora [ 19601. 
Characteristics are summarized in Table 3.1 below; we have arbitrarily assumed a 
scale of 1/100 to obtain the full-scale dimensions. 



52 The Dynamics of Marine Craft 

TABLE 3.1 Particulars of Ship 
L, m 170.0 
B, m 22.8 
T, m 9.3 
CB 0.565 
CP 0.599 
CM 0.943 
Displacement, MT 20,876. 

Calculation of the Lamb coefficients is carried out using Eqs. (3.16-18); the 
ship is assumed to be a spheroid with major axis L = 170m and minor axis 2T = 2 x 
9.3m. The added masses A,,, A22 and A66 are computed using the Lamb 
coefficients as shown in Eqs. (3.14). Calculation of A66 requires knowledge of the 
moment of inertia of the displaced water, IyyDF. It is consistent with this 
approximation to use the moment of inertia of the “equivalent” spheroid: 

I[,,, =m-=-pXab a 2 + b 2  2 -- a 2 + b 2  --pnLT2[$+T2) 1 (spheroid) (3.32a) 
5 3 5 15 

but it might be more logical to use the value for an ellipsoid: 

- pnLBT(L’ + B 2 )  (ellipsoid) (3.32b) a 2 + c 2  2 a 2  + c 2  I ,DF = m- = - pnabc ~ - - 
5 3 5 120 

To compute the added mass coefficients using strip theory and Lewis forms, we 
need the beam, draft and section area at each station. These were obtained by 
measurement of a body plan in Motora’s paper; the results are given in Table 3.2. 
Figures 3.8a and 3.8b show a comparison of the actual body plan with that 
approximated using the Lewis forms, which work fairly well in this case (this would 
not be so for some of Motora’s other models, which have fuller sections). Sectional 
added mass coefficients A221 and A441 calculated using Eqs. (3.21-22) are given in 
Table 3.2. The fifth and sixth columns of the table contain the values of A22‘~‘  and 
A 2 2 r ~ 1 2  which are needed to evaluate A26 and A66; note that Al l  cannot be obtained 
using this method. Finally, the sectional results are “integrated” as indicated in Eqs. 
(3.24) (a simple trapezoid method was used); note that the 2-D coefficients must be 
multiplied by some power of the local draft before carrying out the summations. 
The results, along with the results of the Lamb coefficient method and the 
experimental data, are given in Table 3.3. 

‘Table 3.3 shows that the agreement between the measurement and the Lewis- 
form method is amazingly good for A22 and fair for A66; both are significantly better 
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than the simpler Lamb coefficient method. However it must be pointed out that the 
data has an associated uncertainty, which is difficult to quantify because the added 
mass was not measured directly. Thus the experimental values are not necessarily 
the “right answer”, but they are probably pretty close. The error in the predicted All 
is apparently significant, but this is not cause for concern because the difference is 
small compared with the “virtual mass” m + Al l .  

Table 3.2 Sectional added mass coefficients 
S ta  

10.000 
9.750 
9.500 
9.250 
9.000 
8.500 
8.000 
7.000 
6.000 
5.000 
4.000 
3.000 
2.000 
1.500 
1.000 
0.750 
0.500 
0.250 
0.000 

-0.125 
-0.250 

U 
P8 K 

m 
f l  n 

6.0 M. 

u luc 

8. L 

U 

U 

B / z r  
0.000 
0.160 
0.275 
0.366 
0.448 
0.650 
0.860 
1.136 
1.226 
1.226 
1.226 
1.211 
0.980 
0.799 
0.605 
0.486 
0.404 
0.299 
0.910 
1.028 
0.000 

Beta 
0.000 
0.540 
0.562 
0.548 
0.556 
0.669 
0.679 
0.782 
0.870 
0.921 
0.885 
0.774 
0.674 
0.529 
0.410 
0.440 
0.470 
0.500 
0.572 
0.500 
0.000 

,422’ 
0.000 
0.926 
0.900 
0.875 
0.864 
0.903 
0.896 
0.996 
1.142 
1.255 
1.172 
0.985 
0.886 
0.81 1 
0.789 
0.814 
0.839 
0.873 
0.822 
0.783 
0.000 

,422’x’ A22’x’ 
0.000 0.000 
0.440 0.209 
0.405 0.182 
0.372 0.158 
0.346 0.138 
0.316 0.111 
0.269 0.081 
0.199 0.040 
0.114 0.011 
0.000 0.000 

-0.117 0.012 
-0.197 0.039 
-0.266 0.080 
-0.284 0.099 
-0.315 0.126 
-0.346 0.147 
-0.377 0.170 
-0.414 0.197 
-0.411 0.206 
-0.401 0.206 
0.000 0.000 

A44’ 
0.000 
0.720 
0.630 
0.542 
0.460 
0.241 
0.077 
0.071 
0.224 
0.398 
0.258 
0.189 
0.079 
0.226 
0.370 
0.439 
0.506 
0.602 
0.193 
0.451 
0.000 

Walt 

B. 

Figure 3.8a Actual body plan (from Moton[ 19601) 
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Figure 3.8b Body plan approximated using Lewis forms 

3. “Steady” forces and moments 

“Steady” forces and moments are those hydrodynamic forces and moments which 
act on the body as it moves with steady linear or angular velocity, exclusive of 
added mass, propulsive, and control forces. These forces and moments are 
primarily viscous-fluid effects and are thus difficult (if not impossible) to compute 
accurately, even in the simplest case of a ship moving in a straight line at steady 
speed. Thus one must resort to semi-empirical or empirical formulations, or 
conduct model tests, to determine these quantities. 

Again assuming small perturbations about steady, level flight, the steady forces 
and moments are generally expressed in the form of a multivariate Taylor series 
expansion about the equilibrium condition: 
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x,(u+ ~* ,v ,w ,p ,q , r )=X,  + 

where Xo = Xs(U,O,O,O,O,O) and 

+ ... iw- + uv - a a 
au a v  a u a v  m w  

with similar expressions for the other components. In Eq. (3.33) the derivatives of 
Xo should be interpreted as derivatives of X evaluated at the equilibrium condition. 
The steady forces and moments are assumed to be fimctions only of the velocity 
components and not the accelerations; the reasons for this are: 

Purely acceleration-dependent forces and moments are categorized as “added 
mass” effects 
Combinations of acceleration and velocity parameters, representing interaction 
between viscous and inertial or “potential flow” phenomena, are considered to 
be negligibly small as there is no theoretical or empirical justification for their 
inclusion (Abkowitz [ 19641). 

It is sufficient to retain terms in the expansion, Eq. (3.33), through third order; 
again, there is no theoretical or empirical justification for inclusion of higher-order 
terms, particularly in a “small perturbation” approach. Retaining “only” terms of 
third order and lower results in a total of 83 terms in each equation. 

The number of terms is considerably reduced by symmetry considerations. For 
this and some subsequent discussions it is convenient to refer to the orientation of 
the body with respect to the water, which is expressed in terms of an angle of attack, 
a, and a drift angle, p: 

(3.34) 

A body which has port-starboard symmetry, moving at a drift angle p, would 
experience the same axial force as it would at a drift angle -p. The side force and 
yaw moment would be reversed, however, as indicated in Figure 3.9 below. 
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Figure 3.9 Forces and moment on body and “mirror image” 

Thus we have 

or, in terms of the sway velocity, 

X(v) = X(-v) 
Y(v) = -Y(-v) 
N(v) = -N(-V) 

That is, the axial force is an even function of the sway velocity, and the side force 
and yaw moment are odd hnctions of the sway velocity. In terms of the Taylor 
series expansions, this means that terms such as 

a v-x, av 

which is odd in v, must be equal to zero. The same could be said for the linear term 
involving the yaw angular velocity r; the axial force increment due to a turn to port 
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should be the same as that due to a turn to starboard for a symmetrical ship. 
However, the term involving the product vr is still admissible; i.e., we expect 

X(v,r) = X(-v,-r) 

since the two conditions are mirror images. In fact the mirror analogy is quite 
usefil in thinkmg about the effects of symmetry: Imagine a 3-D diagram of the 
body with vectors indicating the various velocity components and hydrodynamic 
forces and moments. Now consider the image of the body viewed in a mirror 
placed parallel to the plane of symmetry. The image body must experience the 
same magnitude of hydrodynamic force but the directions of the components may 
differ from those experienced by the actual body, relative to the actual body’s 
reference frame. For example, XIMACE = XBODY but Y~MAGE = -YBODY. The signs of 
some of the linear and angular velocity components also differ: UIMAGE = uBoDY; 

V ~ M A G E  = - v B O D ~ .  Thus we cannot have a term such as X = c0nstant.v since this 
would imply XIMAGE = constant.vlMAGE = -constant.vBoDy = -XBODY. A more 
“mathematical” procedure, which is applicable to bodies having any number of 
symmetry planes, is described by Neilsen [ 19601. 

Thus it can be shown that the Taylor series expansions through third order 
reduce to the following in the case of a body wluch has port-starboard symmetry: 

X, =ao + alw + a2q + a3v2 + a4w2 + a,p2 + a6q2 + a7r2  + a,vp + agvr 
2 

(3.35a) + arowq +a,,pr + a,,w2q + al,wq2 + aI4wv2 + aI5wr + a16qv2 + aI7qr2 

+ a,,wp2 + aI9p2q + azOvwr + a21vrq + a2,vwp + aZ3wpr + a2,vpq 
3 

+ a25vq + a26w3 + a 2 7 q  

Ys = b,v + b2p + b3r + b4vw + b,qr + b,vq + b,wr + b,wp + b,pq 
+ b,,v2p + bllw2p + bI2vw2 + b,,v2r + b,,w2r + bl,vr2 + b,,vq 2 

+ b17q2r + bl,vp2 + b1,P r + b20PCl2 + b21P12 + b22W + b2,wpq 
2 (3.35b) 

+ b2,vwq + b2,wqr + b2,v3 + b2,p3 + b2,r3 

2 2 zS = co + c,w + c2q + cJv2 + c4w + c,p + c6q2 + c7r2 + csvp 

+ c9pr + clovr + cllwq + c12v2w + c13w2q + c14v2q + c15wq2 

+ c16wr2 + cI7qr2 + c1,wp2 + cI9p2q + C ~ ~ V W P  +c,,wpr + c22vpq 

+ c23pqr + c24vwr + c2svqr + c 2 6 ~ 3  + c27q3 

(3.35c) 
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K, = d,v + d,p + d3r + d,vw + d,qr + d6vq + d,wr + d,wp + d,pq 

+ d,,vw2 + d,,v2r + d,,w2r + dI3vr2 + d,,vq2 + d,,v2p + d,,w2p 

+ d,,q2r + d,,pq2 + dI9pr2 + d,,vp2 + d,,p2r + d2,vpr + d2,wpq 

+ d2,vwq + d,,wqr + d2,v3 + d2,p3 + d2,r3 

M, = e, + elw + e2q + e3v2 + e4w2 + esp2 + e6q2 + e7r2 + e,vp 

+ e,pr + elOvr + e,,wq + eI2v2w + e13w2q + eI4v2q + eI5wq2 

+ e16wr2 + e,,qr2 + e,,wp2 + e,,p2q + e2,vwp +e2,wpr + e2,vpq 

+ eZ3pqr + e24vwr + e25vqr + e26w3 + e,,q3 

(3.3 5 d) 

(3.3 5 e) 

N, = f lv  + f2p + f3r + f4vw + fsqr + f6vq + f,wr + fswp + f,pq 

(3.35f) + flov2p + f,,W2p + f12vw2 + fi3v2r + f14w2r + f15vr2 + fI6vq2 

+ f,,q2r + f,,vp2 + f,,p2r + f2,pq2 + f2,pr2 + f2,vpr + f2,wpq 

+ f2,vwq + fiSwqr + f26v3 + f2,p3 + f2,r3 

For submersibles which have body-of-revolution hulls and cruciform tail fin 
arrangements (i.e., all four fins are identical), a hrther reduction is possible since 
hydrodynamic coupling between lateral and vertical motions is then eliminated. 
The Taylor series expansions for such bodies are as follows: 

2 
(3.3 6a) X, = a, + a3v2 + a 4 w 2  + asp + a6q2 + a7r2  + agvr 

+ alOwq + a23wpr + a24VPq 

Y, = b , v +  b3r + b,wp + b,pq + b,,vw2 + b13v2r + b,,w 2 r 

+ b,,vr2 + b,,vq2 + b,,q2r + b,,vp2 + b,,p2r + b2,vwq 

+ b,,wqr + b2,v3 + bZ8r3 

(3.36b) 

2 2 2 Z, = C,W + c2q + c,vp +c,pr + c12wv + cI3w q + cI4v  q 

i clSwq2 + c16wr2 + c,,qr2 + c,,wp 2 + cI9p 2 q + cZ4vwr 

+ c2,vqr + c26w + ~~~q~ 

( 3 . 3 6 ~ )  
3 

2 Ks = d2p + d,vq + d7wr + d,,v2p + d,,w2p + d,,pq 

+ d,9pr2 + d22vpr + d23wpq 
(3.36d) 
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M, = e,w + e,q + e,vp +e,pr + e12wv2 + e,,w2q + e,,v2q 

+ e15wq2 + eI6wr2 + e,,qr2 + eI8wp2 + el,p2q + e2,vwr 

+ e,5vqr + e26w3 + e,,q3 

59 

(3.36e) 

N, = f,v + f3r + f8wp + f,pq + f12vw2 + fI3v 2 r + fi4w 2 r 

+ f,,vr2 + fl,vq2 + fl,q2r + f18vp 2 + f19p2r + f 2 4 ~ ~ q  

+ f 2 5 ~ q r  + f2,v3 + f2,r3 

(3.360 

The simplification associated with this four-fold symmetry is actually more 
significant than is indicated by the equations above, since the yaw and sway 
coefficients are (aside from possible sign reversals) equal to the corresponding 
coefficients in the heave and pitch equations. This can be seen by noting that a 90 
degree rotation of the body about the x-axis would produce no change in the 
magnitude of the hydrodynamic force and moment, regardless of the initial 
orientation of the body. The relationships between coefficients for lateral- and 
vertical-plane motions, for a body having mirror and four-fold rotational symmetry 
are shown in Table 3.4 below: 

TABLE 3.4 Equivalent Coefficients for body having Four-Fold Rotational 
Symmetry and Mirror Symmetry 
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In the table, a negative sign means that the sign of the coefficient is reversed; thus 

bl = C I  

but 

and so on. 

Equations (3.35) each contain 27 or 28 terms. In practice many fewer terms are 
actually used; some reasons for this are: 

For maneuvering simulations of surface ships it is very often not necessary to 
consider heave and pitch motions. In addition to eliminating two equations, 
this removes many coupling terms in the remaining equations since it is 
assumed that w = q = 0. 
No theoretical or empirical means are available to calculate many of the 
second- and third-order terms. 
In cases where experimental captive model data is being used to determine the 
coefficients, such data can in many cases be well represented using fewer 
terms. 
Satisfactory results have been obtained without inclusion of many of these 
higher-order terms, indicating that their importance is minimal. 

A more “practical” set of equations which have been used with some success in 
simulations of submersible motions is given below (Strumpf [ 19601): 

2 2 2 2 X, = a, + a3v + a4w + a,p + a,q + a7r2 + a,vr+ a,,wq +a, ,pr 

Y, = blv + b2p + b3r + b4vw + b5qr + b6vq + b,wr + b,wp + bgpq 
+ b12vw2 + bI3v2r + bl,w2r + bZ6v3 + b27p’ + b2,r- 1 

2 2 Z, = c, + cIw + c2q + c3v + c5p2 + c7r + cxvp+ c9pr + clOvr 
+c , ,wq+cI2v  2 w + c I 3 w  2 q+C,;v 2 q+clswq2 +C*,W- 1 +c2,q3 

Ks = d lv  + d2p + d3r + d,vw + d,qr + d6vq + d,wr + d,wp + d,pq 

+dI0vw2 +dI lv2 r  +dI2w2r  +d,,vr2 +d,,vq2 +dI5v2p+d,,w2p 

+ d,,q2r + dI8pq2 + dI9pr2 + d 2 6 ~ 3  + d2,p3 + d2,r3 

(3.37a) 

(3.37b) 

(3.37c) 

(3.374 
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2 2 M, = e, + e,w + e2q + egv + e5p2 + e7r + e,vp + e,pr + elOvr 
(3.37e) 

2 2 2 2 3 3 + ellwq + eI2v w + eI3w q + eI4v q + e,,wq + e26w + e2,q 

N, = flv + f2p + f3r + f4vw + f,qr + f6vq + f7wr + fswp + f,pq 

+ f12vw2 + f13v2r + f14w2r + f15vr2 + f26v3 + f2,p3 + f2g3  
(3.370 

The “simplified” roll moment equation (3.37d) has nearly as many terms as the 
original version, Eq. (3.35d). In fact, there are more terms in Eq. (3.35d) than are 
given by Strumpf [1960]. The reason for t h s  is that in the reference, the roll 
moment is expressed as a function of the local velocity components at the tail; the 
hull is assumed to be a body of revolution so that all roll moments (aside from a 
small viscous component) arise from lift forces on the tail fins. The italicized terms 
in Eq. (3.37d) have been derived from these “tail fin” terms. 

The “Taylor series” approach was favored by early researchers in 
maneuverability. Another method soon followed, based on the so-called “cross- 
flow drag” principle. In this perhaps more physically motivated approach, it is 
argued that many of the nonlinear force and moment terms arise from a transverse 
drag force on the body and thus should be proportional to the square of the relevant 
velocity component (“crossflow” component). For example, the dependence of side 
force on sway velocity should be of the form 

Y(V> = alv + a2v2 

as opposed to 

Y(V> = alv + a2v3 

For the case of bodies having port-starboard symmetry, we have argued above 
that the coefficient of the term proportional to v2 should be zero. The proper 
symmetry can be preserved, however, by replacing v2 with v I v I .  Mathematical 
purists argue that such terms cannot be part of a Taylor series expansion about v=O. 
However, this method has the advantage that at least some of the coefficients can be 
calculated or estimated based on theory. A possible drawback is that while the first 
derivative of 

blv + b2v3 

at the origin is unquestionably equal to bl, the first derivative of 
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is undefined at the origin. This may be significant when attempting to determine 
the slope at the origin by fitting experimental data, for example. 

A set of expressions for the hydrodynamic forces and moments which include 
these “square absolute” terms is given below (Gertler and Hagen[ 19671): 

X, = a, + ii3v2 + i ,w2 + Z6q2 + X7r2 + X9vr + Xl,wq +ii, ,pr (3.3 8a) 

- - - - - - - - 
Y ,  = 6,uv+ b2up+ b,ur+ b,vw+ b,qr+ b6vq+ b7wr+ b,wp+ b,pq 

(3.3 8b) 
+ G l 5 +  + c 2 6 ~ I ~ J  + c 2 , ~ J ~ I  

Z, = c ,  + ~ , , u w + ~ , ~ u ~ w ~ + ~ ~ ~ q + ~ ~ v ~  +E4w2 +E5;p2 +Z,r2 +:8vp 
(3.3 8c) 

+E9pr+E10vr+Z15w(ql+E26w(w( 

I - - - - - - - 
K, = ~ , u v +  d2up+ d,ur+d,vw+ d,qr + d,vq+ d7wr+dswp+d,pq 

(3.3 8d) 
+ 2201v1+ 227P(P( 

M, = e, + E I A ~ ~ + ~ , ~ u ~ w ~ + E 2 u q + E 3 v  2 + z 4 w 2  +E5p2 +E7r2 +&vp 
(3.38e) 

+Zgpr +El,vr + E , ~  ( ~ l q + E ~ ~ w l w l  +E2,qlql 

- - - - - - - - 
N, = 5 uv + f2up + f3ur + f4vw + f5qr + f6vq + f7wr + f8wp + f9pq 

(3.38f) 
+531vlr+~*6vlvl+T2xrlrl 

The subscripts of the coefficients in Eqs. (3.38) are consistent with corresponding 
terms in the previous expressions, Eqs. (3.35) - (3.37), however a tilde has been 
added since in general the coefficients are not expected to be equal to those in the 
previous equations, particularly in cases where the terms have different forms (e.g., 

vs. ‘‘vIv\’’, etc.). Note the presence of two terms involving u and 
w in the Z and M equations. 

‘‘v>, “s. ‘‘uv,,, “ 3 , 9  v 

Equations (3.37) and (3.38) were developed for use in submarine simulations 
and thus contain many terms which are probably unnecessary for surface ships, 
particularly for cases in which the vertical motions are negligible. A simpler set of 
equations for surface ships is presented in the Society of Naval Architects and 
Marine Engineers’ (SNAME) Design Workbook on Ship Maneuverability: 
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X, = a, + i3v  2 + i,r 2 + i,vr 

ys = 6,uv  + 6,Ur+ i131vlr + GI5vr2 + i&vIvI + 62srlrl 

(3.39a) 

(3.39b) 

N, = f ,uv + f3Ur + F131vlr + f15vr2 + f2,vlvI + f2srlrl (3.39c) 

The main reason for including this set of equations is that the Design Workbook 
also contains empirical formulas to compute the coefficients; many of these 
formulas will be given below. 

Which form of the equations to use has been the subject of much debate over 
the years. Good fits to experimental force and moment data can generally be 
obtained with either form. When attempting to predict the coefficients without data, 
however. use of the “cubic” representation presents difficulties, since as alluded to 
above there are at present no reliable methods, theoretical or empirical, to predict 
the third-order coefficients for even the simplest of hull forms (including body-of- 
revolution submersible hulls). 

4. Evaluation of steady force and moment coefficients: Hull 

Because the steady force and moment coefficients are dominated by viscous effects, 
they cannot be computed using the relatively simple potential-flow methods which 
were applied in the evaluation of the added-mass Coefficients. Computational fluid 
dynamics (CFD) codes which incorporate viscous effects are not yet capable of 
producing sufficiently accurate results; thus we are at present limited to 
experimental data and semi-empirical formulations which are based on simple 
theory. 

In this and the following sections, we make the assumption that the 
hydrodynamic force and moment coefficients are constant for any particular hull 
configuration and water depth. That is, we will neglect any influence of the 
previous history of the motion of the vessel on the subsequent forces and moments 
it experiences. This is sometimes referred to as a “quasi-static” approach since the 
coefficients can be obtained from static (steady-state) tests or theories. Possible 
sources of “memory effects” include vorticity shed from the hull and/or appendages, 
which might occur at large angles of attack; however, these effects are probably 
small during most standard maneuvers. Memory effects are important when 
considering wave-induced motions, which we will discuss in Chapter 5 .  
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4.1 Linear coefflcients 

The coefficients of the linear terms in the steady side force and moment expressions 
for Y, Z, M and N are sometimes referred to as “stability derivatives” since they 
govern the coursekeeping stability of the vessel, which we will discuss later. 
Various semi-empirical methods exist for their determination, none of which is 
particularly accurate. The best way to determine these and the other coefficients is 
by use of the results of model tests, in which the forces and moments are measured 
for a range of values of angles of attack andlor drift, and pitch and/or yaw angular 
velocities. 

Some of the earliest attempts to analytically determine the coefficients were 
based on low aspect ratio wing theory or on “slender body theory”. In the former 
case, the hull (and its image above the free surface, for surface craft) is imagined to 
behave as a wing at an angle of attack. The side force or “lift” coefficient is related 
to the aspect ratio and the angle of attack: 

7t c, = - A R a  
2 

where the aspect ratio AR is related to the length and draft of the ship (and its 
image): 

AR = span2 1 area = 2T 1 L 

Thus the side force on the hull could be expressed as 

2 

so that 

It is conventional to normalize all forces and moments on the basis of the quantities 

1 1 

2 2 
- ~ u ~ L ~  or - ~ u ~ L ~  

for forces and moments respectively, and to normalize velocity components based 
on U. If this is done, the dimensionless side force rate coefficient becomes 
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(3.40) 

The longitudinal distribution of the force is proportional to the rate of change of 
the span (Newman [ 19771); thus, for shp-like forms having essentially constant 
draft ("span"), the lift force is concentrated at the leading edge. Thus the yawing 
moment associated with the lift force, about an axis located amidships, would be 

Slender body theory, can also be used to obtain these results, as outlined by 
Newman [1977]; the following coefficients of the yaw angular velocity can also be 
obtained in a straightforward manner: 

(3.42) 

(3.43) 

It should not come as a great surprise that these simple formulas do not work too 
well. Clarke et. al. [ 19821 have obtained the following modified formulas based on 
regression analysis of captive model available data for displacement ship forms: 

(3.44) 

Here the subscript "H' denotes the contribution of the hull, and the coefficients are 
normalized as indicated in Eqs. (3.40)-(3.43) above. Whde these formulas are an 
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improvement over the predictions of slender body theory, the associated residual 
errors are considerable and so they should be considered as “ballpark 
approximations” only. 

In addition it must be pointed out that the expressions in Eqs. (3.44) for b3, f i  
and f3 include “added mass” effects. Recall that the equations for added mass forces 
and moments, Eqs. (3.1 1) and (3.12), included some terms proportional to velocity. 
The expressions above, which are based on measured forces and moments, include 
all contributions to the hydrodynamic forces and moments which are linearly 
proportional to v or r (unfortunately it is not possible to isolate the “added mass 
effects” such as the Munk moment, from the viscous or steady-flow effects, in a 
standard towing tank test). For this reason the coefficients are shown in boldface, to 
emphasize that they contain both contributions. To be consistent, however, what we 
really need in this section are expressions for only the viscous (“non-potential 
flow”) contributions. 

One method to compute the “real fluid” moment coefficient fi is to assume that 
it is due to the side force acting at a longitudinal location xp: 

(3.45) 

For the side force coefficient b3, since the yaw angular velocity induces a local sway 
velocity xpr at the location xp , it could be argued that the side force induced by yaw 
angular velocity is just 

Y(r) = bl xpr 

so that 

b,,’= blH1( 2) (3.46) 

In these expressions, xp is taken as the coordinate of the center of area of the hull 
profile (Jacobs[1963]). Equations (3.45) and (3.46) are to be used in place of the 
corresponding expressions in Eqs. (3.44), if added mass effects are being accounted 
for separately. 

For submersibles which have body-of-revolution hulls, slender body theory 
yields the result that the lift coefficient is equal to 2, based on the “base area” of the 
hull. This implies that the lift or side force on a hull with a pointed tail is zero, 
which is not consistent with observations. Thus some investigators have attempted 
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to define an “effective base area” determined based, for example, on the cross- 
section area in the plane of axial flow separation. These expressions do not work 
very well, as shown on Figure 3.10 below; one reason for this is that none of these 
expressions accounts for the effect of the length to diameter ratio. 

0.5 1 1.5 2 

Figure 3.10 Comparison of predicted vs. experimental side force coefficient blh’ 
NOTE: the side force rate in the figure is normalized based on maximum cross-sectional area 

The available data shows that the side force coefficient increases in magnitude 
with length to diameter ratio. Also, the “afterbody slope” should be an important 
parameter in fixing the location of axial separation, which determines the “effective 
base area”. Based on an analysis of the data shown on Figure 3.10 above, the 
author proposes the following formulation which contains the effect of slenderness 
and which also reflects a dependence on the “average afterbody slope” d/LB: 

for 

0 I Ag’ 5 0.2 
2.5 <: Lld I 13 
1.3 2 LB/d 5 8 
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where d is the maximum hull diameter, and LB is the ‘‘afterbody length” from the 
end of the parallel midbody or point of maximum diameter to the aft end of the hull; 
AB‘ is the actual base area divided by the maximum cross-section area of the hull. 
The quantity in square brackets can be regarded as the effective base area, as a 
fraction of the maximum section area. Figure 3.10 shows that this formulation fits 
the available data better than the other available formulations. 

The other linear yaw and sway coefficients can be calculated from blH‘ and Xbe’, 

the coordinate of the effective base (i.e., the coordinate of the point on the afterbody 
where the cross-sectional area is equal to the effective base area, normalized based 
on the hull length L), as follows: 

(3.48) 

The first of these formulas is based on the observation that the viscous 
contribution to the yaw-induced side force is negligibly small. 

For body-of-revolution hulls, Eqs. (3.47) and (3.48) can also be used to 
determine the corresponding coefficients for vertical (lift) force and pitching 
moment; see Table 3.4. 

The dimensionless linear coefficients or stability derivatives are generally 
assumed to be independent of velocity (that is, the hydrodynamic forces and 
moments are proportional to the square of the velocity). This is a good assumption 
provided that there are no significant changes in the “hydrodynamic configuration” 
over the speed range of interest. “Hydrodynamic configuration” refers here to the 
underwater hull geometry as well as the location of gross flow features such as 
regions of separated flow. Thus the use of constant dimensionless values is justified 
for displacement ships which do not experience significant trim and draft changes 
with changing speed. High speed craft, particularly dynamically supported craft 
such as planing boats, generally undergo significant vertical motions and trim 
changes through the speed range and so a single set of coefficients is not adequate. 
One way to account for speed effects is to apply empirical correction factors, 
generally based on model test data, which are functions of Froude number. Semi- 
empirical expressions for the linear sway, roll and yaw coefficients of planing craft 
will be presented in Chapter 6 .  
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4.2 Nonlinear coefiicients 

Regrettably, no methods are available for the reliable prediction of most of the 
coefficients of the nonlinear steady force and moment terms. Methods do exist for 
some of the nonlinear terms in the “square absolute” formulation, which are based 
on the concept of “crossflow drag” which was mentioned above. In this approach, 
the effects of a sway velocity v are taken to be equivalent to a “crossflow” having 
this velocity flowing past a fixed hull (regardless of the magnitude of the 
longitudinal velocity component, u). The transverse drag on the hull due to the 
crossflow could be written as 

D = %pv2A CD, 

where A is a reference area (usually the underwater profile area) and CD, is a 
“crossflow drag coefficient”. The following empirical formula is applicable to 
surface shps (Panel H-10, SNAME [1993]): 

CD, = 1.10 + O.O045L/T - O.lOB/T + 0.016(B/T)2 (3.49) 

where the reference area is just the product of the length and draft, LT. This, then, 
could be used to calculate the coefficient of v2 in the side force equation (the 
SNAME simplified version), 626 : 

’26 = -‘Dc (T/L) (3.50) 

The negative sign is of course a consequence of the fact that the crossflow drag is in 
the opposite direction of the velocity v (the use of vlvl rather than v2 in Eqs. (3.39) 
ensures that this is true regardless of the sign of v). 

The crossflow drag concept could be used to determine other coefficients: For 
example, the moment coefficient iZ6 could be obtained by integrating the sectional 
crossflow drag coefficient (determined using 2-D cylinder data), multiplied by the 
lever arm x, along the length of the hull (in fact, 626 could be determined using this 
method as well). Simpler formulas, applicable for hulls having CB > 0.70, are 
presented by Panel H-10, SNAME [1993]: 
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b13’= 4b2, 

cDc 2.5 L 
b15’=-- - 

f ,51= 0.667f2, 
(3.51) 

2 

i7‘= 0 . 0 7 0 ( ; q l + o . 0 8 ( ; ~ ]  

A similar “crossflow drag” approach has been taken for submersible hulls, 
except that here the total force is obtained by integration of two-dimensional values 
over the length of the hull: 

D = %zpv2q ~2r(x)CDc(x)dx (3.52) 

The “local” drag coefficient C,,(x) is that for a circular cylinder (if the hull cross- 
section is circular) with diameter 2r(x). The factor q is supposed to correct for 
finite length. It is well known that the drag coefficient of a circular cylinder is a 
function of the Reynolds number; in connection with the present application, 
investigators have traditionally defined a “cross flow Reynolds number” Re,: 

Re,=2rv/v 

However, such a definition does not make sense physically; it implies that the 
characteristics of the flow in a transverse (“crossflow”) plane are independent of the 
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longitudinal velocity componentg. Thus it is not clear how CD, should be evaluated. 
Allen [1949] originally gave a value of CD, = 1.2; Kelly [1954] states that this value 
is applicable for laminar flow and recommends a value of 0.35 for turbulent 
boundary layers (presumably applicable to full-scale submersibles). Thus the 
crossflow drag is written as 

D =%pv2( 0.3 5q)Ap (3.53) 

(for turbulent flow) where AP is the lateral projected area. The experimental data 
for the coefficient q presented by Allen [1949] are well represented by the 
following formula 

q = 0.5308 + 0.05050 ln(L/d) + 0.007697 [ln(L/d)]’ (3.54) 

in the range 1 5 Lld 2 40. Thus for submersibles which have body-of-revolution 
hulls, we have 

- 
b,, = zz6 = -0.35q(Ap/L2) (3.55) 

Interestingly, Kelly used Eq. (3.49) in conjunction with data for the drag of a 
cylinder started impulsively from rest!, to derive an expression for the crossflow 
drag which is proportional to the cube of the sway velocity and thus compatible 
with the “Taylor series” equations, Eqs. (3.37). This treatment is somewhat 
dubious, however’. 

5. Contribution of Appendages 

The contribution of appendages to the steady forces and moments can be calculated 
based on the well-established lift curve slope of finite aspect ratio wings: 

(3.56) 

At low drift angles, for example, one could have a situation in which the axial boundary layer is 
turbulent due to a large u-velocity component, but subcritical (laminar boundary layer) flow in the 
crossflow plane based on the crossflow Reynolds number. This does not seem reasonable. 

Kelly envisioned a “plane lamina” of fluid moving along the hull with velocity u; the fluid in the lamina 
flows across the hull with velocity v, beginning “impulsively” at the nose, 
’ Kelly’s odd-polynomial fit of the crossflow drag coefficient does not match the data particularly well; in 
addition, the drag of the impulsively-started cylinder was not actually measured in the original 
investigation [ref Schwabe] but rather deduced from photographs of reflective particles sprinkled on the 
surface of a tank through which a surface-piercing cylinder was towed. 
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(Lewandowski [ 19891) where a is the aspect ratio. The lift coefficient is normalized 
based on the planform area of the fin. 

When the fin is mounted on a hull, the additional lift on the hull + fin 
configuration due to the presence of the fin is greater than that predicted by Eq. 
(3.56) for two reasons: 

The presence of the hull modifies the flow over the fin 
The presence of the fin modifies the flow over the hull 

The presence of the hull affects the flow over the fin in two ways. First, the 
“lift distribution”, or spanwise distribution of the lift on the fin, must of course go to 
zero at the tips; the distribution is roughly elliptical for conventional wing shapes’ . 
However if the fin is attached to a body, the lift does not have to taper to zero at the 
“root”, or line of attachment to the body. In the limiting case in which the hull is an 
infinite wall, it can be shown that the wall acts as a “reflection plane” so that the lift 
distribution is the same as that on a fin which has twice the span, formed by 
“reflecting” the fin about the root. This is the motivation for the definition of 
“effective aspect ratio” as twice the geometric value. Second, the flow velocity 
around a curved hull differs from the free-stream value: For example, recall that for 
flow about a two-dimensional circular cylinder (which is similar to the flow about a 
cylindrical submersible hull at a high angle of attack), the velocity around the sides 
reaches twice the free stream value. Both of these factors tend to increase the lift of 
the fin on the hull as compared with the lift of the isolated fin. 

It is not surprising that the fin also affects the flow over the hull; as stated 
above, the lift distribution on the fin does not drop to zero at the junction with the 
hull, so that there is some “spillover” of fin-generated lift onto the hull. This also 
has the effect of increasing the lift on the assembly relative to that on the isolated 
components. 

For slender submersible configurations, these effects can be calculated using 
slender body (potential flow) theory. The additional lift (or side force) generated by 
the addition of n identical fins (at the same longitudinal location, equally spaced 
around the hull) can be written as follows: 

(3.57) 

where KH is the fin-hull interference factor, which is the ratio of the additional lift 
produced by adding the fins to the hull, to the lift produced by the fins in isolation; 

It can be shown that the elliptical distribution of lift results in minimum induced drag. 
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and A is the “isolated fin” lift curve slope, computed by means of Eq. (3.56), using 
double the geometric aspect ratio of a single fin. In the case of two fins, this is 
equivalent to removing the fins from the hull and joining them together at the root; 
the aspect ratio of this “joined together” wing is inserted in Eq. (3.56) and its 
planform area is the reference area for the lift coefficient. 

If it is assumed that the hull diameter is constant at the fin location, KM can be 
expressed as a function only of the ratio of the maximum semi-span, bf,, to the local 
hull radius rf: 

K - 1+- , n = 2  
m - (  ;r (3.58) 

where 

The fin force is computed using the “lift curve slope”, Eq. (3.57), multiplied by the 
local angle of attack, af , which by definition lies in a plane perpendicular to the fin 
(any one of the fins, for n L 3) .  The force is normal to the inflow velocity vector in 
this perpendicular plane. Note that for n=l and n=2, the force is zero if af lies in a 
plane parallel to the fin; for n 2 3, the force is the same for af in either plane. 

Unfortunately the lift curve slope of the isolated tail fins cannot be computed by 
use of Eq. (3.56) for n = 3 or n 2 5 (it works for n = 4 because the pair of fins in the 
plane of clf theoretically generates no force). No general result similar to Eq. (3.56) 
is available for such configurations; however slender body theory, applicable to 
small aspect ratios, yields the following result: 

(3.59) 

In fact, since the interference factors given by Eqs. (3.58) were derived using 
slender body theory, strictly speaking they should be applicable only to slender (low 
aspect ratio) configurations. However, it turns out that the ratio of additional lift 
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due to the fin to the lift of the isolated fin is not sensitive to the fin aspect ratio, 
which i s  why the Km factors were defined in this way (Nielsen [1960]). “The 
method has been tested successfully for large numbers of [missile] wing-body 
combinations.. .”, slender and non-slender. 

For surface ships we generally do not go to the trouble of computing 
interference factors, but rather just make use of the lift curve slope, Eq. (3.56), and 
the effective aspect ratio defined in Eqs. (3.30): 

(3.60) 

Using the relationship between the hull drift angle and the lateral velocity 
component (see eq. (3.34)), 

and normalizing in the usual way, we can obtain an expression for the contribution 
of the fin(s) to the side force coefficient bl: 

(3.61) 

(a corresponding expression is obtained for elf' by substituting the hull angle of 
attack u for the drift angle p). The first quantity in parentheses represents a velocity 
correction for cases in which the local velocity differs from the free stream velocity, 
due, for example, to the effects of propeller wash or the body boundary layerk, as 
mentioned above. The last factor is a corresponding correction to the local angle of 
attack. For surface ships, this is sometimes referred to as a “flow straightening 
factor” and given the symbol y; an approximate value is 

au, 1 
ap 1+c, 

y=-c- (3.62) 

for conventional ship forms; this effect is generally ignored for submersibles. 

The fins also contribute to the axial force; the most important contribution is 
due to “induced drag” or “drag due to lift” (there is also a contribution at zero 
incidence called “profile drag” which is largely due to friction; this will be assumed 

’ The potential-flow effects of the hull on the local velocity are accounted for in Km as discussed above. 
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to be part of the total hull resistance to be discussed below). The induced drag 
arises because the hydrodynamic pressure-induced force on a fin (of finite span, 
which is a characteristic of most real fins!) is not normal to the d o w  velocity but 
contains a component in the direction of the flow. In theory this component, the 
induced drag, is proportional to the square of the lift. In terms of lift and drag 
coefficients, 

CLf A2af 
CDf = -(1+ k) = -(l+ k) 

7ca 7ca 
(3.63) 

where k is a correction term to account for non-elliptical lift distributions and other 
factors; k = 0 for an isolated elliptical wing. Thus we can obtain an expression for 
the coefficient a3i: 

(3.64) 

Technically, the lift coefficient of the fins in the presence of the hull should be 
used; this interaction can be approximated by using the effective aspect ratio of the 
fins. The correction term k is generally small and thus can be neglected. 

These formulas can also be used to obtain the fin force contributions due to 
rotations p, q and r: The local geometric angle of attack of an appendage on a hull 
undergoing a horizontal turn with radius R at a drift angle p is 

which, for small drift angles, can be approximated by 

Thus we find that 

In the vertical plane the expression analogous to Eq. (3.66) is 

(3.65) 

(3.66) 

(3.67) 

(3.68) 
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so that 

a2; = -xf'alf' ; c2;= -x;clf' ; e2; = -xielf' (3.69) 

In a similar fashion, roll angular velocity induces a local sway or heave 
velocity: 

v; = -zf'p'; wf' = y[pI 

and so 

This method can be used to find the fin contribution to the second-order derivatives 
in the X-equation: 

12 as; = a3f'zf + a4;y;' 
a& = xf a4i 
a,; = xf a3; 
a9f' = 2xf'a3f' 
ale; = -2 xias; 

12 

I 2  (3.71) 

where a4/ comes from an expression analogous to Eq. (3.61). 

Moments induced by the presence of the fins are determined by multiplying the 
forces by appropriate lever arms: 

(3.72) 

Actually, the behavior of the fin lift force is more complicated than is indicated 
by Eq. (3.56). The lift coefficient does not increase linearly with angle of attack 
indefinitely; a point is reached at which the flow separates from the low-pressure 
side of the fin, resulting in a loss of lift known as "stall". Thus the fin has a 
maximum lift coefficient, CLMAX , which is a function of the section shape and in 
general increases with increasing Reynolds number, at least through Re = 10'. 
Figure 3.11 shows some experimental data for the NACA OOxx symmetrical foils 
(the last two digits designate the foil thickness as a percentage of the chord length). 
Prior to reachmg its maximum lift coefficient, the lift curve typically bends as 
shown on Figure 3.12; the loss of lift may be gradual or abrupt depending on 
whether the stall originates at the trailing edge or the nose. Stalling can be 
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accounted for in the hydrodynamic force and moment expressions by including a 
cubic term in the expression for fin lift: 

C , ,  = &)af + b a f 3  

Unfortunately there is no satisfactory method to estimate the coefficient b; it 
should be determined by examination of data (at the appropriate Reynolds number). 
This coefficient would then constitute the fin contribution to the rate of change of, 
say, side force with drift velocity cubed, bZ6. 

Figure 3 .  I I Maximum lift coefficient of NACA OOxx foil sections vs. Reynolds number 
(from Jacobs and Sherman [ 19361) 

6. Shallow Water Effects 

As was the case for the added mass coefficients, the water depth also affects the 
steady-flow forces and moments. Again a conservative rule of thumb for surface 
craft is that when the water depth is less than about five times the draft of the vessel, 
the effects of finite depth should be accounted for. In the case of submersibles, 
corrections should be made when the distance to the bottom or the submergence 
depth is less than five hull diameters. 
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Figure 3.12 Behavior of lift with angle of attack (from Abbot and von Doenhoff [1959]) 

Once again, the only reliable way to determine these effects is through testing; 
Roseman [ 19871, for example, presents hydrodynamic coefficients for a series of 
full-form merchant ships at various water depths down to 1.2xdraft. Lacking such 
data, the following approximate formulas for the effect of water depth on the four 
stability derivatives could be used to obtain “ball park” estimates down to a depth to 
draft ratio of about 1.2 (Clark et. a1.[1982]) : 

(3.73) 

where the subscript M indicates infinite depth, and the coefficients K are given 
under Eq. (3.27) on page 50. 

In general the hydrodynamic coefficients increase in magnitude with decreasing 
depth, as a consequence of the fact that the water finds it “more difficult” to flow 
past the hull in shallow water. The consequences of this will be discussed below. 
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7. Resistance and Thrust 

7.1 Resistance 

Resistance is the steady hydrodynamic force in the negative x-direction (or, more 
accurately, in the direction of the incident flow velocity), and thrust is the 
propulsive force applied by the propellers, pumpjets, or waterjets to balance the 
resistance in order to move the vessel at the desired speed. The ability to predict the 
resistance of a vessel is of critical importance throughout the various stages of 
design, and, possibly for this reason, the prediction techmques are more advanced 
than those for the other steady hydrodynamic force and moment components'. 
Indeed, there are many books devoted to the subject of resistance andor propulsion 
alone, and our treatment will be brief as the primary focus here is on maneuvering 
and seakeeping. 

Ship resistance has traditionally been broken down into viscous and 
wavemaking components. The viscous components include friction drag and form 
or pressure drag; wavemaking resistance represents the applied force necessary to 
produce the familiar ship-wave pattern, essentially a potential flow phenomenon. 
Dimensional analysis can be applied to show that the viscous component is 
primarily a hnction of the Reynolds number while the wavemaking component is 
principally a function of the Froude number. This results in a predicament for 
experimenters: In order to be able to scale up the results of a model test, the model 
and hll-scale flows must be dynamically similar (in addition to geometrically 
similar), meaning that the values of the Reynolds and Froude numbers must be the 
same for the ship and the model. For this to be true, the following equality must 
hold: 

where subscripts m and s denote model and ship, v is the kinematic viscosity of the 
fluid, and h is the scale ratio, L, I L,. Since for practical reasons, the scale ratio is 
generally substantially greater than 1, and we don't have too much control over the 
acceleration of gravity (that is, g, = g,), this requires that the fluid that the model is 
tested in have a viscosity which is considerably lower than that of water (by a factor 
of A*, in fact). Such a fluid is not readily available. 

' We emphasize relatively more advanced. Even the most advanced CFD techniques are at present 
unable to produce predictions of resistance which are of sufficient accuracy to be used to design a ship. 
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All is not lost with regard to the utility of model test data, however. In the 
1860’s, William Froude suggested that the frictional resistance and wavemaking 
resistance components could be separated. Nowadays we express “Froude’s 
hypothesis” as follows: 

R CT(Re,Fn) =- = c ~ ( R e ) + c ~ ( F n )  
1 2 pu2s 

(3.74) 

where R is resistance, S is the wetted surface area, CF and CR denote frictional and 
“residuary” resistance coefficients, and Re and Fn are the Reynolds and Froude 
numbers. The residuary component contains wavemaking and pressure or form 
drag; technically, the latter should be a function primarily of Reynolds number. 
However, it turns out that the form drag is essentially constant with Reynolds 
number (provided that the character of the flow and the location of the separation 
line do not change) and thus can be lumped with the wavemaking component. The 
advantage of this is that the frictional component can be estimated using flat-plate 
resistance data; thus, one could determine the ship resistance coefficient as follows: 
1. Run a scale model at a speed corresponding to the full-scale Froude number, 

measure its resistance R,, and compute the model resistance coefficient CTM. 
2 .  Subtract the model frictional resistance coefficient (CF at the model Reynolds 

number) from this value to yield the model residuary resistance coefficient 
CRM. 
Since the model was tested at the full-scale Froude number, CRs = Cmf. 
Add the ship frictional resistance coefficient (C, at the full-scale Reynolds 
number) to CR to obtain CTS. 

3. 
4. 

Tests of geometrically similar models have indicated that Froude’s hypothesis is an 
effective means to correlate the resistance of models of widely differing lengths 
(Newman [1977]). 

How is the frictional resistance coefficient obtained? A widely-used expression 
was established by Schoenherr [ 19321, who fitted a theoretical turbulent friction 
formulation to a collection of experimental flat-plate resistance data to obtain: 

(3.75) 

This formulation is also known as the “ATTC line” because it was adopted by the 
American Towing Tank Conference as the standard frictional resistance formula in 
1947. However, some geosim data suggest that the form drag coefficient is not 
really constant, but increases with decreasing Reynolds number; as a result, the 
Schoenherr formula may not represent all of the viscous effects, particularly at 
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lower Reynolds numbers. In 1957, the International Towing Tank Conference 
(ITTC) adopted an alternative formulation, which has a steeper slope than the 
ATTC line: 

(3.76) 

which was designated as a “model-ship correlation line” as opposed to a friction 
line; it is not supposed to represent frictional resistance (although it is often misused 
for this purpose”’) but rather as a means of correlating model and ship resistance, as 
the designation implies. 

It turns out that even with this “improved” correlation line, the resistance of 
full-scale ships, deduced from trials measurements, is generally greater than that 
determined from model data by the method outlined above. This is due in part to 
roughness and fouling which inevitably exist on the ship but not on the model; in 
addition, differences can arise because of small differences between the ship and 
model geometries, and various effects not specifically accounted for in the 
extrapolation procedure. The difference between the resistance deduced from the 
trial data and that predicted from the model test is accounted for by addition of a 
“correlation allowance coefficient” CA to the latter. The correlation allowance has 
been found to increase with ship roughness and to decrease with ship length. 
Specific formulations for predicting CA differ at the various model testing basins 
around the world, due to differences in their extrapolation techniques and test 
methods. 

If test data for the specific configuration being considered are not available, one 
could make use of systematic series data, if the hull is similar enough and if its 
particulars fall within the bounds of the series parameters. The various series are 
described in Principles of Naval Architecture (Van Mannen, and Van Oossanen 
[1989]), for example. Alternatively, collections of data such as the SNAME 
Resistance Data Sheets (SNAME, undated) could be used, again if one of the ships 
in the database is similar enough to the design being considered. Finally, an 
empirical formula such as that described by Holtrop [1984] can be employed. 
Holtrop’s method is based on multiple regression analysis of test data for various 
types of ships, consisting mostly of tankers, cargo ships, fishing vessels and tugs; a 
series of high-speed displacement forms known as Series 64 was later added to the 
database. This method is widely used in preliminary design studies. Also included 
are formulas for wake fraction and thrust deduction fraction, which we will make 
use of later; these formulas are given in Appendix A. 

‘‘I Although the ITTC line was not intended to represent flat-plate friction, Granville [ ] derived a very 
similar formula for the frictional resistance of a flat plate in turbulent flow. 
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Various methods to account for the drag of fins (including rudders, skegs, bilge 
keels, and propeller shaft brackets) exist in the literature. Since their drag arises 
almost exclusively from friction at zero angle of attack“, we could compute the 
frictional resistance coefficient for each fin, using a Reynolds number based on the 
chord of the fin and the Schoenherr friction formulation (Eq. (3.75)), and multiply 
by the appropriate wetted surface area. The total hull resistance then becomes 

where S is the hull wetted surface area, exclusive of fins, CT pertains to the bare 
hull, and Sfi and CFfi are the wetted surface area and frictional resistance coefficient 
of the i” fin; CFfi is calculated based on the fin Reynolds number’. 

The resistance of other types of appendages such as exposed shafts and sonar 
domes may be considerable. These generally have a significant form drag and may 
also contribute to wavemaking resistance. There is no simple way to deal with such 
appendages; the best procedure (laclung test data for the actual configuration being 
considered) would be to look for data from ships having similar appendage 
arrangements. 

The aerodynamic drag on the above-water hull and superstructure in general 
cannot be neglected. Whle aerodynamic forces and moments are accounted for 
separately in Equations (2.1), the drag due to the relative wind velocity due to the 
ships motion, called “still-air drag”, is traditionally included with the hydrodynamic 
drag in the determination of ship resistance. The aerodynamic drag in “still air” is 
expressed as 

(3.78) 

where CDAA is an aerodynamic drag coefficient, p A  is the density of air (1.22 1 kg/m3 
or 0.00237 slugs/ft3 under “standard” conditions), AT is the transverse projected 
area above the waterline, and C, is a heading coefficient which would in th s  case 
represent the effect of a drift angle. For the present purposes it is sufficiently 
accurate to take C, = 1.0. Grant and Wilson [1976] recommend values of 0.75, 0.70 
and 0.45 for cargo ships and tankers, combatant ships, and aircraft carriers, 
respectively. 

Once the hydrodynamic and aerodynamic resistance has been obtained, the 
coefficient a,,’ can be calculated: 

“ The “induced drag” due to angle of attack is accounted for in the fin axial force terms, e.g. Eq. (3.61). 
a Another refinement we could make would be to use a “local fin velocity” Ufi in Eq. (3.74) and in 
computation of the fin Reynolds number; to account for such effects as the hull wake and propeller wash. 
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(3.79) 

It is emphasized that the coefficient is not constant, but a function of the velocity 

7.2 Thrust 

The thrust is the force supplied by the propulsion system, designated FP in Equation 
(2.1). The thrust must be slightly greater than the resistance of the vessel at a given 
speed. Thls is because there is a h g h  pressure region near the stem of the vessel 
which produces a forward-directed force on the afterbody; the presence of the 
propeller typically reduces the pressure on the afterbody thus increasing the total 
resistance. This “augment of resistance” is commonly expressed as a reduction of 
the available thrust, 

T - R = t T  or T ( l - t ) = R  (3.80) 

where T is thrust and t is the thrust deduction fraction; the quantity (1 - t) is referred 
to as the “thrust deduction factor”. The thrust deduction fraction, along with the 
wake fraction w and other propeller-hull interaction coefficients, are usually 
determined in model self-propulsion tests. In preliminary design, these coefficients 
can be estimated based on data from previous tests of similar vessels; they can also 
be approximated using Holtrop’s regression formulas, given in Appendix A. 
Information on values o f t  and w for body-of-revolution submersible hulls can also 
be found in Appendix A. 

The thrust produced by a propeller of a given geometry is a function of its 
speed of advance UA and its rotational speed n (we will use the symbol n to denote 
speed of rotation in revolutions per second, and N to denote rotational speed in 
rotations per minute; the sign of n is positive for the direction of rotation 
corresponding to ahead motion). Dimensional arguments can be used to show that 
the thrust coeficient KT is a function only of the advance ratio J (if there is no 
cavitation): 

(3.81) 

The water temperature also has a non-negligible effect on the frictional component of resistance. For 
example, the frictional resistance of a 120m ship moving at 15 knots is 4% less in 28°C water (typical of, 
say, the Gulf of Mexico) than in water at the “standard” temperature of 15°C. 
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where D is the diameter of the propeller. Similarly, the torque coeficient, KQ, is 
also a function only of the advance ratio: 

Q KJJ) = - 
pn2D5 

(3.82) 

It can be shown that the local angle of attack of a propeller blade section located a 
distance r from the center of the propeller, in “homogeneous flow”, is, 
approximately 

where qi  is the “ideal” propeller efficiency (without viscosity). T h s  indicates that 
the local angle of attack at the blade tips is zero when 

The thrust and torque coefficients are determined in “open water tests” of 
model propellers. Designers often make use of available methodical series charts as 
described by van Mannen and van Oossanen [1989]. One of the best-known series 
is the B-series of MARIN. The B-series covers a wide range of blade numbers (two 
to 7), blade area ratios (0.30 to 1.05), and pitch-to-diameter ratios. A representative 
plot of the behavior of the thrust and torque coefficients with advance ratio is shown 
on Figure 3.13 below. It can be seen that the thrust goes to zero when J a P/D and 
that the torque is zero at a slightly higher value of J. This corresponds to 
“windmilling” of the propeller; the associated negative thrust reflects the drag of the 
propeller. 

A regression analysis has been undertaken of the B-series data (van Lammeren 
et. al. [1969]), resulting in expressions for KT and as cubic functions of the 
advance ratio; the coefficients are polynomial functions of the number of blades, 
pitch to diameter ratio, and blade area ratio. These functions are convenient in 
preliminary design, or to obtain rough estimates of thrust and torque for propellers 
which are similar to the B-series. The expressions and coefficients are presented in 
Appendix B. 

Using Appendix B, or by fitting a curve to open water data, we can obtain an 
expression of the following form for the propeller thrust coefficient: 

KT = T~ + T,J + q J 2  + T ~ J ~  (3.84) 
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which can be written as 

T = p n2D4z0 + U,nD32, + U, i n 
(3.85) 

The sharp-eyed reader will have noticed that Eq. (3.85) causes some practical 
difficulties at zero shaft speed. This is purely an artifice of the use of a cubic in J 
(Eq. (3.83)) and thus is not indicative of a real physical phenomenon (we expect the 
“thrust”, actually representing drag in this case, to be well-behaved near n=O, 
corresponding to a locked shaft). This problem can be circumvented by using a 
quadratic expression in place of Eq. (3.83): 

(3.86) . .  KT = zo + 21 J + Q’J* 

Unfortunately the coefficients 2: are not available in the literature, but a quadratic 
fit obviously can be easily obtained after generating data using Eq. (3.84). In fact 
you will find that such a procedure results in the following relationships: 

(3.87) 

which is based on the range 0 I J 5 1.4 q. 

As was mentioned above, the hull resistance is “augmented” by the pressure 
field induced by the propeller. Thus the “net thrust” is reduced by the factor (1 - t) 
as shown in Eq. (3.80), due to the presence of the hull. So we can write 

Xp = C( 1 - ti)Ti COS(E~) (3.88) 

where the summation is over the number of propellers; T is computed using Eq. 
(3.85) with UA = u(l - w). E is the inclination of the propeller shaft relative to the 
keel (positive sense upward). Thus the vertical component would be 

Zp = -C( 1 - ti)Ti sin(si) (3.89) 

This component is usually negligible for conventional displacements but significant 
in small craft, which often have shaft angles exceeding 10”. 

The quadratic curve is generally somewhat flatter than the cubic representation in the vicinity of J=O; 
thus this quadratic expression should only be used for J 2 0.1. Alternative quadratic fits could be derived 
which fit better near J=O, but one might as well use the original cubic. 
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Figure 3.13 Behavior of KT, KQ and efficiency with advance ratio 

There is also a side force on the propeller, due to the asymmetry of the inflow: 
The flow velocity is usually greater at the bottom of the propeller than at the top 
because of the hull wake. As a result, the blades are at a larger angle of attack and 
so produce more thrust (and torque) when they are above the hub. The result is a 
transverse force directed to port on a right-hand propeller (which rotates clockwise, 
looking forward at the propeller). This effect is small, however, and is 
overwhelmed by the force induced by the propeller wash on the rudder (at zero 
rudder deflection) which will be addressed in the next section. Presumably the 
thrust vectors are parallel to the xz plane; if t h s  is not the case, a contribution to the 
side force similar to that given by Eq. (3.86) would arise. 

If the thrust line does not pass through the pitch axis, a pitching moment will be 
induced: 

Mp = Xpzp - Zpxp (3.90) 

where (xp, yp, zp) are the coordinates of the propeller. 

The rolling moment induced by the propeller comes primarily from the 
propeller torque, which can be calculated using an expression similar to Eqs. (3.84) 
and (3.86): 
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(3.91) 

The coefficients K ~ ,  K,, K ~ ,  and K~ for the B-series propellers are given in Appendix 
B; K ~ * ,  K,*, and K ~ *  are generated from them using Eq. (3.87). Thus, by analogy to 
Eqs. (3.88) and (3.89), we have 

(3.92) 
(3.93) 

where the positive sign is to be used for right-hand propellers and the negative sign 
for left-hand propellers. The latter quantity is negligibly small in most cases of 
practical interest. 

Additional transverse forces and moments are generated when the propeller is 
in oblique flow, i.e., when the hull is at an angle of attack. It can be shown (Glauert 
[ 19351) that the side force on a propeller whch is inclined to the direction of motion 
can be represented as 

Fp =pU,D f 1dKQ (? 2 dJ )a’ 
(3.94) 

where up is the flow angle at the propeller. 
“distribution of torque along the blades”; a value of 

The factor f accounts for the 

f =  1.3 

is appropriate for marine propellers; the formula holds for both right- and left-hand 
propellers. Thus we can write 

Yp (v, r) = -I.3pUy(l- w)2 D2( % -L%)(v 2 dJ + xpr)  (3.95a) 

where xp is the longitudinal coordinate of the propeller and y is the flow 
straightening factor (see Eq. (3.62)). Similar formulas can be obtained for Zp(w,q) 
and M,(w,q). 
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7.3 Propeller Shaft Speed 

The equations above show that we need to know the propeller speed (rpm) in order 
to accurately simulate the thrust (and so the longitudinal motions) of a vessel. How 
is the shaft speed determined? For straight-ahead motion at steady speed U, Eqs. 
(3.80) and (3.85) could be solved for the equilibrium shaft speed nE. A simple 
approach would be to assume that n = nE for the duration of the simulation. 
However, depending on the type of engine control system whch is in use on the 
vessel being simulated, the shaft speed may drop by 20% or more of its initial value 
in a high-speed turn at maximum rudder deflection. Thus we need another 
equation, for propeller shaft torque: 

(3.96) 

where Ip is the moment of inertia of the propeller and shafting; Ap is its 
hydrodynamic added moment of inertia; QE is the main engine torque; kc is the 
reduction gear ratio; QF is frictional torque; and Q is the propeller torque, Eq. 
(3.91). The factor of 271 is required because the shaft speed n is (by convention) 
expressed in Hz. Each of the quantities on the right-hand side is in general a 
function of the propeller speed as well as other factors, as will be discussed below. 
The added inertia is generally assumed to be about 30% of the propeller’s moment 
of inertia (Norrbin [ 197 l]), although it is probably a function of propeller pitch as 
well as the rate of change of RPM. 

An in-depth treatment of the dynamic simulation of the various types of engines 
and the associated control systems used in marine craft is outside of the scope of 
this book. However the following simplified representations may be adequate for 
many applications. 

Our engine model must at a minimum account for two effects: First, it must tell 
us how the engine torque changes in response to changes in loading, which would 
occur during maneuvers because of changes in the axial force, for example. 
Second, the engine model must account for changes in demand due to changes in 
the throttle setting. 

At constant throttle setting, the engine torque could be represented by: 

L($) P 

Q EO 
(3.97) 

where the exponent p is determined by the type of powerplant. For diesel engines, 
the torque is essentially constant, determined by the fuel rack setting; thus p = 0. 
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For turbines, the power is essentially constant, governed by the steam inlet pressure 
or by the fuel flow rate for steam and gas turbines, respectively. A constant RPM 
could be acheved by setting QE equal to (Q + QF); in t h s  case, however, there is no 
need for the torque equation in the first place! 

When a speed change is ordered, the engine torque does not change 
instantaneously. One reason for t h s  is that the fuel flow rate does not change 
instantly; it may take 5 seconds or more to reach the full-ahead rate from idle (Rubis 
[1972]). Thus for a gas turbine the engine torque may be substantially less than its 
final equilibrium value during the “transient” stage of a speed change. For example, 
the transient torque of the GE LM 2500 gas turbines described by Rubis [ 19721 can 
be represented as follows: 

QEO -QEC 

1 + (t/4.4)6 
Q E = Q E C +  (3.98) 

where QEC is the “command” value of the torque, corresponding to the ordered 
speed, and QEO is the engine torque prior to the command. This empirical 
relationship was derived based on simulation results for changes from idle to a 
substantial ahead speed, and should be regarded as a gross approximation in other 
scenarios. Accurate simulation of speed changes obviously requires detailed 
knowledge of the particular engine and control system; the constants 4.4 and 6 in 
Eq. (3.98) are applicable only to the GE LM 2500. 

The frictional torque QF accounts for any losses between the point where QE is 
measured and the propeller. Thus it may account for gear and shaft transmission 
losses. The shaft transmission losses are generally assumed to be about 2 to 3 
percent of the engine torque (Van Mannen and Van Oossanen [1989]). Losses 
associated with reduction gears may be somewhat larger; for the gas turbine system 
discussed above, 

for shaft speeds between 35 and 285 RPM (0.583 and 4.75 Hz); QE,max is the single- 
engine torque limit. 

7.4 Other Operating Regions 

The discussions of propeller thrust and torque in the previous sections have focused 
on situations in which both the ship speed and shaft speed correspond to ahead 
motions. However, other combinations of shaft speed and ship speed are of course 
possible. The “normal” situation of ahead speed (u > 0) and ahead RF’M (n > 0) 
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corresponds to what is called the “first quadrant” of the propeller operating region. 
The four quadrants are identified in the table below: 

Quadrant I u I n 
1 I > o  I > o  

In quadrants other than the first, the representation of propeller characteristics in 
terms of KT, as functions of J is unsatisfactory since, for one h g ,  J is not 
unique; it also does not behave well when n = 0. Thus it is customary to express 
four-quadrant propeller characteristics in terms of the alternative coefficients CT and 
CQ, expressed as functions of the propeller’s “hydrodynamic pitch angle” pp: 

- T 
c T =  -p[Ui 1 +(0.7nnD)2]aD2 

2 

Q 
‘Q= 

- p[Ui + ( 0 . 7 ~ n D ) ~ ] a  D3 
2 

(3.100) 

(3.101) 

(3.102) 

Based on four-quadrant tests, van Lammeren et.al. [ 19691 have developed 20-term 
Fourier series representations for CT(p,) and CQ(p,) for the B-series propellers; the 
Fourier coefficients in the series can be found in that reference. 

7.5 Waterjets 

An increasing number of craft are being equipped with waterjet propulsion systems. 
These are particularly advantageous in applications requiring shallow drafts as there 
is no propeller protruding below the keel; also, the power requirements may be 
lower than for systems employing conventional propellers at speeds over 25 knots 
(Allison [ 19931). 

The net thrust produced by the jet is a hnction of the mass flow rate through 
the jet, and the difference between the jet and craft velocities: 
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T = pQ(U, -u) = pUjAj(Uj -u) (3.103) 

where Q is the volumetric flow rate. For maneuvers at constant throttle, the jet 
speed can be taken as constant; thus, from the initial equilibrium straight-course 
values (denoted by subscript 0) ,  

2 RO 
PA j PA j 
-- To - u j  -ujuom- (3.104) 

where the last (approximate) equality is based on an assumption that the thrust 
deduction t = 0. This quadratic equation can be solved for the jet velocity if the jet 
area Aj is known; it can generally be assumed that the jet area is about equal to the 
nozzle (jet outlet) area. The subsequent behavior of thrust with velocity can now be 
computed using Eq. (3.103) with the jet velocity obtained from Eq. (3.104). 

A more comprehensive model of the propulsion system, including engine 
dynamics such as described in Section 4.3 above, requires knowledge of the 
behavior of the torque of the jet/pump system with RPM and speed. Such data does 
not seem to be available in the literature but possibly could be provided by the 
waterjet manufacturer. Alternatively, if data on power vs. speed and RPM are 
available, and the propulsive efficiency is known or can be estimated, the torque can 
be computed using the following relationshp: 

P, =2nQn=TUlq ,  (3.105) 

The propulsive efficiency is generally a function of both speed and RPM. Allison 
[ 19931 shows how the propulsive efficiency can be estimated for waterjet-equipped 
craft. 

8. Control Forces and Moments 

Control forces and moments consist of those generated by control surfaces, usually 
a rudder, but could also be produced by changing the direction of the thrust vector, 
as with Z-drives, “azipods”, and waterjets. Also included are forces and moments 
produced by “auxiliary maneuvering devices” such as thrusters. 
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8.1 Rudders 

The forces and moments due to ship rudders can be fairly accurately predicted using 
the formulas given above for appendage contributions to the hull forces and 
moments. There are two important differences, however: First of all, the effects of 
the propeller wash are more pronounced when the rudder is deflected (assuming of 
course that it is located in the propeller wash) than when the whole ship is at an 
angle of attack. Secondly, depending on the shape of the hull and the type of 
rudder, a gap may open up between the top of the rudder and the hull when the 
rudder is deflected; this results in loss of the “reflection plane” effect of the hull as 
fluid may “leak” through the gap. 

A simple approximation for the velocity in the propeller race is available from 
“momentum theory”, in which the propeller is regarded as a thin disk which imparts 
momentum to the fluid which passes through it (Van Mannen and Van Oossanen 
[ 19891). Using the theory it can be shown that the ratio of the “outflow” velocity aft 
of the propeller, which we will designate as U, for “velocity at the rudder”, to the 
“inflow velocity” UA, is 

(3.106) 

which we can calculate using Eq. (3.84) or (3.87). It can be seen that the ratio goes 
to 1 for large J, and gets very large as J goes to zero. 

The rudder lift is given by: 

1 
2 

L, = - ~U;A,AG, (3.107) 

where 6, is the rudder deflection, which is positive clockwise looking down at the 
rudder, and A is the lift curve slope based on the effective aspect ratio of the rudder, 
equal to the geometric aspect ratio if there is a gap between the rudder and the hull 
when the rudder is deflected. The rudder induced drag can be obtained from Eq. 
(3.63): 

1 A22ir2 
D, =-pU,A, - 

2 nae 
(3.108) 

where a, is the effective aspect ratio of the rudder. Note that Eqs. (3.107) and 
(3.108) pertain to the additional forces produced by the rudder when deflected; the 
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contribution of the rudder at zero deflection is contained in the appendage 
contribution to the steady forces, e.g. Eqs (3.61) and (3.64).' 

Relative to the standard coordinate system, then, the forces and moments 
induced by the rudder deflection can be expressed as 

X, = -Dr 
Y ,  = L, 
Kr = -L,z, 
Nr = Lrxr + Dry, 

(3.109) 

where (xr.yr,zr) are the coordinates of the center of force, whch can be assumed to 
be on the quarter-chord line at midspan. For multiple rudders, the individual 
contributions are summed. 

For submersibles, the control surfaces are usually located forward of the 
propeller. Thus for such vehicles, U, = UA in Eqs. (3.107) and (3.108). The lift 
curve slope is based on the effective aspect ratio defined in Eq. (3.29) for each 
appendage. Equations for the lift (heave force) and pitching moment induced by the 
elevators are analogous to the expressions in for side force and yaw moment in Eqs. 
(3.109) above. Note that it is not appropriate to use the fin-hull interference factors 
discussed in Section 3.2 for the rudder force, because those factors require the hull 
and fins to be at the same angle of attack. 

The formulas given above pertain to all-moveable control surfaces. For flapped 
rudders or elevators, which are common on torpedoes, the lift expression, Eq. 
(3.107), must be modified as follows: 

where 

(3.1 11) 

is a factor based on 2-dimensional wing theory (Keuthe and Schetzer[l959]), and 

There is an inconsistency here in that the effect of the gap between the hull and the rudder, which is 
nonzero only when the rudder is deflected, is not usually considered in the contribution of the rudder to 
the steady forces. These effects are probably not too significant, but could easily be incorporated in Eqs. 
(3.58) and (3.61). 
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(3.112) 

Here xh is the location of the hinge measured from the leading edge of the rudder or 
elevator, and c is the total chord. 

8.2 Pro~eller-Rurtder-Hull Interaction 

As was alluded to above, the flow over the rudder induced by the propeller is not 
uniform in space. For a right-handed propeller, the flow angle at the rudder above 
the propeller centerline is fairly uniform and the flow approaches the rudder from 
the port side. Below the propeller centerline, on the other hand, the flow 
approaches from the starboard side and the angle is generally smaller than is the 
case for the top of the rudder; the net effect is a positive angle of attack at the rudder 
(Shiba [ 19601). This effect is generally accounted for by inclusion of an additional 
term in the Y and N equations for ships with an odd number of propellers (the 
effects will cancel for pairs of contra-rotating propellers): 

Y,, = Y*’.%pU,‘A,‘ 
N, = N*‘.%pU,2A,2L 

(3.1 13a) 
(3.113b) 

where subscript “pr” indicates asymmetrical propeller/rudder interaction. A 
suggested “first approximation” for the coefficients Y*‘ and N*’ is (Panel H-10, 
SNAME [1993]): 

Y*‘ 0 [#Pw - #PL,]N35 (3.1 14a) 
N*’ [#Pw - #P,,]h(x,/L)/35 (3.114b) 

where #PM, #PLH is the number of right-handed and left-handed propellers which 
are located forward of the rudders (propellers which do not have rudders in their 
wash are not counted here, and in fact would generate a small opposing force and 
moment). 

The presence of the operating propeller also affects the flow over the afterbody 
of the hull; thus you might expect that the hull hydrodynamic forces and moments 
would be functions of the propeller speed. These effects are usually expressed in 
terms of the “propulsion ratio” q, where 

q=n/n , ,  (3.115) 
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and Q, is the equilibrium propeller speed. The propellerhull interaction-induced 
force and moment for surface shps can be expressed as follows: 

Yhp = L/2pL2u(q-1)[Y’,v + Y‘,~L] (3.116a) 
Nhp %pL3U(Tl-1)[N’,V + N’,rL] (3.1 16b) 

where the subscript “hp” denotes hull-propeller interaction. These effects are due 
primarily to interactions between the propeller and rudder. Approximate 
relationships for surface ships are (Panel H-10, SNAME [ 19931): 

ytV,, = (0.8-OK, B/T)AA,/L* 

Y’, = -0.65Y‘,, 

NIv,, = YIvq X, / L  
(3.117) 

N’, = Y’, X, / L 

In a hard turning maneuver, the value of q is typically near 2, and the contribution 
of these terms can be significant (15% to 50% of the hull damping hydrodynamic 
forces according to Panel H-10, SNAME [1993]). For submarines and torpedoes, 
the control surfaces are usually located forward of the propeller and thus not 
exposed to the propeller wash. Although these terms are included in the “standard 
equations of motion for submarine simulation” (Gertler and Hagen [ 1967]), that 
reference states that “for the moderate changes in ahead speed involved in most 
normal maneuvers, all of the (q-1) terms usually can be neglected”. 

8.3 Vectored Thrust 

An increasing number of marine vehicles are now being equipped with omni- 
directional thrusters such as Z-drives, “Azipods”, and cycloidal propellers. These 
systems are particularly well-suited for applications requiring a high degree of 
maneuverability at low speeds, such as on tugboats, ferries, and in dynamic 
positioning systems. The advantage of these systems is that large control forces 
acting in virtually any direction can be made available quickly, even at zero speed 
(when the forces produced by conventional rudders, proportional to U:, is small). 
The price one pays is increased mechanical complexity of the propulsion system. 

In addition to these azimuthing thrusters, waterjets can also be considered as 
thrust-vectoring devices, as they are usually equipped with steering buckets or 
deflecting nozzles which produce control forces by diverting the jet velocity vector. 
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8.3.1 Azimuthmg thrusters 

The characteristics of azimuthing thrusters can be expressed in terms of the thrust 
coefficient CT defined in Eq. (3.101): 

T = C, .- 1 p[Ui  +(0.7~nD)~]; D2 
2 

Xp = T C O S C Y , ~  (3.118) 
Yp =Ts ina ,  

where CT is now a function of the thruster deflection angle 6 as well as the 
hydrodynamic pitch angle p, defined in Eq. (3.100) and the drift angle of the ship. 
The t h s t  angle aT is shown on Figure 3.14. Experimental data on the behavior of 
CT and aT as functions of drift angle, pp and 6 for a typical Z-drive unit are 
presented in the form of polar plots by Bradner and Renilson [1998]; sources of 
more extensive test results can be found in their paper. 

Figure 3.14 Azimuthing thruster definitions 

Interactions between thrusters on twin-screw vessels are expected to be 
significant at large thruster angles when the race or wake of one unit impinges on 
the other. These effects are generally confined to the “downstream” unit and almost 
always reduce its thrust relative to the open water result. Some interaction data is 
shown by Bradner and Renilson [1998], who also present a semi-empirical 
mathematical model to predict the interaction effects. 
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8.3.2 Waterjets 

The control force generated by deflecting the thruster jet is proportional to the gross 
thrust of the unit (Allison [1993]). The change in axial force and the lateral force 
induced by deflecting the jet are given by’: 

X, =T,(I-cos~)  
Y, = T, sin 6 

(3.1 19) 

The gross thrust is the total thrust produced by the waterjet, without exclusion of the 
momentum drag of the water passing through the jet: 

T G  = pQU j = PA jU; (3.120) 

Thus the control force is considerable compared with that produced by a 
conventional rudder. The gross thrust is typically 2.5 times larger than the net thrust 
which propels the vehicle (Allison [1993]). So the side force induced by a 10” 
deflection amounts to over 40% of the (net) thrust, with a less than 4% reduction of 
forward thrust. The yaw and roll moments are obtained by multiplying the side 
force by the appropriate lever arms as in Eqs. (3,109). 

8.4 Control Forces and Moments 

A variety of auxiliary thrust-producing devices is available to improve 
maneuverability. A common configuration consists of a propeller mounted in a 
transversely-oriented tunnel located near the bow of the vessel (called a “bow 
thruster”; stem thrusters may also be employed). Because the propeller operates in 
a transverse tunnel, its advance coefficient is nearly zero, and thus we would expect 
its thrust to be nearly proportional to the product of the bollard thrust coefficient and 
the square of the RPM; see Eq. (3.85). Manufacturer’s data usually includes 
maximum thrust and the associated RPM; thus for fixed-pitch thrusters the thruster 
force vs. thruster propeller shaft speed at zero vessel speed can be established: 

(3.12 1) 

’ The subscript “r” is used here to keep the change in axial force, a function of the gross thrust, distinct 
from the net thrust, Eqs. (3.88) and (3.103). 
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We emphasize that this relationship applies only to zero vessel speed. Bow thruster 
effectiveness is reduced significantly at low ahead speeds; for example, a 50% 
reduction of the thruster-induced turning moment was measured on a model of a 
large tanker as its speed was increased from zero to 4 knots; the moment increased 
again at higher speeds (Norrby and Ridley [1980]). This reduction is due to the 
behavior of the thruster jet at speed and its interaction with the hull (see Figure 
3.15). At low speeds, a low pressure region is induced on the outflow side of the 
bow; the yaw moment induced by this reduced pressure region opposes the moment 
due to the thruster. At higher ship speeds, the jet-induced low-pressure region 
extends for the full length of the hull, and so the associated yaw moment is small. 

Figure 3.15 Behavior cf thruster jet with forward speed 
(from Chislett and Bjorheden [1966]) 

The reduction of side force and yaw moment with ahead speed, from the tanker 
tests referred to above, is shown on Figure 3.16. In the figure the ratio of the force 
and moment (about amidships) to the respective value at zero ahead speed is 
expressed as a function of the ratio of the jet velocity to the speed of the ship. 
Using Eq. (3.120), the jet velocity can be obtained from the thruster force. Then, 

(3.122) 
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Lacking data for the actual configuration being considered, the curves on Figure 
3.16 can be used to approximate the speed-induced force and moment reduction 
factors gl and g2. The following expressions adequately represent these functions in 
the range of velocity ratios shown on Figure 3.16: 

U 
0 I - 20.1 

U j 
U 

-4.911- U 
g , [ $1 = 1.53 e uJ + 0.309- + 0.042, 

g2(  t) = 1.79 e 

U j 
U 

U 0.1<-<1.6 
-4.466- 

U j 

U 3.123) 
U j 

0.1<--<1.6 ( 

Descriptions and characteristics of other types of auxiliary thrusters can be found in 
Wilson and von Kerczek [ 19791. 

I 

I 
Figure 3.16 Speed effect coefficients g, and gz (data from Chislett and Bjorheden [1966]) 

9. Wind and Current Effects 

This section is meant to serve as a brief introduction to the basic effects of wind and 
current and to show how these can be incorporated into maneuvering simulations. 
Thus only steady, uniform wind and currents will be discussed; a simplified 
extension to more complex situations is straightforward, however, involving 
integration of sectional forces along the length of the hull. 
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9. I Wind 

If the wind speed and direction are given by UA and WA (corresponding to the 
direction the wind is blowing from, relative to the fixed X axis), the velocity 
components of the vessel relative to the air are: 

u, = J u ,  2 2  + v ,  

va  = tan-’(v, /ua)  

(3.124) 

where the lowercase “a” denotes quantities relative to the moving vessel 

The aerodynamic force and moment components can be expressed as follows: 

where CXA and CyA are aerodynamic force coefficients, normalized based on 
transverse and lateral above-water projected areas ATA and ALA, and XA is the 
longitudinal center of the aerodynamic force. Typical ranges of values of these 
quantities for several ship types are shown on Figure 3.17 (Martin [1980]). The 
aerodynamic force coefficients and center of force are best determined from wind 
tunnel tests; lacking such data, the quantities could be estimated based on Figure 
3.17. 

9.2 Current 

The hydrodynamic forces and moments discussed above obviously depend on the 
velocity of the vessel relative to the water. Thus in the presence of a current, all of 
the formulas for computing the hydrodynamic forces and moments are valid if the 
velocities are taken to be relative to the water. However, keep in mind that this 
holds only for the hydrodynamic forces and moments; the inertia terms on the right- 
hand side of the equations of motion (e.g., Eqs. (3.2)) are functions of the body 
velocity as defined in Eqs. (1.1) and (1.2) and are thus unaffected by the presence of 
the current. 
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Figure 3.17 Aerodynamic force coefficients for typical ships (from Martin [1980]) Reprinted with 
permission of the Society of Naval Architects and Marine Engineere (SNAME). 

The current is generally specified by a speed and direction. If the current speed 
and direction are given by Uc and vc (where \vc denotes the orientation of the 
current vector relative to the 5 axis'), the horizontal-plane velocity components 
relative to the water are: 

u, =u-uc cos(yrc -w)  
v, = v-U,  sin(u/, -w) (3.126) 

These values are to be used in all formulas for computation of hydrodynamic forces 
and moments, e.g., Eqs. (3.1 1-3.12), (3.35-3.38), etc. 

10. Solution of the Equations of Motion 

10.1 General case: Numerical integration 

Using the information provided in Sections 1 - 6 above, we are now in a position to 
write down the six components of the equation of motion of our vessel, Eqs. (3.2- 

' We are assuming that the current vector lies in a horizontal plane; however, the formulas are easily 
generalized to 3 dimensions (for submersibles) if another orientation angle is specified. 
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3.3), complete with expressions for the applied forces and moments. If control 
surface deflections and propeller shaft speed are considered to be given, the six 
equations contain 18 unknowns, namely the six components of acceleration, 
velocity, and position of the vessel. So we need 12 more equations in order to solve 
the system! However, this is not a big deal ... the acceleration and velocity 
components are related to the velocity and position components, respectively, by 
simple first-order ordinary differential equations, so we can easily obtain 12 more 
equations without introducing additional unknowns: 

dt 

(3.127) 

where you will recall that +, 8, and \1, are the Euler angles which specify the 
orientation of the body axes (see Section 2 of Chapter 1). Since we began this 
chapter with the assumption of small perturbations from equilibrium (which 
justified the truncation of the Taylor-series representation of the hydrodynamic 
forces and moments), the relationship between the rates of change of the Euler 
angles and the angular velocity components can be written as 

There are a variety of methods which can be used to solve these equations. The 
most common practice (at least in applications in which the equations must be 
solved in real time) is to recast the six equations of motion into six coupled 
equations for the acceleration components. First, collect all terms in Eqs. (3.2-3.3) 
involving accelerations: 

F*i - Gi = ([M+A]{a})i, i=1,2 ... 6 (3.129) 

where F*i represents the i* component of the total applied force or moment, 
exclusive of the component of the added mass force which is proportional to ai; Gi 
represents the collection of all inertia terms, exclusive of terms involving 
accelerations, for direction i; [MI is the vessel inertia or “mass” matrix, consisting 
of all coefficients of accelerations in Eqs. (3.2-3.3); [A] is the added mass matrix; 
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and {a} is the 6-component acceleration vector. It will be useful to write out the 
mass matrix, as we will be making use of it throughout the remainder of the book: 

I I I I I 

m myc -mxG o 0 0 (3.130) 

Now, solve Eqs. (3.128) for the accelerations ai: 

{a} = [M + A]-'{F* - G} (3.131) 

The quantity on the right-hand side of Eq. (3.127) is a hnction of the six velocity 
and six displacement components. 

Now Eqs. (3.131) and (3.127) can be written as a set of 12 coupled first-order 
ordinary differential equations: 

- d {u} = {a} = [M + A]-' (F * -G} 
dt 
d 
dt - 1x1 = 

(3.132) 

where {x} and {v} represent vectors of the 6 displacement and velocity 
components. These equations can be solved using one of the many available 
solution algorithms for systems of ordinary differential equations. 

Actually, (x} is not really what we want: The quantities in Eqs. (3.132) are 
expressed with respect to the moving body axes. Displacements relative to such 
axes are not very meaningful. What we really need are trajectories relative to the 
earth-fixed axes. This is best accomplished by solving the first of Eqs. (3.132) for 
the velocity components relative to body axes, then transforming to fixed axes 
before performing the second set of integrations. Thus we should replace Eqs. 
(3.132) with 
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- d {u} = {a} = [M + A]-’ {F * -G) 
dt 

{el= [TXU} (3.1 3 2a) 

where 

[TI i s  the 3x3 transformation matrix defined in Eq. (1.8), and 

is a 1 x6 column vector of the transformed velocity components. 

The simplest integration method is the Euler algorithm, which approximates the 
values of {u} and {C} at time step n by “integrating” Eqs. (3.132a) assuming that 
the right-hand sides are constant for the duration of the time step (and in fact equal 
to their values at the beginning of the time step): 

where At is the length of a time step. Thus the velocity and position of the vessel at 
time t + At are determined from the “initial” values at time t and the rates of change 
of these values at time t. So the Euler integrator is analogous to a two-term Taylor 
expansion of the velocity and position about the values at time t. 

This latter observation permits us to estimate the “local truncation error” 
associated with the Euler method: For example, if x were a function only of time, 
the Taylor series expansion for 5 about t = t,, would be 
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Comparison of Eq. (3.134) to the second of Eqs. (3.133) shows that the local error is 
proportional to the square of the step size. The total or global truncation error 
would be the sum of the local errors for the duration of the simulation. In a 
simulation with N time steps, the global truncation error would be 

E~ -NAt 2 T  =-At2 - A t  (3.135) 
At 

where sG denotes the global truncation error and T is the total time of the 
simulation. Thus the global error is proportional to (or more precisely, “of the order 
of’) the step size; for this reason, the Euler method is known as a “first-order 
method”. To reduce the error, then, we can reduce the time step size”. There is a 
penalty, though, since the number of calculations we must do per unit time goes up 
in proportion to the step size. T h s  is an important consideration in applications 
such training simulators in which the calculations must be accomplished in real 
time, since there is a limit on how many computations a computer can carry out in 
any real time step. 

Another factor which must be considered is numerical stability. Stability is 
determined by the behavior of a system after it receives a small perturbation, as in 
our discussion of hydrostatic stability in the previous chapter. In the present case 
we must ask what happens if our numerical solution is “perturbed” at time step n. 
Since the calculated position at time step n+l depends on its value at time step n, 
the perturbation will “propagate” forward in time. If the perturbation grows in time, 
the integrator is numerically unstable. Numerical stability is a function of the 
characteristics of the physical system and of the integration step size; if the time 
step is too big, the solution can “blow up” even if the actual system is perfectly well 
behaved. 

If the system of equations, Eqs. (3.129a) is linearized by neglecting terms 
involving products of the velocity and displacement perturbation components, the 
general solution is of the form 

(3.136) 

This should look familiar; it is the same as the solution we encountered in Section 4 
of Chapter 2 on Hydrostatic Stability (see Eq. (2.45)). The difference is that now 
we have some applied forces and moments. As in Chapter 2, we will substitute the 
solution, Eq. (3.136), into the equations, Eqs. (3.132), to obtain the characteristic 
equation for a. For this system of 12 first-order equations, we anticipate 12 
solutions which may consist of real values and pairs of complex conjugates. These 

“ However, at very small step sizes, roundoff errors may become significant; @Ref]. 
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values are sometimes referred to as the eigenvalues of the system”. In Chapter 2 we 
found that hydrostatic stability is determined by the sign of the real parts of the 
eigenvalues associated with Eqs. (2.47). In the next section we will see that 
directional stability is related to the eigenvalues in Eq. (3.136). 

The reason for bringing all of this up in the present section is that the stability 
of a numerical integration algorithm applied to the linearized equations discussed 
above is a function of the product of the eigenvalues and the integration time step. 
For example, it can be shown that the Euler algorithm is numerically stable if 

loAt+ I1 5 1 (3.137) 

for all values of o. If o is real (as for supercritical damping, for example), Eq. 
(3.137) says simply that 

-2 I oAt I0 (3.138) 

which indicates that the integrator is stable only if the system is stable (o I 0) since 
At must be positive (so for example the Euler integrator could not be used to 
simulate the motions of a vessel whose GM does not satisfy Eq. (2.50)). For 
example, if the largest eigenvalue was -2.0 sec-*, the largest permissible time step 
would be 1 second. However, for pure imaginary values of o (e.g., zero damping), 
Eq. (3.137) cannot be satisfied at any nonzero step size. 

In the general case when o is complex, we can substitute 

oAt = a + ib 

in Eq. (3.137) and square both sides to obtain 

(a+l)’ + b2 5 1 

which corresponds to the region inside of a circle with unit radius centered at (- 1,O) 
on a plot of b vs. a (i.e., the “complex oAt plane”) as shown on Figure 3.18. We 
anticipate problems for lightly-damped cases with high natural frequencies (values 
of a near zero with large values of b) since the value of At will have to be very small 
to get (oat) inside the circle in this case. 

” In some references the eigenvalues are defined somewhat differently; l/o and C/o2,  where C is a 
constant, are some common variants. The definition depends on how the “characteristic value problem” 
1s mitially set up. 
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There are, of course, many other integration algorithms available, just about all 
of which have lower truncation errors and larger stability regions than the Euler 
method, at the cost of increased computational effort. A popular alternative is the 
“fourth-order Runge-Kutta” (RK-4) algorithm. This method uses not only the slope 
of the function at the beginning of the time step, but also two estimates of the slope 
at the middle and an estimate of the slope at the end of the time step, to obtain a 
better estimate of the value of the function at the end of the time step. The resulting 
global truncation error is of the order of At4 which is why RK-4 is called a “fourth- 
order” method. The penalty is that the right-hand side of Eqs. (3.133) must be 
evaluated four times per time step. So in order to justify this computational 
expense, the truncation error for RK-4 using a time step At must be less than that for 
Euler using a time step At/4, provided that Euler is stable”. 
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Figure 3.18 “Stability map” of Euler and RK-4 integrators 

RK-4 is just one member of the Runge-Kutta “family”; the algorithm can be extended to any order. 
However, 4” order seems to strike a good balance between computational effort and accuracy in many 
cases of practical interest. 
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The stability region of the RK-4 algorithm is also shown on Figure 3.18. It can 
be seen that the region is quite a bit larger than that of the Euler method, particularly 
near the imaginary axis; so this method is particularly advantageous for the “high 
frequency lightly-damped’’ case which is a problem for the Euler method (in fact, 
the RK-4 stability region extends slightly over into the right half-plane, indicating 
that it could produce reliable results for some unstable systems). 

The Euler and RK-4 algorithms are both explicit in that they rely only on data 
from the current time step to make predictions for the next time step (other explicit 
methods, such as the “Adams-Bashforth predictors”, use data from previous time 
steps as well). Even better from a stability standpoint are the implicit “corrector” 
algorithms, which call for data at future time steps and thus require iteration to 
arrive at the solution. These methods are unconditionally stable, but the added 
expense of the iterations in addition to multiple evaluations per time step usually 
cannot be tolerated in real-time simulations. 

There are also a number of methods whch employ a variable time step size; the 
step size is progressively reduced until the estimated local truncation error falls 
below a limit prescribed by the user. In fact, variable step size can be employed in 
conjunction with the RK-4 algorithm. However, as with the implicit methods, the 
additional computing time may be a problem for real-time simulators. In addition, 
such simulators are generally designed to operate at a constant integration rate 
because of hardware requirements (for example, displays are updated at constant 
rates). So, the RK-4 algorithm, and even the Euler method, continue to be used in 
real-time simulations. 

10.2 Solution of the Linearized Equations; Stability 

The equations of motion, Eqs. (3.2-3.3), are obviously nonlinear because the inertia 
t e r n  involve products of the velocity components. There are also nonlinearities in 
the expressions for the added mass forces, Eqs. (3.1 1-3.12), the steady forces, Eqs. 
(3.39, and even in the gravity-buoyancy forces derived in the previous chapter. 
These equations must be solved numerically as described in the previous section. 

However, if the velocity components (besides ug) are sufficiently small, the 
terms involving products of the velocity components (u*,v,w,p,q,r) can be 
neglected. The resulting set of linear equations can be solved analytically as 
mentioned above. Much of the early literature on vessel maneuvering and control 
theory dealt exclusively with these linear equations of motion, since computers were 
not yet available to solve the hlly nonlinear equations. Although use of the linear 
equations is not recommended for general maneuvering simulations, they are still 
useful for examination of directional stability. 



3. Calm Wafer Behavior ofMarine Vehicles: Maneuvering 109 

The concept of stability was discussed in the previous chapter in the context of 
hydrostatic equilibrium. In the present case we are concerned with the fate of small 
disturbances to the vessel in steady, level flight. In particular, we will examine 
controls--xed directional stability, in which control forces are assumed to be zero. 
A vessel is said to possess controls-fixed directional stability if all velocity 
perturbations tend to decay in time; i.e., u*=v=w=p=q=r+O as t+m. Note that this 
does not imply that the vessel returns to the original heading subsequent to the 
disturbance; in general it will not, without the intervention of human or automatic 
control. However, the stable vessel will return to a straight course, whereas an 
unstable vessel will continue to turn at an increasing rate. Use of the linearized 
equations to examine stability is justified because the disturbances are small by 
definition". 

The equations of motion were presented above as Eqs. (3.2) and (3.3). Actually 
these equations show only the right-hand sides, or inertial terms, in the equations; 
we are now in a position to insert the applied forces and moments on the left-hand 
sides. To simplify matters somewhat we will assume that the vessel has port- 
starboard symmetry, both geometrically and in mass distribution, so that YG = I,, = 
I, = 0. Then, inserting the gravity-buoyancy forces, Eqs. (2.27) and (2.32) (which 
are applicable to surface ships and neutrally-buoyant submersibles), the added mass 
forces, Eqs. (3.11) and (3.12), and the steady forces, Eqs. (3.35a-f) in Eqs. (3.2) and 
(3.3), and neglecting terms involving products of the velocity perturbations 
(u*,v,w,p,q,r), we eventually obtain: 

a,, + alw + a,q + Xp + X, 

b,v + b,p + b,r + Yp + Y,  
= (m + A l , b  + Al3W + ( ~ z G  + Al5)j + A3,UOq 

= ( r n + A , , h + ( - m z ~  +A, , )p+(mx~ + A , , ) ~ - + ( ~ + A , , ) U , , ~ - A ~ ~ U O P  

= A3,U + (m + A3,)w + (- mxG + A35)j - (m + A,,)U,q 
cn + C I W  + c2q - P ~ A  WPC; + P ~ A  W P X C F ~  + ZP + Z, 

(3.139) 

Of course if the vessel is unstable, the disturbances will not remain small and thus simulations based on 
the linearized equations will at some point become invalid; however the conclusion that the vessel is 
unstable is completely valid. We should also mention that nonlinearities may mitigate the effects of 
instability, e.g. we would not expect perturbations to become infinitely large because of viscous effects. 
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d,v + d,p + d,r - p g V , m , +  + K, + K, 

(433 - A, ])U,W + eo + elw + e2q - p g V o m , B  + pgAw,xc,C + M, + Mr 

= (- mzG + A42)V + (Ixx + A 4 4 b  + (Ixz + A46)i + A3,U0v - (mzG + A,,)U,r 

= AslU + (- mxG + A,,)w +(I, + A s 5 h  + mzGU + ( m x ~  - A3,)U0q 

- A,,(U,’ + 2U,u *) 
(3.140) 

(All  - A,,)U,v + fly + f2p + f3r + N, + N, 

= (mG + A62)G + ( Izx  + A 6 4 b  + + A66)i + (A24 + )uOP + (mxG + 

As is customary, we have grouped the added mass terms with the corresponding 
mass terms on the right-hand sides, except for the unique Munk moment terms 
discussed in Section 2 above. For the moment we have not filled in the expressions 
for the propulsive and rudder forces and moments, and we will neglect propeller- 
rudder interactions. 

Notice that something interesting has happened to the equations (besides the 
fact that they ‘have become much simpler than their nonlinear counterparts!): The 
X, Z and M expressions involve only surge, heave and pitch motions, velocities and 
accelerations; and the Y, K and N expressions involve only sway, roll and yaw 
displacements, velocities and accelerations. That is, as a consequence of port- 
starboard symmetry and neglecting higher-order terms, the surge-heave-pitch 
motions have become uncoupled from the sway-roll-yaw motions (aside from any 
coupling “hidden” in the propulsion and rudder terms)! This is significant in that it 
halves the order of the characteristic equation (although there are now two 
characteristic equations). 

10.2.1 Horizontal-plane motions 

For examination of the maneuverability of surface ships, we are concerned 
primarily (if not exclusively) with the quantities 6 ,  q, w, u, v, and r. It is customary 
to set the other velocity and displacement components (and the corresponding 
accelerations) equal to zero, and to consider only the X, Y and N equations, which 
amounts to neglecting the coupling of surge and roll with heave and pitch, and sway 
and yaw, respectively. Under these conditions, the linear equations reduce to the 
following : 
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We can further simplify these expressions by neglecting the propulsor-induced 
side force and yaw moment, whch are generally small anyway. Setting the rudder 
forces and moment equal to zero yields the controls-fixed linearized surge-sway- 
yaw equations: 

a o + X p  = ( m + A , , ) u  
b,v + b,r = (m + A,,)v + (mxG + AZ6) i- (m + A, l)Uor (3.141a) 

(All - A2,)U0v+ f,v + f3r = (mXG + A,j*)c + ( I z z  + A66)i + (mx, + A26)Uor 

It is apparent that the surge equation is not coupled with the sway and yaw 
equations. The surge equation is, however, deceptively simple, since the drag term 
a. is a complicated function of the velocity u. However in the immediate vicinity of 
u=Uo, we can say 

a. = aoo + aolu* (3.142) 

which is consistent with the linearization of the other terms; aoo and aol represent the 
value and slope o f  the axial force vs. speed curve at u = Uo. Similarly, we can 
express the propulsive force as 

x p  = x p o  + XPlU* (3.143) 

at constant shaft speedY, and Xpo and the slopes Xp, and Xp2 are functions of the 
equilibrium values Uo and n,,. Substituting Eqs. (3.142-3.143) in the first o f  Eqs. 
(3.141a) we obtain: 

( m + A l l ~ * - ( a o l  +Xpl)u*= 0 (3.144) 

where we have used the fact that for equilibrium, aoo + XPO = 0, and that 

d 
dt 

u=-(u,  +u*)=Li* 

The solution of  Eq. (3.144) is just 

u* = u *, exp[ a01 +XH t) 
m+*,1 

(3.145) 

Shaft speed perturbations could also be considered; in this case we would also need to include the 
(linearized) shaft torque equation, Eq. (3.93). 
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The denominator of the exponential factor is positive; the slope of the axial force vs. 
speed, sol, is almost always negative (i.e., the slope of resistance vs. speed is almost 
always positive). In addition, at constant RPM the propulsive force generally 
decreases with increasing speed, so Xpl is generally negative. Therefore the 
coefficient o f t  in the exponential is almost always negative, which is the condition 
for stability; that is, the perturbation u* decreases exponentially in time. Thus 
nearly all vessels are stable in surge’. 

As we saw in Chapter 2, the general solution of the coupled linear yaw and 
sway equations is: 

where vk and rk are arbitrary constants corresponding to the initial values of the 
perturbation components. Rewriting the linearized swaylyaw equations as 

B , v + B 2 r + B 3 v + B 4 r = 0  
F,V+F2r+F3v+F4r=O 

(3.147) 

and inserting Eqs. (3.146) yields a pair of simultaneous equations in vo and ro: 

Since vk and rk are arbitrary, these equations must hold for all possible choices. 
This is possible only if the determinant of the matrix of coefficients of {Vk,rk} is 
zero, which yields the characteristic equation for the exponent O: 

A O ~  + BO + c = o (3.148) 

where 

’ Possible exceptions include planing and semi-planing vessels, whose resistance vs. speed curves may 
contain a local maximum or “hump”; this is associated with the behavior of the trim angle, so that the 
(nonlinear) coupling of surge with heave and pitch has an important effect in this case. 
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As stated above and in Chapter 2, the criterion for stability is that the 
characteristic values o (usually referred to as the “stability indices”) have negative 
real parts. In the present case it is not very difficult to determine the characteristic 
values by solving the characteristic equation, Eq. (3.148). However in a more 
general case the characteristic equation could be as high as 12th order (if all possible 
couplings are present)! In such a case it is not practical or even necessary to 
actually determine the characteristic values if one is only interested in whether or 
not the system is stable. A necessary condition for every root of a polynomial 
equation to have a nonpositive real part is that all coefficients of the characteristic 
equation must have the same sign. It can be shown that this is also a sufficient 
condition for quadratic equations like Eq. (3.148) (Wylie [ 19601). For higher-order 
characteristic equations, stability can be determined using the “Routh-Hunvitz 
stability criterion”; details are provided in Appendix C. 

It can be shown that the coefficients A and B are always positive. First let us 
are both large positive numbers; examine A. The quantities (m+AZ2) and 

typically, 

The second term in A represents coupling between sway and yaw, i.e., the yaw 
moment produced by acceleration in sway and vice-versa. This is generally small 
since the center of hydrodynamic and inertial force for sway acceleration is usually 
near the geometric center of the vessel (or, the contribution of bow to the side force 
produced during yaw acceleration is nearly equal and opposite to the contribution of 
the stern). Thus the first term in A overwhelms the second and A is positive. 

With regard to B, the coefficient bl  is a large negative quantity, representing the 
rate of change of side force with sway velocity; it is the negative of the horizontal- 
plane “lift curve slope” dY/dp of the vessel. We have already seen that (Izz f &) is 
a large positive quantity; thus, the first term in B is large and positive. In the second 
term, the coefficient f3 represents the yaw moment induced by yaw angular velocity, 
which is negative. We have seen that the factor (m + Azr) is large and positive; the 
term ( m x ~  + A26) may be positive or negative but is relatively small as stated 
previously. Thus the second term in B is also positive. The third and fourth terms 
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involve factors whch represent sway-yaw coupling, such as ( m x ~  + A2,J, b3 (side 
force induced by yaw angular velocity), and fl (yaw moment induced by sway 
velocity), which are expected to be smal; as argued above. These terms may be 
positive or negative, but in any case they are dominated by the first two positive 
terms. Therefore B is a positive quantity. 

Determination of controls-fixed directional stability in the horizontal plane thus 
boils down to a determination of the sign of C: If it is positive (like A and B), the 
vessel is stable. For stability"": 

(-b~X(mxc + A ~ ~ ) U O  - ~ ~ ] - [ ( ~ + A I I ) U O - ~ ~ I - ( A I I  - A D ) U O - ~ I ] >  0 (3.150) 

We have pointed out that the coefficient bl is always negative; so moving the center 
of mass forward (increasing xG) makes the first term more positive and thus 
improves stability, as you might expect. 

It is convenient to put Eq. (3.150) in nondimensional form. This is 
accomplished by dividing the first and second factors in the first term by %pUoL2 
and %pUoL4, and the first and second factors in the second term by %pUoL3. The 
result is as follows: 

C'= (- b,'~(m'xG1+A261)-f31]-[(m'+AIl')- b3'~-(AlI'-A2,')-fl ']> 0 (3.151) 

where the steady force and moment coefficients are normalized as indicated in Eqs. 
(3.40-3.43), and 

(Notice that the three-dimensional added mass factors Ai,' are normalized based on 
the length, whereas their two-dimensional counterparts Ai,(x)' are normalized based 
on the draft; see Eqs. (3.21-3.23)). Eq. (3.151) shows that the horizontal-plane 
controls-fixed directional stability of a vessel is independent of its speed, if it can be 
assumed that the coefficients themselves are independent of speed. As discussed 
previously, this is not a bad assumption for most displacement ships at low speeds 
and for submersibles. 

The other coefficients in the characteristic equation can also be normalized: 

Eq. (3.150) looks a little different than the stability criterion given in other texts; this is because the 
added mass terms AZ6, Al l  and (All  - A22)Uo (the Munk moment) are usually combined with f,, b3, and f,, 
respectively; see Eq. (3.156) below. 
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whch llke C' are not explicitly dependent on speed. The following definitions 
should be obvious but we will list them anyway: 

(3.154) 

The solution of the normalized characteristic equation yields the nondimensional 
characteristic values or stability indices, 

(3.155) 

10.2.2 Example: Controls-Fixed Stability for Horizontal-Plane Motions 

As an example we will consider the ship examined in Section 2.4 above. 
Characteristics appear in Table 3.1. The linear steady-flow force and moment 
coefficients will be approximated using Eqs. (3.44). To apply these coefficients, 
however, we must keep in mind the associated caveat that was mentioned in Section 
3.1.1: The empirical expressions account for the total hydrodynamic force (or 
moment) which is linearly proportional to a given velocity component. Thus they 
include both the added mass and the steady force effects. To make use of these 
expressions, then, Eq. (3.151) should be written as follows: 

C'= (- bl'Xm'xc'-f3']- [m'-b3'I-f,'] > 0 (3.156) 

The Coefficients calculated according to Eqs. (3.44) are presented in Table 3.5. The 
value of xc was computed by numerical integration of the section area curve. 
Plugging into Eq. (3.156), we obtain the result shown in the table, 

C'= 9 .86~10-~>0 ,  

so that the ship is stable. 

The coefficients A and B may also be computed; the results are also included in 
Table 3.5. Solution of the characteristic equation yields the stability roots: 
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01' = -0.177; 02 = -3.12 

The roots are real, indicating exponential decay ("supercritical damping" for yaw 
and sway). The solution associated with 021 damps out very quickly, falling to less 
than 1% of its initial value at t' = tUo/L = 1.5, or the time taken for the ship to move 
1.5 ship lengths. The solution associated with O,', however, is much more lightly 
damped, falling to 1% of its initial value at t' = 26. 

TABLE 3.5 Coefficients for controls-fixed stability example 

b3' 0.003771 
bl' -0.01461 1 

fl' -0.005935 
f3' -0.002543 
m' 0.008291 
XG' -0.00392 
A' 1.78E-05 
B' 5.88E-05 
C' 9.86E-06 

It should be pointed out that controls-fixed directional instability is not 
necessarily a bad thmg: A high degree of directional stability implies that a vessel 
will be difficult to steer, which is undesirable in some situations. Many large ships 
such as tankers are unstable. These ships can be operated safely by well-trained 
helmsmen or with the aid of automatic control systems. The designer should ensure 
that his vessel will not be excessively unstable (uncontrollable) by comparing the 
stability index (the stability root with the largest algebraic value) to that of similar 
vessels which are known to posses good maneuvering characteristics. 

It is also worth mentioning that the linearized sway and yaw equations, the 
second and third of Eqs. (3.141), have other uses besides evaluation of stability. If 
the rudder force and moment are retained, and the accelerations are set equal to 
ZWQ. we can obtain expressions for the values of v and r in a steady turn 
corresponding to a given rudder angle. However, since nonlinear terms have been 
discarded, accurate predictions for all but the most gradual turns (rudder deflections 
of about 10" or less) cannot be expected based on these expressions. With this 
caveat in mind, we can easily compute the steady drift and yaw angular velocities. 
First, to conform more closely to the popular nomenclature, we will express the 
linear components of the rudder force and moment as 



3. Calm Water Behavior of Marine Vehicles: Maneuvering 117 

(3.157) 

The dimensionless coefficients can be determined using Eqs. (3.107) and (3.109). 
The steady drift and yaw angular velocities are: 

V v’ = - = {N, ’ [b3 I-(m’+A, , ‘11- Y, ’ [f3 ‘-(m’ X G  ‘+A,, ‘)@/C’ 
(3.158) UO 

~ 

rL r’ = - = {Y, ’ [(A,, ‘-A2’ I)+ f ,  ‘1- N, ’ b, ‘}6/C’ 
ULl 

Note the appearance of C’ in the denominator, which implies that both the drift 
velocity (and so the drift angle) and the angular velocity increase as C approaches 
zero. Thus the marginally stable vessel turns well (large yaw rate for a given rudder 
deflection) at the expense of a large drift angle, whch generally leads to larger 
speed loss in the turn. This latter effect cannot be determined using the linearized 
equations as it involves the “vv” and “vr” terms in the X equation; the degree of 
speed loss also depends on the type of powerplant (so we must consider the torque 
equation also). Equations (3.158) are not applicable to unstable vessels, which do 
not approach the steady-state solution because the transients increase in time. 

The directional stability of a ship is determined during trials by execution of the 
“spiral maneuver”. In a spiral maneuver, the rudder is first given a large deflection 
(say -25 degrees), and held in this position until a constant yaw angular velocity is 
achieved. The angular velocity is recorded, and the rudder deflection is then 
reduced, by 5 degrees for example (smaller increments are necessary at smaller 
deflections), and again held until the yaw angular velocity is constant. The 
procedure is repeated down to zero rudder deflection and continuing in the opposite 
direction (up to +25 degrees). Then, the entire procedure is repeated, while 
changing the rudder deflection in the opposite direction (+25 degrees to -25 degrees 
in OUT example). Typical results for stable and unstable ships are shown on Figure 
3.19. The second of Eqs. (3.158) gives the predicted r’ - 6 curve in the linear range. 

Figure 3.19 shows that the r‘ - 6 curve for unstable ships exhibits a “hysterisis 
loop”; that is, below a certain rudder angle, there are two equilibrium angular 
velocities which have opposite sign. Which solution is actually obtained depends 
on initial conditions; both the increasing and decreasing sequences of rudder 
deflections are generally necessary in the spiral test in order to define the loop. In 
particular, note that the unstable ship cannot proceed on a straight course at zero 
rudder deflection, which is an unstable equilibrium condition. 
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Figure 3.19 Spiral maneuver results for stable shipA and unstable ships B and C (from Panel H-10, 
SNAME [1993]. Reprinted with permission of the Society of Naval Architects and 
Marine Engineers) 

10.2.3 Vertical-plane motions of submersibles 

We will next examine the controls-fixed directional stability of a neutrally buoyant 
submersible in a vertical plane. The vehicle will be assumed to be in hydrostatic 
equilibrium with its longitudinal axis horizontal, so that xB = xG (the form of the 
gravity-buoyancy terms in Eqs. (3.139) and (3.140) already incorporate this 
assumptionbb), and to possess 4-fold rotational symmetry. This last assumption 
means that 

A3, = al = a2 = co = eo = 0. 

Furthermore, the submersible is assumed to be submerged, so that 

the latter is true since zB = 0 for a vehicle with 4-fold symmetry. 

This is not a necessary assumption, and in fact some torpedoes are not neutrally buoyant as we will bb 

discuss later. 
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Under these assumptions, the linearized controls-fixed surge-heave-pitch 
equations are: 

where we have neglected the transverse force and moment on the propeller, Z, and 
M,. Despite the assumptions, these equations are still formidable: Since the pitch 
displacement is involved, the equations are “really” of 2”d order, so that the 
characteristic equation is 6” order. It is tempting to simplify the system further by 
setting u= 0 and neglecting the surge equation, as was done above for the lateral 
plane. However, this is not a valid option in the present case because of the 
presence of the ~ Z G  q term in the surge equation, representing coupling with pitch. 
Neglecting the surge equation will result in erroneous predictions of stability. 

In order to solve Eqs. (3.159), then, we have to deal with the right-hand side of 
the surge equation. In equilibrium “steady level flight”, 

Strictly speaking, to assess the effects of a velocity perturbation, we must examine 
the behavior of the shaft speed, which will involve consideration of the torque 
equation and engine dynamics. To simplify matters, we will assume that the shaft 
speed remains constant. Then (ao + X,) can be expressed as a function of the 
longitudinal velocity perturbation u*: 

(3.160) a. + X, = aoou* +ao1u*2 + Q ~ u * ~  + . . . = aoou* 

where the latter (approximate) expression is consistent with the linearized 
equations. 

The salient difference between the heave-pitch equations above and the 
linearized yaw-sway equations is the presence of the pitch “restoring moment” term 
proportional to 8. This term not only raises the order of the characteristic equation, 
but also leads to a fundamental change in behavior due to the fact that, unlike the 
other terms in the equations it is independent of speed, as we will see. 

The solution of Eqs. (3.159) is of the form 

(3.161) 
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Substitution of (3.161) in (3.159), and setting the determinant of the matrix of 
coefficients of {ck,  &, e,} equal to zero, yields a 6*-order characteristic equation as 
we mentioned above. However the characteristic equation is now of the form 

02(Ao4 + Bo3 + Co2 + Do + E) = 0 (3.162) 

i.e., there are two trivial solutions corresponding to the neutrally-stable surge and 
heave modes. The 
coefficients are: 

So we really only have to deal with a quartic equation. 

or, in the more convenient dimensionless form, 

A'= (m'+All')[(m'+A33')(I,'+A55')- (m'xG'-A3,')?]- (m'zG ty(m'+A33') 

B'= (m'+Al l'){(m'+A33'](m'xc '-A35')- .,I]- Cl'(IW'+A55') 

+ (A5,'-m'xG ')f(m'+Al ,I) + c2']+ [(A33'-A, I f ) +  el'])} 

- aoo'[(m'+A,3')(I,,'+A55')- (m'x, 

C'= -aoo'{(m'+A33~~(m~~G1-A35')- e2']- cl'(Iyy'+A~5')) 

+ (Aj3 '-m'xG ')([(m'+A, I) + c2 '1 + [(A33 '-A1 I ')+ el') 

- (m'+A I ')&l'[(m'xG '-A35 I) - e2 '1 - 2(m'+A3, ')V'zc '/Fn 
+ [(m'+A I I) + c2 'I(A33 '-Al I) + el']) 

D'= a,,'~,'[(m'xG'-A,,')- e,']- 2(m'+A3,')V1zG'/Fn2 

+ [(m'+ A I) + c2 11(A33 '-Al I) + el']) - 2(m'+A I ')cl 'V'zG '/Fn 

E' = 2a oo c , 'V'zG '/Fn 

'y]+ cl'(m'zG ')2 
(3.1 63a) 
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where Q and the volume V are normalized based on length and length3, 
respectively, and Fn is the Froude number: 

Thus coefficients C', D' and E' are speed-dependent. 

The Routh-Hunvitz stability criteria (Appendix C) in this case arecc: 

A', B', C', D', E' > 0, B'C' - A'D' > 0, and B'(C'D' - B'E') - A'"' > 0 (3.164) 

The coefficient c,, which is the rate of change of Z with w, is always negative (e.g., 
when the submersible is running at a positive angle of attack - nose up - w is 
positive but Z is negative ... recall that the z-axis is positive downward ). The 
coefficient aoo is also always negative: Resistance increases and thrust is reduced 
when the speed increases. Thus E' is positive when zG is positive: the CG must lie 
below the CB (which is located at z = 0) for stability. This is also the condition for 
transverse (roll) stability. Also notice that E' approaches 0 as the Froude number 
increases, implying a loss of stability with increasing speed. In fact, submersibles 
(and SWATH hulls) have a maximum speed for controls-fixed directional stability. 
It is generally desirable to ensure that this is above the maximum speed of the 
vehicle. 

10.2.4 Example: Controls-Fixed Directional Stability for Vertical-Plane Motions 

To examine how speed and CG height affect directional stability in a vertical 
planedd, we will look at the very simple submersible design shown on Figure 3.20. 
The hull is a spheroid with a lengwdiameter ratio of 8.0 (this is not necessarily the 
best choice hydrodynamically, but it is convenient for illustration). The total span 
of the tail fin is 80% of the hull diameter, and the chord is 4% of the hull length. To 
be consistent with the assumptions made in the previous section, we assume neutral 
buoyancy with xG = xB. It is convenient to adopt a coordinate system with origin at 
the center of the spheroid so that XG = xB = 0. 

Figure 3.20 Simple submersible configuration 

cc There is an additional criterion for 4"-order polynomials, which is redundant in the present case 
Stability in a vertical plane is sometimes referred to as "longitudinal stability". dd 
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For the spheroidal hull, the added masses can be computed accurately using the 
Results are shown in Table 3.6. These Lamb formulas, Eqs. (3.14) - (3.18). 

formulas make use of the displaced volume of a spheriod, 

V = 7cLd2/6; m’= 

and the moment of inertia of the displaced fluid, Eq. (3.32a). 

The steady side force coefficient of the hull, c,’, is calculated using Eq. (3.47). 
From Eq. (3.47), the effective base area turns out to be 

where A is the maximum cross-sectional area of the hull. The x-coordinate of the 
effective base is easily computed using the formulas for an ellipse: 

Xbe = -0.812(L/2) = -0.406L 

Now the remaining steady hull heave force and pitch moment coefficients can 
be computed using Eqs. (3.48). Results are included in Table 3.6. 

The tin area is just the product of the span and the chord, less the area 
Again, this is easily computed for an ellipse, and the “covered” by the hull. 

resulting fin planform area is 

Af= 0.00268L2. 

The fin contributions to the added mass coefficients can now be evaluated using 
Eqs. (3.28) - (3.30), and the contributions to the steady force and moment 
coefficients using Eqs. (3.61) and (3.69) - (3.72). Results are given in Table 3.6. It 
should be mentioned that the contribution of the propeller(s) to the heave force and 
pitchmg moment rates is not always negligible for submersibles. These 
contributions can be computed using Eqs. (3.95). However in the present case, 
using the propeller characteristics given below, it can be shown that the propeller- 
induced lift and pitch moment amount to about 1% of the corresponding hull+fin 
contributions, so their neglect is justified in this example. 
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TABLE 3.6 Hydrodynamic coefficients of submersible 
8 Length / diameter 

Fin chord / hull length 
Fin span / hull max. diameter 

Hull hydrodynamic coefficients: 
Allt 

A331 
A55I 

Cl l  

c21 
e It  

e2’ 

Fin hydrodynamic coefficients: 
dCL/da 
A33f‘ 
&sf‘ 
Clf‘ 
c2; = elf‘ 

0.035 
0.80 

0.0004786 
0.0 15458 
0.0006975 

-0.008356 
0 

-0.003393 
-0.001378 

4.233 
0.0001090 
2.554E-05 

-0.0 1024 
-0.004959 

e2f‘ -0.002400 

Finally, we need to evaluate the linear “thrust minus drag” coefficient, q0. 
Note that all of the other coefficients can be evaluated in purely nondimensional 
form; we do not need to specify the absolute size of the vessel to obtain all of the 
coefficients except this oneee. We will assume that the vessel is a deep-sea research 
vehicle (perhaps an A W )  with the characteristics given in Table 3.7. 

Table 3.7 Submersible characteristics 
Hull length, m 6.10 
Hull max. diameter, m 0.762 
Fin chord, m 0.213 
Fin span, m 0.610 
Speed range, kt 0 - 6  

The rates of change of resistance and thrust with u can be calculated 
analytically but it is more straightforward to compute the values for a small range of 

This is because we are tacitly ignoring possible Reynolds-number effects on the other coefficients. 
This is acceptable for consideration of small perturbations provided that the coefficients are appropriate 
for the Reynolds number corresponding to Uo. 

ee 
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speeds centered on the desired equilibrium value and to fit a line to the data (this 
works regardless of the particular expressions used in the computation of resistance 
and thrust). Hull resistance is computed using the Schoenherr formula, Eq. (3.75), 
and a form drag coefficient of 0.005 1 based on frontal area, which is assumed to be 
independent of speed [refl: 

aoH = -%z~U~S(CF + O.O051S/A) 

Here S is the wetted surface area of the hull, which for a prolate spheroid is given 
by 

(3.164a) 

so that 

(3.164b) d L  (: sh:e) L d 
S'= - = 271 -+- s 2.5- for- > 4.5 S 

L2 

where d is the maximum hull diameter. 
(3.15). 

The eccentricity e was defined in Eq. 

The contribution of the tail fins to resistance is estimated based on the 
Schoenherr frictional resistance, calculated using a Reynolds number based on their 
chord length. 

Propeller performance (KT vs. J) can be estimated based on the B-series fits (see 
Appendix B). The thrust deduction and wake fractions are estimated using the 
information given in Appendix A. The equilibrium propeller speed can be found by 
setting the total axial force (at steady speed U,,) equal to zero: 

a. + X, = a. + (1 - t)T = 0 

from which we obtain 

at Uo = 5 knots. We can now vary the speed u at constant RPM and plot the total 
axial force; see Figure 3.21. Note that we have plotted the force against the change 
in velocity relative to the equilibrium value (i.e., u*). The slope of t h s  curve at 

u - uo =u* = 0 
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is the value of aoo. A linear fit yields 

aoo = -229.6 N/(m/s) or a00’ = -0.00468. 

60 
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20 
z 
6 
r g o  - 
.- 

3 
-20 

-40 

-60 ‘i\ 
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 

Speed. m‘s 
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Figure 3.21 Total axial force vs. speed at N = 430 RPM 

To examine a range of speeds we need to repeat ths  procedure at each speed. 
Carrying out the calculations at various speeds between 0 and 6 knots, and fitting a 
curve to the results, yields the foIlowing relationship: 

a,,,,’ = 0.001422 Fn - 0.005160, 0 I Fn 10.40. 

We are now ready to evaluate the coefficients A’, B’, C‘, D‘ and E‘ using Eqs. 
(3.163a), for any given values of the CG height and Froude number. This is 
conveniently done in a spreadsheet. These results together with the stability criteria, 
Eqs. (3.164), can be used to draw a “map” of stable combinations of Q and Fn; see 
Figure 3.22. The figure shows that for any choice of CG distance (below the center 
of the hull), there is a maximum speed for directional stability; t h~s  maximum speed 
increases with increasing ZCG. At the design speed of 5 knots, which corresponds to 
a Froude number of 0.333, Figure 3.22 shows that the minimum CG distance below 
the centerline is 0.05d or about 0.04m. 
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0.50 I 

0.W 0.01 0.02 0.03 0.W 0.05 0.08 0.07 0.M 0.09 0.10 

z,/d 

Figure 3.22 Stable combinations of Froude number and zc for example submersible 

The effect of varying tail fin geometry could also be examined in this fashion. 
For example, it is desirable to minimize the tail fin sue to reduce resistance. The 
procedure outlined above could easily be applied to find the minimum tail fin size 
for directional stability at a given speed and CG height. This procedure could also 
be applied to examine the effects of changing the longitudinal location of the CG; 
however, because of the assumption that Q = xB, this would involve changes in the 
hull form (to move the CB) which in general would affect many of the other 
coefficients. The result is that the stability region (e.g., Figure 3.22) can be 
substantially expanded by moving the CG forward. 

Many texts ignore the surge equation and the longitudinal velocity perturbations 
in their presentations on directional stability in the vertical plane. Eqs. (3.159) show 
that this is valid only when ZG = 0, which would considerably limit the applicability 
of the results. If coupling with surge is neglected, it can be shown that the most 
critical of the Routh-Hurwitz stability criteria is satisfied if 

-cl '(m'xG '-A35 '-e2 I)- (m'+A '+cz '-A, '+el I) > 0 and zG ' > 0 (3.165) 

which is independent of speed. The first of Eqs. (3.165) is none other than the 
criterion for directional stability in the horizontal plane, Eq. (3.151), written in 
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terms of vertical-plane quantities. In the present example, this criterion is satisfied, 
leading to the erroneous conclusion that the configuration is stable at any speed so 
long as ZG is positive. 

10.2.5 Heavy Torpedoes 

We mentioned above that the relationships derived in the previous section are not 
applicable to cases in whch W # B or XG # XB, e.g., “heavy” torpedoes. In fact, 
strictly speaking, we should abandon all of our “small perturbation” equations since 
they pertain to expansions about a steady level equilibrium condition. If W f B or 
XG # xB, the equilibrium condition cannot be “level” because an angle of attack must 
be developed to provide a lift force to balance the excess weight or to counteract the 
XG - XB couple. 

What we can do is substitute 

u=uo+u*  
w=wo+w* 
e = eo + e* 
6, = 6,O + 6,* 

(3.166) 

in the nonlinear surge-heave-pitch equations of motion, where 6, is the elevator 
deflection. The quantities with subscript 0 represent the equilibrium values, and the 
quantities with asterisks represent perturbations from these equilibrium conditions. 
Note that we must use the most general form of the gravity-buoyancy force and 
moment, Eqs. (2.16) and (2.17), in the development of the equations. Note also that 
Eqs. (3.166) must be substituted in the nonlinear equations before linearizing them, 
since the higher-order terms will yield products of equilibrium values and 
perturbations which are of lower order in the perturbations (as we have already 
seen: Eqs. (3.159) contain products of w and q with Uo). 

From this procedure we can obtain two sets of equations: First, by setting 

(and also setting all accelerations equal to zero), we obtain equations for the 
equilibrium values. This is just the procedure we used in Section 7.2.2 to find the 
values of v and r in a steady horizontal turn. Second, we can subtract these 
equilibrium values from the original set of equations (involving uo + u*, etc.) to 
obtain a set of equations governing the perturbations. The latter set of equations can 
then be linearized by neglecting products of the perturbations, and solved by the 
methods used above. These equations will involve the equilibrium values uo, wo, O0, 
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and tio. Furthermore, for steady horizontal flight, wo and e0 are not independent, but 
are related as follows: 

wo = taneo. (3.167) 

The equilibrium heave and pitch equations can be solved for the values of O0 and 60: 

(w'-B'+c~ I ) M ~  I+(w' x l-e0 l ) ~ ,  I 

0, = (3.1 68) 
[(el '+A3, '-Al ')Z', -MI, C l  '1- w' Z G  z, 

-(W$X '-eo l ) c l  '+(w'-B'+c, ' xwtzG '-el I) 

[(el '+A,, '-Al1 ')Z', -MI6 c1 '1- W'zG ' Z, ' 
6, = (3.169) 

where the origin is taken to lie on the longitudinal centerline at the LCB; 

and Z6 and M6 are the elevator deflection-induced force and moment rates, defmed 
analogously to Ys and N6 in Eqs. (3.157)ff. 

Controls-fixed directional stability can be assessed by solving the linearized 
perturbation equations, as was done above. This again results in a fourth-order 
characteristic equation, formally equivalent to Eq. (3.162); however the expressions 
for the coefficients now involve the quantities (W - B), 00, and lj0, as well as some 
nonlinear coefficients. Based on the results of a numerical study using coefficients 
corresponding to a number of actual torpedo forms, Strumpf [1963] found that a 
heavy torpedo satisfying the "fixed-speed" criteria, Eqs. (3.165), and the following 
condition on the LCG location: 

(W'-B'XW'zG '-(el '+A,, '-Al I)] 

XG'> 
Cl'W' 

9 (3.170) 

will posses controls-fixed directional stability in the vertical plane. 

Intuitively we expect the equilibrium trim angle and the corresponding control 
surface deflection to increase in magnitude as the speed of the vehcle is reduced, 

'Strictly speaking, these equations apply for "small" values of O0, less than about 10 degrees (Strumpf 
[ 19631). 
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until a point is reached where the required lift cannot be generated. Thus the only 
type of submersible for which W-B >O or Q f xB is a torpedo, which operates at 
hgh  speed exclusively. 

To illustrate, we will convert our deep-sea research vehcle into a high-speed 
torpedo. To compute the force and moment rates of the elevators, we can use the 
formulas for the fin contribution to c1 and el, without the fin-hull interference 
factors (see Section 3.2). We will examine a range of weight-to-buoyancy ratios up 
to W/B = 1.3, at speeds up to 63 knots (Fn = 5). Setting ZG/d = 0.054 (ZG' = 0.007) 
in accordance with the minimum value derived in the previous section, Eq. (3.170) 
yields 

at W/B = 1.3 and Fn = 5. Taking 
computed using Eq. (3.168). The results are shown on Figure 3.23. At low speeds, 

= 0.8L, the equilibrium trim angle can be 

80-Fn'2 as Fn+O 

The theory should not be applied in cases in which 8, is greater than 5 or 6 degrees 
(Fn < -1.5 in the example), since nonlinear behavior becomes important at hgher 
angles. 

1 2 3 4 5 

Fn 

Figure 3.23 Equilibrium him angle as a function of weighhhoyancy and Froude number 
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APPENDIX A 

PREDICTION OF WAKE FRACTION AND THRUST DEDUCTION 

The following formulas applicable for displacement ships were developed by 
Holtrop [ 19841. 

Single screw ships with conventional stern arrangement: 

+ 0.27915C20 

t = 0.25014 + 0.0015C,te, 
(1 - Cp + 0.0225LCB)0.0'762 

Single-screw ships, open stern: 

w = 0.3CB + lOCvC8 - 0. I 

t = 0.10 

Twin-screw ships: 

where 

131 
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~9 =32---- l6  , c8>28 
c8 -24 

c11=--, TA -<2 TA 
B D  

+ 1.33333, - TA > 2 
D 

0.12997 
= 0.95 - CB 

0.11056 , cp < o.7 - 
0.95 - C, 

0.18567 -0.71276+O.38648Cp, Cp > 0.7 
‘19 = 1.3571 - CM 

C ~ O  = 1 + 0.O15Cs~,, 
Cpl = 1.45Cp - 0.3 15 - 0.0225LCB 

and Cv is the ‘Lviscous resistance coefficient”: 
C” =(l+k)CF+CA 

Also, 

L Waterline length 
LCB Fwd amidships, %L 
TA DraflatAP 
D Propeller diameter 

And 

Afterbody form cstern 

V shaped sections -10 
Normal section shape 0 
U-shaped sections with Hogner stern 

Pram with gondola -25 

10 
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For submersible hulls consisting of bodies of revolution, Jackson [ 19921 has 
presented curves of (1-w) and (1-t) as functions of the propeller diameter to hull 
diameter ratio and K2 where 

K2 = 6 - 2.4Cw,f- 3.6Cwsa 

Here Cwsf and C,,, are the wetted surface area coefficients of the forebody and 
afterbody, 

where f and a denote forebody and afterbody, respectively; this is the portion of the 
hull forward or aft of the point of maximum diameter d, not including parallel 
midbody if any. Jackson’s curves are well represented by the following formulas: 

D D 
d 

(1 - W )  = 0.3674 + 0’01382 + 0.008406- + 1.6732 

D D 
d 

(1 - t) = 0.6324 - 0.002817 -0.004432--1.3872 

where D is the propeller diameter. These formulas are applicable in the range 

3 <L/d-K2 I l l  
0.3 I D/d I 0.6 
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APPENDIX B 

COEFFICIENTS IN KT and & POLYNOMIALS 

Following are the coefficients determined by regression analysis of the B-series 
The expressions are of the KT and KQ data (van Lammeren et. al. [1969]). 

following form: 

where J is the advance ratio, PD is the pitch to diameter ratio, AE/Ao is the 
expanded area ratio, and z is the number of blades; CSmv are the empirical 
coefficients. 
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KT S t  U V KO s t  I I  v 
CStuV Js 

8.80496E-03 0 
-2.04554E-01 1 
1.66351E-01 0 
1.58114E-01 0 
-1.47581E-01 2 
-4.81497E-01 1 
4.15437E-01 0 
1.44043E-02 0 
-5.30054E-02 2 
1.43481E-02 0 
6.06826E-02 1 
-1.258948-02 0 
1.09689E-02 1 
-1.33698E-01 0 
6.38407E-03 0 
-1.32718E-03 2 
1.68496E-01 3 

-5.07214E-02 0 
8.54559E-02 2 
-5.04475B-02 3 
1.04650E-02 1 

-6.48272E-03 2 
-8.41728E-03 0 
1.68424E-02 1 

-1.02296B-03 3 
-3.17791E-02 0 
1.86040E-02 1 
-4.10798E-03 0 
-6.06848E-04 0 
-4.9819OE-03 1 
2.59830E-03 2 
-5.60528E-04 3 
-1.63652E-03 1 
-3.28787E-04 1 
1.16502E-04 2 
6.90904E-04 0 
4.21749E-03 0 
5.65229E-05 3 
-1.46564E-03 0 

(P/D)’ 
0 
0 
1 
2 
0 
1 
2 
0 
0 
1 
1 
0 
0 
3 
6 
6 
0 
0 
0 
0 
6 
6 
3 
3 
3 
3 
0 
2 
0 
0 
0 
0 
2 
6 
6 
0 
3 
6 
3 

(AEIAO)” 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
2 
2 
2 
2 
2 
0 
0 
0 
1 
2 
2 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
2 

2‘ 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

CStUV Js 
3.79368E-03 0 
8.86523E-03 2 
-3.224108-02 1 
3.44778E-03 0 
-4.088 10E-02 0 
-1.08009E-01 1 
-8.85381E-02 2 
1.88561E-01 0 
-3.70871E-03 1 
5.13696E-03 0 
2.09449E-02 1 
4.7431 9E-03 2 
-7.23408E-03 2 
4.383888-03 1 
-2.69403E-02 0 
5.58082E-02 3 
1.61 886E-02 0 
3.18086E-03 1 
1.58960E-02 0 
4.71729E-02 1 
1.96283E-02 3 

-5.02782E-02 0 
-3.005508-02 3 
4.171228-02 2 
-3.97722E-02 0 
-3.50024E-03 0 
-1.06854E-02 3 
1.10903E-03 3 
-3.13912E-04 0 
3.59850E-03 3 
-1.42121E-03 0 
-3.83637E-03 1 
1.26803E-02 0 

-3.18278E-03 2 
3.34268E-03 0 
-1.83491E-03 1 
1.12451E-04 3 

-2.97228E-05 3 
2.695518-04 1 
8.32650E-04 2 
1 S5334E-03 0 
3.02683E-04 0 
-1.84300E-04 0 
-4.25399E-04 0 
8.692438-05 3 
-4.659008-04 0 

(P/D)’ 
0 
0 
1 
2 
1 
1 
1 
2 
0 
1 
1 
1 
0 
1 
2 
0 
3 
3 
0 
0 
0 
1 
1 
2 
3 
6 
0 
3 
6 
0 
6 
0 
2 
3 
6 
1 
2 
6 
0 
0 
2 
6 
0 
3 
3 
6 
6 

(AEIAO)” 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
0 
0 
0 
1 
1 
2 
2 
2 
2 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
2 
2 

ZV 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

5.54194E-05 1 . - 2 



APPENDIX C 

ROUTH-HURWITZ STABILITY CRITERION" 

D, = 

For a characteristic polynomial equation of the form 

A1 A0 0 0 0 0 ... . 
A3 A2 A,  A0 0 0 ... . 
A, A4 A3 A2 A1 A0 ... . 

P(o) = Aoon + A,d"" + A&* + . . . + A,-,G + A, = 0 

a necessary condition for stability is that all coefficents have the same sign. Let all 
of the coefficients be positive (whlch can be achieved by multiplying through by -1 
if necessary) and construct the n determinants: 

Note that in forming the determinants, positions corresponding to A's having 
negative subscripts, or to A's with subscripts greater than n, are filled with 0's. 
Then a necessary and sufficient condition that each root of P(o)=O have a negative 
real part is that each D be positive. 

From Wylie [I9601 

I37 
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CHAPTER 4 

WATER WAVES 

In this chapter we will review the basic results from water wave theory which are 
necessary to develop the wave-induced forces to be discussed in the next chapter. 
For a more thorough treatment of the theory, the reader is referred to the many 
excellent texts on the subject, e.g., Mei [1989]; Sumer and Fredscae [1997]. 

1. A Simple Sinusoidal Wave 

When energy is imparted to a body of water, by the action of wind and other 
atmospheric effects, or by the motion of bodies such as shps, surface waves are 
created. The form of these waves is determined by the physical properties of the 
water, the principle of conservation of mass (or “continuity”), and by Newton’s 
laws of motion (conservation of momentum). When the latter are applied to a “fluid 
element”, we obtain the “Navier-Stokes equations” which, together with the 
continuity equation, govern the velocity and pressure fields in the water. These 
nonlinear partial differential equations are difficult to solve in general. However, if 
we assume that the effects of viscosity are negligibly small compared with 
gravitational effects, the equations can be simplified considerably. Unfortunately 
this does not justify neglecting viscous effects; but it turns out that the results 
obtained for inviscid fluids are sufficiently accurate to produce usefid results in 
many (if not most) cases of practical interest. 

If we assume that the flow is irrotational in addition to being inviscida, it 
follows that the velocity field in the water can be expressed as the gradient of a 
scalar field called the “velocity potential”. For incompressible flows (we can safely 
neglect compressibility in the current application) it can be shown that the 
continuity equation reduces to the Laplace equation for the velocity potential. The 
Laplace equation is linear, meaning that the sum of any solutions is also a solution. 
Once the velocity potential is known, the pressure exerted by the water can be 

a “Irrotational flow” means that the curl of the velocity vector is equal to zero everywhere in the water. 
The motion of an inviscid fluid acted on only by conservative forces (gravity), which started from rest, 
must always be irrotational; thus this assumption could be regarded as superfluous. 

I39 
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determined using the Navier-Stokes equations. By integrating the pressure on the 
surface of a body we can obtain the hydrodynamic forces and moments which act 
on the body, which is our ultimate goal. 

To conform with virtually all of the existing literature on the subject, we will 
adopt a special new coordinate system for the following discussion of water wave 
theory: 5, 7, 6 where 6, 7 lie in the undisturbed free surface, and 6 is positive 
upwards. Thus the sea bottom is located at <= -h, where h is the water depth. This 
is opposite to the sense of the fixed vertical coordinate introduced in Chapter 1; 
however, we feel that introduction of the new coordinate system avoids more 
conhsion than it might potentially create. 

If we write the Navier-Stokes equations for an inviscid fluid in terms of the 
velocity potential, the resulting equation can be integrated to obtain the celebrated 
Bernoulli equation: 

where p is the pressure in the fluid, 4 is the velocity potential, and V is the fluid 
velocity vector. The quantity C is a constant of integration that is a function only of 
time; it corresponds to a “reference” pressure level and can be set equal to any 
convenient value, such as atmospheric pressure. Since we are interested here only 
in hydrodynamic pressure (the integrated effect of the atmospheric pressure is zero), 
we will take C = 0, with the understanding that the pressures we obtain will be 
relative to the ambient atmospheric pressure (i.e., gage pressure). 

The governing equation in the fluid domain is linear in the velocity potential 
and fairly easy to deal with. However, we still must address boundary conditions. 
At impermeable boundaries, such as the ocean floor or the hull of a ship, this is 
straightforward: The component of the fluid velocity which is normal to the 
boundary must be equal to the corresponding component of the velocity of the 
boundary itself. In other words, the fluid is not allowed to pass through the 
boundary. Expressed mathematically, this is 

(4.2) V en = - 84) = U . n  on the boundary 
dn 

where n is the unit normal vector on the boundary (taken to point out of the fluid 
domain). This is called a “kinematic” boundary condition, because it involves a 
prescribed velocity. Notice that we can’t say anything about the component of V 
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which is tangent to the boundary; we gave up this ability when we assumed inviscid 
flow. 

What about the boundary condition on the water surface? Here we must 
impose both a kinematic condition, that the normal component of the fluid velocity 
must match that of the surface, and a dynamic condition, that the pressure on the 
surface is equal to a prescribed value (dynamic boundary conditions involve 
prescribed pressures or forces on the boundary). The prescribed value in the present 
case is atmospheric pressure which (to be consistent with our choice of C above) we 
will take to be equal to zero. An added complicated is that we do not know a priori 
where the boundary is! T h s  is what sets hydrodynamics apart from the simpler 
disciplines of fluid mechanics pursued by mechanical engineers and 
aerodynamicists. 

If the free surface is described by 

the kinematic condition on the free surface can be expressed as 

-(<- D f)’(z+”.v)(<- d f ) = O  
Dt (4.3) 

on < =f: Here DF/Dt represents the “substantial derivative” of a function F, or the 
rate of change of F as we follow a particular fluid particle. Multiplying this out, we 
obtain 

The dynamic condition comes from applying the Bernoulli equation, with p = 0, at 
the free surface: 

84 1 

a t 2  
gf+--+-V.V=O on<=/  (4.5) 

In addition to the complications associated with the fact that they are imposed on a 
surface with an unknown location, these free surface boundary conditions are 
nonlinear, involving products of derivatives off and 4. 

The problem can be simplified considerably by linearizing the free surface 
boundary condition. To do this it is necessary to assume that the wave slope and the 
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wave-induced particle velocities are small quantities, so that products of these 
quantities can be neglected. This is not an unreasonable assumption in many cases, 
and leads to predictions which are sufficiently accurate for many engineering 
applications. Important exceptions will be discussed below. 

In addition, we can express the potential and its derivatives in a Taylor series 
expansion about the undisturbed free surface level. Using this procedure can be 
shown that it is consistent with the assumptions described above to apply the 
linearized boundary conditions on the plane C= 0. So the linearized kinematic and 
dynamic free surface boundary conditions are: 

and 

g f + - = O  84 on < = O  
dt (4.7) 

respectively. 
“combined” free surface boundary condition in the form 

Eliminating f between Eqs. (4.6) and (4.7) we can obtain the 

a24 a4 
d t 2  
-+g-=O on < = 0  

The free surface elevation is obtained from the potential using Eq. (4.7): 

The Laplace equation can be solved by the method of “separation of variables’ 
obtain the following general solution: 

‘Osh k(h + [A sin(kf-w t + a I ) + A sin(k{’+w t + a )] (4. 
= cosh kh 

which satisfies the kinematic boundary condition at the bottom, 

to 

(4.1 1) 
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In Eq. (4.10) we have temporarily adopted a coordinate system whch is aligned 
with the direction of wave propagation; the quantities k and o are the wavenumber 
and radian frequency, respectively. A,, A2, aI and a2 are arbitrary constants. 
Plugging into Eq. (4.9) we obtain the wave elevation in the form: 

f(5 I ,  t) = [A, cos(k('-ot + al ) + A 2  cos(k<'+ot + a2  )] 
g 

(4.12) 

Notice that the value of the fKst cosine term is constant if 

Thus the first term corresponds to a plane wave with amplitude wAl/g progressing 
in the positive kw' direction with a phase velocity given by 

V, = o/k (4.13) 

Similarly, the value of the second term is constant if 

5' = -(o/k)t 

corresponding to a wave travelling in the -5' direction. Thus Eq. (4.12) represents a 
superposition of two waves travelling in opposite directions; we can choose either 
by setting the constants Al or A2 equal to zero. 

Recall that the wave period is related to the frequency as follows: 

T = 2n/o 

Inserting this in Eq. (4.13) and rearranging, we find 

V,T = 2 d k  

which says that the distance traveled by the wave in one period is (2x/k). But we 
know that the wave travels one wavelength h in one period; therefore the 
wavelength and wavenumber are related: 

h = 27dk 

It is convenient to express the surface elevation of a wave travelling in the +kw' 
direction in the form 
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f( t’,t) = Acos(kt’ - at)  (4.14) 

where A is the wave amplitude. This determines the constant Al = gA!w and the 
corresponding velocity potential is 

(4.15) 

where we have set the arbitrary constant a1, representing the phase of the wave, 
equal to zero. 

The astute reader will have noticed that we have derived Eq. (4.15) without 
specifically making use of the free surface condition. Plugging Eq. (4.15) into the 
boundary condition, Eq. (4.8), we obtain 

o2 -=ktanhkh (4.16) 

which establishes a relationship between the wave frequency (or period) and the 
wavenumber (or wavelength). Rearranging again and using Eq. (4.13) yields an 
expression for the phase velocity: 

o g  V, =-=-ttanhfi=,/- k o  (4.17) 

Eq. (4.17) shows that waves having different wavenumbers (or different 
wavelengths) generally travel at different speeds; for this reason, Eq. (4.16) is called 
the dispersion relation. 

The dispersion relation indicates that the wavenumber corresponding to a 
particular frequency is a function of the water depth. A plot of kh vs. w2Wg is 
shown on Figure 4.1. The figure shows that in “deep water” the dispersion relation 
reduces to 

m 2  
- = k for kh > 3 or h > 112 
g 

(4.18) 

(since for kh > 3, tanh(kh)=l). Thus if the water depth is greater than about half the 
wavelength, the wave does not “feel” the bottom. In very shallow water, h+O, 
tanh(kh)+kh and the dispersion relation reduces to 
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"=v,, +@ aslch+O 
k 

I45 

(4.19) 

showing that in the shallow water limit, the waves all have ... e same phase velocity 
regardless of frequency. 

0 1 2 3 4 

w2h/g 

Figure 4.1 Dispersion relation 

We will now transform back to our original wave coordinate system in the 
horizontal plane, using the transformation 

where x is the wave heading angle, measured clockwise from the +( axis, 
representing the direction in which the waves are moving. Now the velocity 
potential takes the form 

I$=- gA 'Osh k(h -I- ') sin(k6 cos x + k?;l sin x - a t )  
o coshkh 

(4.20) 

Since the Laplace equation is linear and we have linearized the boundary 
conditions, we can form a valid velocity potential by superimposing any number of 
simple wave potentials given by Eq. (4.16), and having any desired amplitude, 
frequency, and heading. This is the basis of the treatment of irregular waves which 
will be examined in detail later in this chapter. Note that due to the linearity of Eq. 



I46 The Dynamics of Marine Crafi 

(4.9) relating the wave elevation to the potential, the wave elevation due to the 
superimposed waves is just the sum of the elevations of the components. 

In “deep water”, 

so that the potential in deep water can be written in the simpler form 

I$=- gA e-kc sin(k6cosX + kqsin x - a t )  
0 

I .  I Particle velocities and trajectories; dynamic pressure 

The fluid velocity field is obtained by differentiation of the potential: 

V(5, q, 6, t) u,I + V, J + w,K = VI$ 

(4.21) 

(4.22) 

where the subscript “w” denotes “wave-induced”. Plugging Eq. (4.21) into Eq. 
(4.22), and assuming for the moment that the heading x = 0, we obtain the 
horizontal and vertical velocity components: 

(4.23) 

We can see that the boundary condition on the bottom is satisfied, ww( <= -h)=O. 

It is perhaps more instructive to examine the particle trajectories. There are 
easy to find if we take advantage of the fact that Eqs. (4.23) apply at the mean 
position of the particle being examined (we can imagine a Taylor-series expansion 
of the velocity about the mean position of the particle; under the assumption of 
small velocities and slopes, we can neglect all but the leading term). Thus Eqs. 
(4.23) can be integrated with respect to time to yield expressions for 5(t) and T(t) in 
terms of the coordinates of the particle’s mean position ((o,G): 
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cosh k(h + T o )  . c-c0 =-A sm(kro - a t )  
S l n h  kh 

C-Co=A sinhkh cos(k{o -at) 

(4.24) 
sinh k(h + go) 

We can eliminate t between Eqs. (4.24) by squaring both sides, doing some algebra, 
and adding the two equations together, which yields: 

(5-5d2 + (6 - CO l2 (4.25) 
sinh k(h + CO)]  

= 

sinh kh sinh kh 

which is the equation of an ellipse. Thus the particles describe elliptical orbits; the 
semimajor and semiminor axes are given by the square roots of the denominators of 
the first and second terms, respectively. 

For large values of the argument, both the hyperbolic sine and hyperbolic 
cosine approach half the exponential function: 

ex  ex  sinh(x)+ -; cosh(x)-+- as x + co 
2 2 

Thus in “deep” water, h+m, Eq. (4.25) reduces to 

(4.26) 

and we see that the semiaxes are equal; i.e., the particle orbits are circular. 
Furthermore, the radius of the circle at the surface is equal to A, the wave 
amplitude; and, the particle amplitude decreases exponentially with increasing 
depth. 

In very shallow water, h+O, the hyperbolic sine approaches its argument and 
the hyperbolic cosine approaches 1. In this case, the semimajor axis (or the 
horizontal particle excursion) increases as l/(kh), and the semiminor axis (vertical 
particle excursion) varies linearly from 0 at the bottom to A at the surface. 
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The dynamic pressure induced by the wave is the total pressure less the 
Using the linearized Bernoulli equation, Eq. (4. l), we hydrostatic contribution. 

obtain 

(4.27) 

Plugging in the expression for the potential, Eq. (4.20), we obtain the wave-induced 
dynamic pressure (at zero heading) as 

cosh k(h + 4) 
cos(k{ - wt) PdP =pgA coshkh (4.28) 

1.2 Standing Waves 

When the waves described by Eqs. (4.14) are normally incident on a vertical 
impermeable wall, they are reflected and a standing wave pattern emerges. As its 
name implies, a standing wave does not travel; it is characterized by a series of 
spatially-fixed maximalminima and nodes (points which are fixed at c=O). 

The velocity potential associated with the standing waves must satisfy the 
kinematic boundary condition of zero velocity normal to the wall. Let's assume that 
the waves are travelling in the +{ direction and that the wall is located in the plane 
e 0 .  The additional boundary condition is then 

a4 
a t  
- = 0  on { = 0  (4.29) 

The easiest way to obtain the potential is to exploit superposition. We need to add 
another solution which will cancel the u-component of the velocity of the incident 
wave at (+O. This is a wave travelling in the opposite direction, corresponding to 
the wave which is reflected from the wall Its potential is obtained from Eq. (4.20) 
with x=180°: 

Adding this to the potential for x=O" and applying some trigonometric identities, we 
easily obtain the potential for the standing wave system: 
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2gA cosh k(h + c) 
w coshkh 

$=-- cos k r  sin wt (4.3 1) 

The boundary condition, Eq. (4.29), can be satisfied for arbitrary &all by adding the 
appropriate phase to the argument of the cosine in Eq. (4.31). The free surface 
elevation is obtained by plugging Eq. (4.3 1) into Eq. (4.9): 

f= 2A cos(kncos(wt) (4.32) 

Thus the amplitude of the standing wave is twice that of the incident wave; the 
maximalminima occur where kt=+nn, n = 0, 1, 2..., or at &nn/k = knh12; i.e., 
they are spaced a half-wavelength apart. The nodes are located where cos(kC)=O, or 
k{ = f(n+%)n, { = f(n+%)n/k. For the problem we described, the fluid is located in 
the region 6 5 0 so we would choose the negative signs in these expressions. 

1.3 Group Velocity and Wave Energy 

As another application of superposition, we will consider the combination of two 
waves with very slightly differing wavenumbers and frequencies, 

where 

and 60 and 6k are assumed to be small quantities. Subsequent analysis will be 
greatly facilitated if we employ complex notation: 

A cos(ot - 6 )  = ReCAe-'"'} (4.34) 

where the amplitude on the right-hand side is complex, thus incorporating the phase 
angle: 

Re {Ae'"'} = Re { (AR + iA' )(cos wt - i sinwt)} = ARcoswt + A'sinot 
= IAl cos(ot - 6) 

where 

6 = tan-'(A'lAR) 
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and the superscripts indicate Real and Imaginary parts. Use of complex notation is 
a convenient way of keeping track of phase without having to deal with a multitude 
of trigonometric identities. Since we are representing a real function (in this case 
the wave elevation), only the real part of the function is of interest. Thus we will 
henceforth adopt the generally-accepted convention of dropping the "Re{ }", the real 
part being assumed. 

Applying complex notation to Eq. (4.33) we obtain 

This represents a sinusoidal wave with wavenumber and frequency kl and ol, with a 
slowly-varying amplitude ("amplitude modulation") given by the factor in brackets. 
An example is shown on Figure 4.2. The wavenumber and frequency of the 
envelope or wave group are given by 6k and 60, respectively; thus the speed of the 
envelope or group velocity V, is given by 

Vg = 6d6k  + doldk as 60, Sk-0 (4.36) 

0 10 20 30 40 50 

time t 

Figure 4.2 Superposition of two sinusoids with slightly different frequencies 
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Taking a derivative of the dispersion relation, Eq. (4.16), we obtain the group 
velocity in the form 

kh (4.37) 

You should recognize the first term as the phase velocity of the wave. In deep 
water, the second term in the parentheses goes to zero because the hyperbolic sine 
increases exponentially for large kh. Thus in deep water, 

V, +%V, as h+cc (4.38) 

In shallow water, the term in parentheses approaches 1, and so we have 

V, +Vp as h+O (4.39) 

So in general the individual waves move faster than the envelope. This can be 
observed in a wave tank immediately after starting up the wavemaker: The 
individual waves disappear when they reach the leading edge of the envelope. 
Similarly, when the wavemaker is stopped, waves seem to spontaneously erupt from 
the end of the disturbance. This apparent violation of energy conservation is 
circumvented because it turns out that the energy of the wave system moves at the 
group velocity. A derivation can be found in Newman [1977]. 

The kinetic and potential energy per unit volume in the fluid is given by 

Integration of this quantity in the vertical direction results in an expression for the 
wave energy per unit area in a horizontal plane, which is referred to as the “energy 
density” E: 

(4.40) 

Notice that we have integrated the potential energy only up to the mean free surface 
leve1. This is because the potential energy for the fluid in the region <= -h to <= 0 
is a constant which is not associated with the waves and is thus not of interest in the 
present context. Assuming as above that the k,-axis is aligned with the direction of 
wave propagation, we can substitute V2 = u$+w:, with u, and w, given by Eqs. 
(4.23). Carrying out the integration we obtain 
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(4.41) 

where it has been assumed that (h-n = h since Iq = A is “small”, and Eq. (4.14) has 
been used in the last term. We will next integrate Eq. (4.41) from &O to e h  to 
obtain the energy associated with a single wave, per unit length parallel to the wave 
crest. Using 

h=2x/k 

cos2(kc-at)dc=[ k 
n 

we eventually obtain 

where we have made use of the dispersion relation, Eq. (4.16). Eq. (4.42) shows 
that (at least for A << h) the total energy associated with a wave is constant, and 
proportional to the square of the wave amplitude. Dividing Eq. (4.42) by the 
wavelength, we find the following expression for the wave energy density: 

E = ‘/pgA2 (4.43) 

which is independent of wave period and length. Strictly speaking, Eq. (4.42) holds 
only for the area under an integral number of wavelengths; however, it can easily be 
shown that this expression holds in general if E is regarded as the time-averaged 
energy density. 

1.4 Application: Wave Shoaling 

The mean rate of energy flux across a fixed vertical control surface is given by the 
product of the energy density and the velocity of energy propagation: 

dE 
- = V,E 
dt 

(4.44) 
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This expression can be used to investigate what happens to a wave as it approaches 
a beach. Since the expressions we have obtained thus far are applicable for constant 
water depth, we have to assume that the slope of the bottom is small; one 
consequence of this is that we can neglect reflected waves. Under this assumption 
in steady-state conditions the flux through any two control surfaces is the same; by 
equating the flux at the location of interest to that at some reference station 
(designated by subscript “0”) we obtain 

- Waveperiod 10 sec 
Reference water depth 45m 

- 

- 

. 

- 

- 

(4.45) 

which is known to coastal engineers as the “shoaling coefficient”. Figure 4.3 shows 
an example of the behavior of the shoaling coefficient with the water depth ratio 
hjh,,, for regular waves which have a 10 second period. The figure shows that as the 
depth decreases, the wave amplitude first decreases and then increases. This is 
because of the behavior of the group velocity: k increases with decreasing water 
depth (the waves get shorter), but the quantity kh decreases with depth. Thus the 
phase velocity decreases as the depth is reduced, but the quantity in parentheses in 
Eq. (4.37), which is the ratio of V, to V,, increases from 0.5 in deep water to 1.0 as 
h-0. The product of V, and (V,N,) generally has a relative maximum (so the 
shoaling coefficient has a relative minimum) for a given wave period at some water 
depth. 

Figure 4.3  Behavior of shoaling coefficeent with water depth
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In developing these results we have used the fact that the wave period is 
constant as the wave traverses the region of interest. If this were not the case, there 
would be a net change in the number of waves between the control surfaces 
(eventually leading to no waves or an infinite number of waves in this region) whch 
in addition to violating the assumption of steady-state, makes no sense physically. 
Keep in mind that we have assumed that the wave amplitude is “small”; when the 
wave height becomes comparable to the water depth, an alternative theory must be 
employed. 

2. Forces and Moments 

The point of all of this is to permit evaluation of the wave-induced forces on marine 
vehicles. If the velocity potential is known, the dynamic pressure is easily obtained 
using Eq. (4.27). The forces and moments can then be found by integration over the 
body surface; see Eqs. (2.4) and (2.5) which for convenience will be restated here: 

(4.46) 

where S denotes the submerged surface area, Recall that the positive sense of the 
normal vector is into the body. 

2.1 Some Analytical Solutions 

This is all quite straightforward if the velocity potential is known. We do know 
the velocity potential for the incident waves, but of course this does not satisfy the 
kinematic boundary condition on the body surface. In general one must resort to 
numerical methods to obtain the velocity potential for wave motion in the presence 
of realistic hull shapes. However, we know the potential for one case of practical 
interest: wave reflection from an impermeable wall that extends from the surface to 
the bottom. The velocity potential, whch we found using superposition, is given by 
Eq. (4.31). We can use Eqs. (4.46) to find the dynamic force and moment on the 
wall induced by the waves. Taking the wall to lie in the plane PO, we have 

n = I; p x n = <,J; dS = d((per unit width) 

on the wall. Plugging this and the dynamic pressure (obtained from Eqs. (4.27) and 
(4.3 1)) into Eqs. (4.46), and integrating from <= -h to <= 0, we easily obtainb 

~ ~ 

The contribution of the pressure integral from < = 0 to < =fis  ofhigher order and so can be neglected; 
this is consistent with our linearization of the problem. 
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k 

M =  2pgA (1 - cosh kh)cos o t  
k cosh kh 

(4.47) 

per unit length of the wall. The coordinate of the center of pressure is obtained as 
follows: 

ccp M 1-coshkh 
h hX khsmhkh 

- - (4.48) 

The ratio of the wave-induced dynamic force amplitude to the hydrostatic force on 
the wall is 

A 
h 

4-tanhkh 
-- - X 
xstatic kh 

(4.49) 

Recall that A is the amplitude of the incident wave; the total amplitude of the wave 
measured at the wall is 2A because of the reflected wave. In terms of the “total 
waveheight” at the wall, denoted by H, (where H, = 2H and H = 2A), 

X static kh 

In the deep water limit this ratio approaches zero, 

as h + a ,  x Hw 
‘static kh2 
--- 

whereas in shallow water, 

(4.49a) 

which is (to leading order in H,) what one would obtain by considering the increase 
in static pressure induced by a change in depth of (H,/2). 
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The behavior of X I Xstatic and C;, 1 h with the water depth to wavelength ratio is 
shown on Figures 4.4 and 4.5, respectively. Note that although we have defined 
“deep water” in Eq. (4.18) as h > h/2, the center of pressure location hasn’t quite 
reached the “deep water” limit (h/h z 0.8 or 1 .O would be more conservative). 

- 
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001 
00 02 04 06 08 10 1 2  1 4  

Water depth I wavelength 

Figure 4.4 Behavior of wave-induced force to hydrostatic force ratio with hlh 

Figure 4.5 Behavior of center of wave-induced pressure with hlh. 

Computation of the wave-induced force on other objects is considerably more 
complicated. For example, the amplitude of the force (per unit length) on a vertical 
wall of finite height d in infinitely deep water is given by Wehausen and Laitone 
[ 19601 as 
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(4.50) 

where I I  and K1 are modified Bessel functions of the first and second kind (of order 
l), respectively, and L, is a Struve function of imaginary argumentc. The force 
amplitude is shown as a function of kd on Figure 4.6. 

kd 

Figure 4.6 Force on a vertical barrier extending to depth d in “deep” water 

A significant difference between this problem and the one we considered above, 
aside from the fact that the wall height is now finite, is that both sides of the wall 
are now subject to wave-induced pressure. The wave-induced pressure on the back 
of the wall is proportional to the transmission coeficient of the barrier, which is the 
ratio of the amplitude of the wave which is “transmitted” past the wall to the 
amplitude of the incident wave; similarly, the reflection coeficient is the ratio of the 
amplitude o f  the reflected wave to that of the incident wave. The behavior of the 
reflection and transmission coefficients with wave length (or frequency) can be 
deduced by consideration of the height or depth of the barrier relative to the depth to 
which the influence of the wave is felt. In “deep” water, wave-induced velocities 
and pressure are proportional to e-kc; at a depth of 0.75h these quantities have fallen 
to 1% of their values at the surface. Thus if the wavelength is very large with 
respect to the barrier height d (or, kd << l), the wave is barely influenced by the 
barrier and we would expect it to be almost fully transmitted. In this case the wave 

While Bessel functions are available in spreadsheets and mathematical software (such as EXCEL@ and 

Ll(z)=  gor(rn + 3/2b(rn + 5 / 2 )  

MATHCAD@), the Struve function is not; however it can be computed using the defining series: 
(2/2)2m+2 

which converges quite quickly for values of the argument which are relevant in the present context. 
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pressures on either side of the wall will be equal, and the net force will go to zero, 
as in Figure 4.6. On the other hand, very short waves (or, kd >>1) should be 
completely reflected, producing negligible force on the back of the barrier. 
However, as k gets large, the pressure approaches zero exponentially due to the 
factor e-kT. So the wave-induced force approaches zero at high frequency. Between 
these two limits, then, there must be a maximum; Figure 4.6 shows that it occurs at 
kd =I.  The behavior of the force for large and small (kd) can be obtained using the 
asymptotic expressions for the Bessel functions (see, for example, Hildebrand 
[ 19761): 

, k d + m  
x 2J;; --- 

pgAd kd 

(4.51) 

The other case of practical interest for whch an analytical solution exists is that 
of the horizontal force on a vertical circular cylinder extending from the bottom to 
the free surfacer 

tanh kh 

k (HI’’ (ka 1 1x1 = 4pgA (4.52) 

where a is the cylinder radius, HI(’) is a Hankel function of the first h n d  of order 
one, and the prime denotes a derivative with respect to the argument (this is easily 
expressible in terms of Bessel hnctions of the first and second kinds of order one 
and two; see, e.g., Gradshteyn and Ryzhik [1980]). A plot of the force amplitude 
(normalized based on the projected area of the cylinder) vs. the cylinder diameter to 
wavelength ratio i s  shown on Figure 4.7, for several values of the cylinder diameter 
to length (or water depth) ratio. The behavior is qualitatively similar to that of the 
force on a wall shown on Figure 4.6; i.e., zero force in both long- and short-wave 
limits. 

In very long waves the curves on Figure 4.7 approach the asymptote 

- x 2  * = 2xka, long waves X 
pgA(2ah) 

(4.53) 

whereas in short waves (k+m) the limit is 
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(4.54) 

It is emphasized that these expressions represent the wave-induced force in an 
inviscid fluid. Viscous effects may be important, for example, in long period waves 
in which the wave-induced velocity field is similar to a slowly-varying current; in 
this case we might expect drag forces associated with separation to be considerable. 
There is a pragmatic approximation whch is commonly used in such cases; since 
the force on vertical cylinders is of considerable interest to ocean engineers, this 
approximation will be discussed below. 

Y Y  

0 0  0 2  0 4  0 6  0 8  1 0  1 2  

Cylinder diameter I wavelength 

Figure 4.7 Honzontal wave force on a vertical circular cylinder 

The wave force must be determined numerically in other cases of practical interest. 
We will deal with methods to determine the wave-induced forces on marine 
vehicles in the next chapter. 

2.2 Morison's formula 

The X-component of force on a relatively smalld, fixed body in a slowly varying 
stream with velocity V can be expressed in the form: 

(4.55) 

The stream velocity is assumed to be essentially constant across the body 
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in an ideal fluid; a derivation is given by Newman [1977]. The first term on the 
right-hand side arises from the ambient pressure gradient integrated on the body 
surface (and thus is not present when considering the force on an accelerating body 
in a static fluid), and the second term can be considered as arising from the 
disturbance to the flow due to the presence of the body. 

In a real fluid, we know that viscous drag forces will also be present; these are 
usually expressed in terms of a drag coefficient: 

(4.56) 1 2  XVisc = y p V  AC, 

where A is a characteristic area, usually taken to be the projected area normal to the 
flow. In cases involving very slowly-varying velocity, we would expect viscous 
drag forces to dominate, since the flow is nearly steady; thus the force would be 
calculated using Eq. (4.56). On the other hand, if the velocity is varying rapidly, 
quasi-steady conditions do not have time to develop, acceleration effects dominate 
and the force should be computed using Eq. (4.55). 

The ratio of the “viscous force” to the “ideal-fluid force”, from Eqs. (4.55) and 
(4.56), is: 

where Vo is the amplitude of the flow velocity. In this case 
written in the form 

(4.57) 

If the flow is oscillating with frequency w, we have 

dV 
dt 
- = ov, 

Eq. (4.57) could be 

(4.58) 

where T is the period of oscillation and L is a characteristic dimension in the 
direction of the flow. The last expression in Eq. (4.58) is the definition of the 
Keulegan-Carpenter number KC, which can also be defined in terms of the ratio of 
the particle orbit length to the body length. Thus the KC number is a measure of the 
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relative importance of the viscous and ideal force contributions; as a rough rule of 
thumb, when KC > 25, drag forces dominate, and for KC < 5, inertial forces are 
dominant. 

For intermediate KC numbers, a pragmatic approximation might be to add the 
two contributions: 

dV X = pV - C, +: pAV(VIC, 
dt 

(4.59) 

Here we have expressed V2 in the drag term as VlVl to ensure the proper direction 
of the drag force (i.e., in the direction of the flow), and we have replaced (pV + A, I )  
with an inertia coefficient CM. Eq. (4.59) is known as Morison's formula, which is 
widely used by ocean engineers to compute the wave-induced force on vertical 
circular cylinders such as pilings, platform legs, etc, as well as other structural 
members. Due to the presence of the free surface and to the effects of viscosity, the 
coefficient of the fluid acceleration is not in general equal to (pV + A, J; CM and CD 
are functions of the KC number, the Reynolds number, and the relative wavelength 
hlL. In addition, for a vertical cylinder, since the flow velocity varies with depth, 
Eq. (4.59) must actually be applied to an infinitesimal horizontal slice of the 
cylinder, and integrated over its length". 

It is instructive to examine the behavior of the horizontal wave-induced force 
on a horizontal slice of a vertical cylinder in the present context. The force on the 
slice is obviously a function of depth; it can be written in the form (Mei [ 19891) 

where JI' and Y1' are first derivatives of the Bessel functions. Using Eq. (4.23) and 
the dispersion relation, and assuming that the cylinder is located at 5 = 0, we can 
obtain 

1 coshk(h+<) 
o coshkh 

U, =Agk- cos a t  
(4.61) 

Strictly speaking, since both the Reynolds and KC numbers are functions of the velocity, the 
coefficients CM and CO also vary with distance below the free surface; this variation is usually ignored in 
practice. 
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which suggests writing Eq. (4.60) in the form 

dX -=AU+BU 
d r  

After a little algebra, we find that 

(4.62a) 

Comparison of Eq. (4.62a) with the Morison formula shows that the coefficient A, 
suitably normalized, can be identified as a 2-dimensional inertia coefficient: 

A -  4 Y,’(ka) 

pxa x(ka)2 H,(,)* ka c, =2-- I ( 1 ’  
(4.63) 

Here we see that the inertia coefficient is a function only of the quantity ka, which is 
equal to 71 times the ratio of the cylinder diameter to the wavelength. 

Equation (4.62a) does not have a drag term (proportional to u2), which isn’t 
surprising in an inviscid theory. However, there is a “damping” term, linearly 
proportional to the fluid velocity (strictly speaking, damping applies to a force in 
phase with the velocity of a moving body; hence the quotes), which accounts for the 
energy carried away by the scattered waves. We propose the following two- 
dimensional normalized damping coefficient: 

which is a function of relative water depth kh as well as ka. The behavior of the 
coefficients CM and CD with ka is shown on Figure 4.8 below. 

This “diffraction theory” has been experimentally confirmed in the range 0.2 < 
2aih < 0.65 (Charkrabarti and Tam [1975]), for small KC numbers. Outside of t h s  
range, viscous effects are important and may overwhelm these inviscid-flow effects. 

There is a large body of experimental data on the drag and inertia coefficients 
of circular cylinders as functions of the KC and Reynolds numbers and cylinder 
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roughness, in uniform oscillatory flow ( e g ,  Sarpkaya et.al. [1977]). Most of this 
data pertains to “plane oscillatory flow”, i.e., V = Vocoswt, and thus does not 
account for free surface effects (or the variation of V with <). However, such data is 
useful in cases where wave diffraction is negligible; the generally-accepted criterion 
for the applicability of the Morison formula using these coefficients is 2alh i 0.2. 

-1.0 I I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Cylinder diameter / wavelength 

Figure 4.8 2-dimensional inertia and damping coefficients for a vertical circular cylinder 

We will discuss various methods of approximating the wave-induced force on 
marine vehicles in the next chapter. 

3. Nonlinear Wave Theory 

What happens when the criteria for acceptability of linear wave theory are not met? 
In many cases of practical interest, nothing! In other words, many predictions based 
on h e a r  theory hold up remarkably well even when the wave slopes are far from 
being vanishusgly small. However, if the wave height is comparable to the water 
depth, nonlinear effects (i.e., the effects of the nonlinear terms in the free surface 
boundary conditions) must be considered. We will briefly outline some of the 
salient features of nonlinear wave theories below; for more details, the reader is 
referred to the many excellent texts on wave theory (e.g., Mei [1989]; Sumer and 
Freds0e [ 19971). 

3.1 Stokes Theory 

No analytical closed-form solution of the Lapalace equation for the velocity 
potential, 
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V2$ = 0, (4.65) 

subject to the boundary conditions given in Eqs. (4.4), ( 4 9 ,  and (4.1 I), exists. So 
we must resort to various approximate or numerical methods. Perhaps the earliest 
of these was developed by Stokes [1847], who assumed that the potential, surface 
elevation, and dynamic pressure could be expressed in the form of a series: 

$=E$(’) +E2$(*)  +E3$(3) +... 
f =&f(’) + & 2 f ( 2 )  + E 3 f ( 3 )  +... (4.66) 

p = Ep“) +E2p(2) +E3p(3) +... 

where E is a “small” parameter related to the wave slope kA; superscripts indicate 
the “order” of the various coefficients. The solution procedure involves substituting 
Eqs. (4.66) into the governing equation and boundary conditions, collecting terms of 
common order, and solving the resulting series of problems at each order. The first- 
order solution corresponds to the linear theory presented above, as you might 
expect. 

It can be shown that the second-order contribution to the potential, free surface 
profile, and dynamic pressure are given by (Madsen [ 19771): 

f(*) =- A 2 k  ‘Oshkh (3+2sinh2 kh)cos2(kc-at) 
4 sinh3 kh 

(4.68) 

p(2) =pg kA2 {[3cosh2k(htr)-l 
2 S l n h  2kh S m h 2  kh 

(4.69) 

where U, is a constant. The physical significance of the second and thud terms in 
the expression for the second order potential, Eq. (4.64), can be assessed by 
examination of the average volume flux in the direction of the wave propagation: 

(4.70) 
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In a channel of finite length (i.e., with some sort of barrier or beach at the end), 
there can be no net volume flux, qs = 0, so that there must be a “return current” in 
the direction opposite to that of the wave propagation: 

. -A2a- 1 coth kh 
2 h 

(4.71) 

On the other hand, in the absence of a barrier, there will be no return current (U, = 

0), so that according to Eq. (4.67) there must be an average volume flux (or “mass 
transport”) given by 

46 = A 2 a  coth kh (4.72) 

in the direction of wave propagation. The associated mean velocity is called the 
“Eulerian streaming velocity” because it was determined using the Eulerian 
description of the flow field which is implicit in the formulation above (i.e., we 
focus on the velocity field as a function of spatial location and time, rather than on 
the fate of individual fluid particles). 

To find the mass transport velocity of a particular fluid particle, we must adopt 
a Lagrangian description of the flow. The resulting mean Lagrangian velocity is 
greater than the Eulerian velocity by an amount which is known as the “Stokes 
Drift”. The mass transport velocity can be derived by integrating the particle 
velocities determined from the first- and second-order potentials given above. 
However, the Lagrangian mass transport velocity is strongly influenced by viscosity 
(see Mei [1989], Chapter 9, for example); thus the inviscid result should not be 
used. 

Eq. (4.68) shows that the second-order wave profile is a second harmonic which 
has a positive value at the crests and troughs of the first-order solution. Thus the 
wave profile to second order is no longer symmetrical; it has higher, sharper peaks 
and broader, flatter troughs than the sinusoidal first-order solution, as illustrated on 
Figure 4.9 below. 

5 
Figure 4.9 Comparison of theoretical wave profiles to first- and second-order 
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3.2 Limitations of Stokes Theoly 

The ratio of the second-order contribution to the wave profile to that of the first- 
order profile gives an indication of the “accuracy” of the linear theory, e.g., what 
we are “missing” by neglecting nonlinear effects: 

(4.73) 

If this ratio is sufficiently small, we may safely neglect second-order effects. In 
very deep and very shallow water, the ratio is 

In deep water, as we will see shortly, the waveheight-to-length ratio is limited by 
breaking; up to ths  point, Stokes first- or second-order theory is generally adequate. 
In shallow water, however, both the wave amplitude and the wave length must be 
small relative to the water depth (a severe restriction in shallow water). 

As discussed by Madsen [ 19771, the wave profile to second order contains a 
physically unrealistic secondary crest in the trough when the second-order wave 
amplitude is greater than Al4. Avoiding such a secondary crest can serve as a limit 
to the Stokes second-order theory: 

(4.75) 

For values of h2aih3 > 13, an alternate theory known as Cnoidal wave theory is 
required (Weigel [ 19641). 

The procedure outlined above can and has been applied to obtain wave profiles 
and dynamic pressures to any order; solutions up to 5” order are used in design 
wave computations (Conner and Sunder [1991]). In the remainder of this text, it 
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will be assumed that the linear theory provides an adequate representation of the 
waves. 

We have not discussed the effect of nonlinearity on the dispersion relation, Eq. 
(4.16). In fact, Eq. (4.16) is correct to second order. By retaining terms to thud 
order we can derive the third order dispersion relation: 

2 8 + c0sh4kh (4.76) 

showing that at third order and above, the wave frequency (and thus the phase 
velocity) is a function of the wave amplitude as well as its length and the water 
depth. 

3.3 Wave Breaking 

As shown on Figure 4.3, the amplitude of waves approaching a beach from the deep 
ocean eventually increases. The steepness of a wave obviously cannot grow 
arbitrarily large; at some point the wave will collapse or “break”. Prediction of 
wave breakmg is well outside of the range of applicability of the theories described 
above; the effects of viscosity as well as nonlinearities must be accounted for. For 
water of constant depth, the following semi-empirical breaking criterion has been 
developed (Miche [ 19441): 

”) = 0.14 tanh( h) 27th 

‘ B  B 
(4.77) 

where the subscript “B” indicates “breaking”. This is the wave “slope” (height to 
length ratio) at which the velocity of a fluid particle at the crest is just equal to the 
phase speed of the wave, accounting for nonlinear effects. 

The wavelength at breaking differs from that obtained in linear theory. We can 
easily show this for deep water: As h + 03, Eq. (4.77) gives 

(4.78) 

Inserting this in the deepwater version of Eq. (4.76) yields, after some algebra, 

hs = 1.2ho (4.79) 
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where ho is the deep water wavelength obtained from linear theory. 

Various empirical formulations have been developed for the shallow water 
breaking criterion on a sloped beach. Madsen [1977] developed the following 
expression, which combines some of these with the constant-depth result (Eq. 
(4.77)): 

f ) B  =0.14tanh (0.8+5s - [ (2Lh)B] 
(4.80) 

where s is the slope of the beach; the wavelength at breaking may be taken as 
approximately 1 .2hL where hL is the wavelength obtained using linear theory. 

4. Spectral Representation of Ocean Waves 

Most of our discussion in this chapter thus far has focused on two-dimensional 
waves which have a constant amplitude and frequency. Unfortunately, the ocean is 
not quite this simple. Ocean waves usually comprise a jumble of lengths, heights, 
and directions; they may not even appear to be sinusoidal, containing sharp peaks, 
whitecaps, etc. However, linear theory generally provides an adequate description 
of waves in the deep ocean. Eq. (4.74) states that linear theory is adequate in deep 
water if 

H 
- << 0.64 ; 
h 

but Eq. (4.78) tells us that 

H 
- < 0.14 
h 

if the waves are not breaking; in fact, HA is usually less than 0.1 for deep ocean 
waves (Conner and Sunder [1991]). This being the case, we are justified in 
attempting to model the seaway as a superposition of simple sinusoidal components, 
with various amplitudes, frequencies, and directions: 

f ( ( , q ,  t) = j I d A ( w ,  x, t)cos(kt cos x + kq  sin x -o t  + 6(o, x)) (4.81) 
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where k is related to o through the dispersion relation, and S is a phase angle. The 
double integral covers the “frequency-wave angle space”, 0 I o I 03; -n I x 5 n. 
Thus to predict the wave elevation at any location and time, we need to know the 
amplitude function dA(o,X,t) associated with the seaway. 

The mean square wave elevation can be obtained by squaring Eq. (4.81) and 
integrating with respect to time: 

where T is a “sufficiently large” time interval (i,e., at least as large as the longest 
period associated with the waves). We will now assume that the amplitude function 
does not vary over the time interval T (that is, the time interval is selected such that 
the amplitude function remains essentially constant). Then, if we change the order 
of integration, dA(w,x,t) can be taken outside of the time integral and we obtain an 
expression of the form: 

If T is sufficiently large, the time integral in Eq. (4.83) is zero unless o1 = 02; when 
the frequencies are equal the integral is T/2. Thus the mean square wave elevation 
becomes simply 

(4.84) 

Comparison with Eq. (4.43) shows that the integrand, multiplied by the quantity 
(pg), is the time-averaged energy density of the “differential” wave component with 
amplitude dA at frequency o and heading x. Thus the quantity %pg[dA(o,x)l2 can 
be regarded as the contribution of the component waves in a frequency band of 
width d o  and a heading band of width dx, centered at w and x respectively, to the 
total energy of the wave system (or to the “total” mean square wave elevation, 
omitting the factor pg). 
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In signal processing, the distribution of the mean square of a random process in 
the frequency domain is referred to as the mean square spectral density of the 
random process, or simply the spectrum of the process. Thus we will define the 
wave spectral density function 

(4.85) 
0 --K 

where the subscripts indicate the quantity described by the spectrum (in this case it 
is the wave elevation multiplied by itself). Thus 

(4.86) 

So, if we can somehow find the spectrum of the waves which is applicable for a 
given area and time period, we can use Eqs. (4.81) and (4.86) to find the wave 
elevation at any point and time which fall within those bounds, provided that the 
phases of the various wave components are known. Determination of the phases 
would require detailed examination of the entire development of the wave system 
from its inception. However, since we are generally interested in vessel 
performance in conditions which are typical in a given wave environment, as 
opposed to re-creating a specific time series, the phases are unimportant and can be 
assumed to be randomly distributed in the range 0 2 6  < 2n. Thus knowledge of the 
spectrum is all that is required in order to create a typical time history of the waves. 

4.1 Determination of Wave Spectra 

4.1.1 Wave spectra fiom measurements 

Wave spectra are most reliably determined from measurements of the waves at the 
location and time of interest. Such measurements usually only provide a time 
history of the wave elevation at a single point. In order for us to be able to 
generalize conclusions drawn from this data to the entire wave field, it is necessary 
to assume that the wave field is a stationary and homogeneous random process; that 
is, that the wave elevation is random (the random parameter being the phase angle, 
as discussed above) and that its statistics do not vary with time or location in the 
period and location of interest. Furthermore, we must assume that the statistics we 
compute from the single time history or realization of the wave “process” are 

‘The notation probably onginates from an alternative definition of the spectrum. It can be shown that the 
spectrum Sxu is equal to the inverse Fourier transform of the correlation function between X and Y, 
which is simply the expected value of the product XY in the time domain. 
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equivalent to those we would obtain from an “ensemble” of realizations (i.e., the 
wave process is ergudic). What all of this means is that we must assume that the 
measured wave time history can be regarded as being “typical” of the given wave 
environment. If this is so, we are justified in claiming that the quantities we 
compute from it apply to the entire wave field. 

The wave spectrum discussed above is a function of both wave frequency and 
direction and so is referred to as a “directional” wave spectrum. By integrating over 
the wave direction x we can obtain the “frequency spectrum” or “point spectrum”: 

(4.87) 

If the waves can be regarded as “long crested”, e g ,  two-dimensional plane waves, 
then Eq. (4.87) is a complete description of the wave environment. This is indeed 
the case for waves whch have been generated by a storm wluch is remote from the 
area of interest, for example. It is referred to as the “point spectrum” because it can 
be obtained Rom data measured at a single point, as we will see below. In fact it is 
very difficult to obtain the data necessary to fully quantify the directional wave 
spectrum, and theoretical models are lacking. Thus the seas are either assumed to 
be long-crested, or the directional spectrum is assumed to be of the simpler form 

Several empirical formulations for the spreading function G(a,x) have been 
proposed; the simplest of these are the so-called “cosine spreading functions” which 
are independent of frequency: 

(4.89) 

which are recommended by the International Ship and Offshore Structures 
Congress. 

There are at least three ways to obtain the wave frequency or point spectrum 
from a measured time series: via Fourier transfonns, autocorrelation functions, or 
analog filtering (Bendat and Piersol [1993]). We will discuss only the first option 
here; the others are described in the reference. 
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First let’s introduce the Fourier transform of a wave record of finite length T, 
regarded as a realization of an ergodic random process: 

T 

F(f ,T)= If(t)e-i2rrftdt 
0 

(4.90) 

where f is the frequency in Hz (use of this unit of frequency, rather than radiam per 
second, seems to be traditional in the field of signal processing). The wave 
spectrum is defined in terms of the “expected value” of the Fourier transform, which 
implies that we must take an average of the Fourier transform of several records 
(which can be obtained by dividing a single record into, say, N records each of 
length T)g. The estimated wave spectrum is then 

(4.91) 

where Fk denotes the Fourier transform of the kfi sub-record and NT is the total 
record lengthh. The estimate approaches the exact value of the spectral density as 
T -W.  

4.1.2 Semi-empirical Formulations of Wave Spectra 

The results of the previous section are useful if we happen to have a time hstory of 
the wave elevation at the location and time of interest. However, t h s  is not often 
the case. Fortunately, various semi-empirical formulations are available which 
apparently constitute an adequate description of typical spectra. 

Waves having periods which are of the order of 10 sec are of primary interest to 
designers of marine vehicles, because as we will see in the next chapter, their 
natural periods of oscillation are typically in this range. These waves are generated 
by a combination of the pressure in a turbulent wind field, and the direct shear stress 
due to the wind on the water surface. Thus the spectrum of the wind-generated 
waves is expected to be a function of the wind velocity and duration. If the duration 
of the wind is long enough, an equilibrium will be reached between the energy 
being added by the wind and dissipation due to breaking and other effects; at this 
point the wave field is called “fully developed”. 

While the resolution of the computed spectrum is maximized by taking a transform of the entire record, 
the random error associated with the approximation to the spectrum, Eq. (4.91), is proportional to l/dN. 

We refer here to the one-sided spectral density function, which is defined only for non-negative 
frequencies. The definition of the two-sided spectrum, used in the signal processing literature, does not 
include the factor of 2, but it has double the range, i.e. -00 <f< m. 
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Phillips [1958] showed that for hgh  frequencies, where wave breaking is the 
primary mechanism for energy mechanism, the asymptotic form of the fully 
developed wave spectrum is 

2 

Sf/- -"; 0 o+co (4.92) 

Based on a formulation developed by Kidaigorodshi [ 19621 and extensive 
measurements in the North Atlantic Ocean using shipborne wave recorders, Pierson 
and Moskowitz [ 19641 derived the following semi-empirical expression: 

(4.93) 

where U19.5 is the wind velocity at a height of 19.5m above the sea surface (the 
height of the anemometers used on the ships which provided the data). It can easily 
be verified that Eq, (4.93), known as the Pierson-Moskowitz spectrum, is consistent 
with Eq. (4.92) at h g h  frequencies. The spectra for wind speeds of 20 to 50 knots 
are shown on Figure 4.10. Notice that the peak or modal frequency decreases with 
increasing wind speed and that the magnitude or energy increases substantially with 
wind speed. 

Eq. (4.85) tells us that the area under the wave spectrum is equal to the mean 
square wave elevation. Thus by integrating Eq. (4.93) we can obtain a relationshp 
between the wind speed and the mean square wave elevation: 

- m  

f = I S n  (CO)&II = 0.00274- U,9S4 (4.94) 
0 g 2  

Eq. (4.94) could be used to eliminate the wind velocity in Eq. (4.93) and so express 
the spectrum as a function only of the mean square wave elevation. However, it is 
more common to express the spectrum in terms of a statistic of the wave height as 
opposed to the wave elevation. Thus we must digress briefly to explore the 
relationship among the mean square wave elevation and the statistics of the wave 
heights. 
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Figure 4.10 Pierson-Moskowitz spectra for various wind speeds 

4.1.3 Statistics of Wave Heights 

Designers of marine craft and ocean structures are generally more interested in 
statistics of the wave amplitudes or (more commonly) heights than in statistics of 
the entire wave train. To explore the statistics of the wave peaks, it is necessary to 
know the underlying probability distribution of the wave elevation. Identification of 
the probability distribution may sound ldce a formidable task. Fortunately, however, 
the “central limit theorem” applies. This theorem states that under commonly met 
conditions, the distribution of a random variable (the wave elevation) which is the 
sum of other random variables (the elevation of each wave component) will 
approach a normal (Gaussian) distribution as the number of random components 
approaches infinity, regardless of the distribution of each component. Thus the 
wave elevation is assumed to possess a Gaussian probability distribution. 

Before proceeding, it is convenient to define the moments of the spectrum: 

(4.95) 
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The “zeroth moment” mo is equal to the area under the spectrum, or the mean square 
wave elevation. The moments m2 and Q correspond to the mean square values of 
velocity and acceleration of the surface. There are two ways to define an average or 
characteristic wave period associated with a given spectrum, and both can be 
expressed in terms of the moments: 

(4.96a) “0 Average or “visual” period: ?: = 27t - 
m1 

(this corresponds to the “centroid” of the spectrum); 

Average time between “zero crossings”: T, = 27t - k 
Average time between successive maxima: T, = 27t - iz 

The last two of these periods are illustrated on Figure 4.1 1 below. 

Figure 4.1 1 Average wave periods 

(4.96b) 

(4 .96~)  

Figure 4.11 was generated using a superposition of three sinusoids with vastly 
different periods and it is apparent that T, < T,. If we were to have chosen more 
components, or more widely separated component periods, it would turn out that T, 
<< T,. In the opposite limit, if all components had the same frequency, it is obvious 
that T, = T, = period of the component waves. Thus the quantity 
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(4.97) 

(the bandwidth of the spectrum) is a measure of the “frequency dispersion” of the 
wave field: For wide-band spectra (“white noise”), E+ 1, whereas for narrow band 
spectra, dominated by a salient peak, &-PO. 

The distribution of peaks of the Gaussian random wave process is given by 
(Price and Bishop [ 19741) 

where the error function is defined by 

(4.99) 

note that erf(0) = 0 and erf(w) = 1. For narrow-band spectra, in the limit E+O, Eq. 
(4.98) reduces to 

, E + O  x -x2/2m, f(x) = - e 
m0 

(4.100) 

which is known as the Rayleigh probability distribution. For wide-band spectra, Eq. 
(4.98) reduces to a normal distribution: 

, E + l  (4.101) f(x)=--- 1 -x2/2rn0 

which is symmetrical about x = 0; t h s  means that negative maxima are as likely as 
positive m x m a  and the mean value (average value of the relative maxima) is zero. 

We are now in a position to derive statistics of the wave maxima. A statistic 
that is commonly used by designers is the “average of the l/n* highest peaks”. This 
can be determined by finding the centroid of the upper “tail” of the distribution 
which has an area of l/n (see Figure 4.12; recall that the total area under the 
probability distribution is 1): 
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(4.102) 

X 
11” 

X 

Figure 4.12 Determination of the average of the l/n highest peaks 

In order to carry out the integration, we need to find the lower limit; this is 
accomplished by requiring that the area to the right of xlln be equal to l/n: 

m 

I 
n 

j f (x ) lx  =- 

x I/” 

(4.103) 

Comparison of measured wave statistics and visual estimates of sea severity 
indicate that the “average wave height” (double amplitude) estimated by an 
experienced observer actually corresponds more closely to the average of the 1/3- 
highest waves, i.e., n = 3 in the formulas above (Price and Bishop [1974]). The 
average of the 1/3-highest observations is referred to as the “significant value”; the 
significant waveheight is widely used to characterize a wave field or sea state. 

Available observations and measurements suggest that actual ocean wave 
spectra are narrow-banded (see Figure 4.10), and that the Rayleigh distribution is a 
good representation (Price and Bishop [1974]) except possibly in severe seas in 
water of finite depth where the distribution of the wave elevation may become non- 
Gaussian (Ochi [1993]). For the Rayleigh distribution, the integral in Eq. (4.103) 
can be evaluated analytically: 
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x I/” = Jm (4.1 04) 

and by inserting this as the lower limit in the integral in Eq. (4.102) we obtain 
(again for the Rayleigh distribution): 

(4.105) 

In particular, for n = 3 we obtain 

x,i3 = 2.0Jm, (4.106) 

The average wave amplitude is given by setting n = 1 : 

- x = 1 .25,/m, (4.107) 

As indicated above, it is more common in practice to speak of wave heights 
than amplitudes. In the narrowband limit for which the Rayleigh distribution is 
valid, the wave height is just twice the amplitude or peak value; so Eqs. (4.104) - 
(4.107) above can be stated in terms of wave height by simply multiplying by two: 

- 
H = 2 . 5 6 ;  & = 4 . 0 6  (4.108) 

However it must be remembered that if E > 0 the height (peak-to-trough value) is 
not necessarily equal to twice the peak value; the heights of the small “ripples” on 
Figure 4.11, for example, are generally much less than twice the peak value. In 
addition, for spectra which are not narrow-banded, Eq, (4.105) overestimates the 
average of the lln highest peaks as shown in the table below: 

E 

0 2.00 
0.50 1.93 
0.75 1.78 
1 .oo 1 .oo 

It is convenient to define the significant waveheight so that it is independent of 
the bandwidth of the spectrum; many authors (tacitly or explicitly) define the 
significant waveheight as 
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Hs =4.0& (4.109) 

thus also avoiding the question of whether the height is actually equal to twice the 
peak. We will henceforth adopt Eq. (4.109) as the definition of significant 
waveheight, with the caveat that it is not necessarily equal to the average of the 1/3- 
highest wave heights. 

The expected maximum wave amplitude in N cycles can also be calculated 
using the distribution function, Eq. (4.98); see Gran 119921 for example. 
Unfortunately a solution is not available in closed-form; however the following 
approximation 

(4.110) 

is accurate for E 5 0.9 and N > 100 (Och [ 19731). 

Sea states have traditionally been rated on a numerical scale based the visual 
(significant) waveheight, similar to the Beaufort Scale for wind speed. One such 
scale that is commonly used is the World Meteorological Organization Sea State 
Code, summarized in Table 4.1 below. Also included are the corresponding ranges 
and most probable values of the associated modal periods, defined as the period of 
the peak of the spectrum, which were determined by analysis of data from a wave 
hindcast model applied to the North Atlantic (Bales [1983]). 

(4.111) 

Solving for U19.5 and substituting in Eq. (4.93) yields the Pierson-Mosowitz 
spectrum in terms of the significant waveheight: 

exp -0.032- 
0.008 lg 

sg  (4 = as [ H:a4] 
(4.112) 

The modal frequency is given by 



Table 4.1 WMO Sea State Code 
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I---- 

oo = 0.4/: (4.1 13) 

as can be easily verified by setting the derivative of Eq. (4.112) equal to zero and 
solving for the frequency. 

Recall that Eq. (4.112) is intended to represent a fully arisen sea. A more 
general formulation is defined by two parameters, significant waveheight and modal 
frequency: 

(4.114) 

which is referred to as the Bretschneider or two-parameter spectrum. The 
Bretschneider spectrum reduces to the Pierson-Moskowitz formula upon 
substitution of Eq. (4.113) for the modal period. T h s  is probably the most widely 
used spectral form in use today. The modal frequency should be selected based on 
available statistical data on the frequency of occurrence of observed wave periods at 
a given significant waveheight in the area of interest. Since such data is usually 
expressed in t e r n  of average periods, the following relationship for the 
Bretschneider spectrum may be useful: 

2n 
1.2957 T oo = (4.115) 

The moments of the Bretschneider spectrum can be computed analytically up to 
n = 3; results are tabulated below: 

TABLE 4.2 Moments of Bretschneider spectrum 
Moment Value 

1 

ml m o a 0 ( ~ ) ' l - ( ~ )  = 1.296m00, 

1 

m2 mOmo2(~) 'I(f)= 1.982m000 2 

3 

m3 m0003(')".($) = 4.286m000 3 
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Moments of order 4 and above do not exist (i.e., Eq. (4.95) yields an infinite result’). 
This means that the mean square surface acceleration is technically infintely large; 
furthermore, the bandwidth as defined by Eq. (4.97) is I! However, these spectra 
are obviously not wide-band and an alternative quantification of the bandwidth is 
appropriate in this case (see, e.g., Gran [1992]). 

In order to represent a broader range of spectral shapes, particularly those 
associated with storms including the presence of swell, Ochi and Hubble [1976] 
developed the six-parameter or Och-Hubble spectrum. Swell refers to waves 
produced by a storm which is remote from the location of interest; swell waves are 
less “confused” (more long-crested) and generally of longer period than the sea 
which is induced by the continuous action of the wind in the area of interest. The 
six-parameter spectrum is actually a superposition of two spectra of identical 
mathematical form, characterized by significant waveheight, modal frequency, and 
a “shape parameter”, but whch may have distinct values for these quantities, 
representing the sea and swell. The six-parameter formulation is: 

The value of the “shape parameter” h controls the sharpness of the peak of each 
component; the formulation is equivalent to the Bretschneider spectrum when h = 1. 

To provide guidance for selection of the six parameters, Ochi [ 19781 carried out 
a statistical analysis of the parameters of 800 wave spectra obtained from 
measurements in the North Atlantic ocean. From this analysis he obtained the 
modal value and upper- and lower- values for 95% confidence for each parameter 
(he actually only analyzed five parameters, including the ratio of significant heights 
rather than HS1 and Hs2). He thus obtained a total of 15 spectra corresponding to the 
three values of each of the five parameters (for the other parameters, the mean 
values within the respective 95% confidence bands were used in each case). It was 
found, however, that the five spectra associated with the modal values of the 
parameters were sufficiently similar so as to be adequately represented by the single 
spectrum associated with the modal value of Hsl/HsZ; this is called the “most 
probable spectrum” (for a given sea severity). Thus the seaway can be described by 
a “family” of 11 spectra. Finally, Ochi expressed the values of the 66 parameters as 
functions only of the significant waveheight (thus dramatically reducing the number 
of parameters!). In practice, each family member is assigned a “weighting factor” 

’ For whatever its worth, it can be shown that for the Bretschnider spectrum, 

for C2>5o0 where 
= o:H?[0.72 lOg(WOo)- 0.701 

is the upper limit of integration or “cutoff frequency”. 
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representative of its likelihood: 
weighting factor of 0.50, and all other spectra have a weighting factor of 0.05. 

The most probable spectrum is assigned a 

The parameters H,, and HS2 are expressed as functions of the total significant 
waveheight. The other parameters are all expressed as exponential functions of the 
significant waveheight as follows: 

(4.117) 

The values of Hs1,2 / H,, a and b are tabulated in Table 4.3. The family is plotted on 
Figure 4.13 for a significant waveheight of 1.5m (5 ft). We should keep in mind 
that these values correspond to the North Atlantic ocean; however, “it was found 
that the bounds [of marine craft responses computed using these values] cover the 
variation of responses computed using the measured spectra in various locations in 
the world ... thus, it may be safely concluded that the upper-bound of the response 
evaluated [using these values] can be used for design consideration of marine 
systems [worldwide]” (Ochi [ 19931). 

Spectrum HJH, HS2/H, a b a b a b a  b 
ML 0.84 0.54 0.70 0.046 1.15 0.039 3.00 0 1.54 0.062 

1 0.95 0.31 0.70 
2 0.65 0.76 0.61 
3 0.84 0.54 0.93 
4 0.84 0.54 0.41 
5 0.90 0.44 0.81 
6 0.77 0.64 0.54 
7 0.73 0.68 0.70 
8 0.92 0.39 0.70 
9 0.84 0.54 0.74 
10 0.84 0.54 0.62 

0.046 1.50 0.046 
0.039 0.94 0.036 
0.056 1.50 0.046 
0.016 0.88 0.026 
0.052 1.60 0.033 
0.039 0.61 0 
0.046 0.99 0.039 
0.046 1.37 0.039 
0.052 1.30 0.039 
0.039 1.03 0.030 

1.35 
4.95 
3.00 
2.55 
1.80 
4.50 
6.40 
0.70 
2.65 
2.60 
I___ 

0 2.48 0.102 
0 2.48 0.102 
0 2.77 0.112 
0 1.82 0.089 
0 2.95 0.105 
0 1.95 0.082 
0 1.78 0.069 
0 1.78 0.069 
0 3.90 0.085 
0 0.53 0.069 

Early observations of developing waves suggested that wave heights do not 
grow monotonically in time, generally exhibiting an “overshoot” relative to the final 
equilibrium values. If the spatial extent or fetch of the body of water exposed to the 
wind is limited, as in the case of a lake or gulf, or for a storm of limited spatial 
extent, the wave spectrum will never become fully-developed. The observations 
suggest that the spectrum will have a higher peak than the corresponding Pierson- 
Moskowitz spectrum for given wind speed. This motivated the undertaking of a 
major international program called the Joint North Sea Wave Observation Project 
(JONSWAP), in which measurements were made in the North Sea at 13 stations up 
to 160 km from the coast under various wave conditions. After analyzing this data, 
Hasselmann et al. [ 19731 proposed the following spectral form: 

Table 4.3  Parameters of Ochi/Hubble spectrum family
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o, radkec 

Figure 4.13 Ochi-Hubble spectrum family for a significant waveheight of 1.5m 

S f ( W ) = i e x p  ag2 [ -- :(:)’]Y‘; - r=exp[- (0 202m02z] - 0 0 )  (4.118) 
w 

which is a “peak-enhanced‘’ Pierson-Moskowitz spectrum; the factors y and (3 

control the height and width of the peak, respectively. The constants determined by 
analysis of the North Sea data are: 

0.22 

a =0.076[-) 

y = 3.30 

0.07 w 5 00 

0.09 o > 00 

(4.119) 

where F is the fetch (in the experiment this was the distance from the lee shore) and 
Ulo is the mean wind velocity measured at a height of 10m above the surface. 
Figure 4.14 shows the evolution with fetch of a JONSWAP spectrum for a wind 
speed of lOm/s, and the corresponding Pierson-Moskowitz spectrum from Eq. 



4. Water Waves I85 

(4.93); the wind velocity at a height z (in meters) can be related to that at 10m 
through the velocity profile (Ochi [ 19931)’: 

(4.120) 

where CDlo is a “surface drag coefficient evaluated from wind measurements at a 
height of 10m”. Using Eq. (4.120) we obtain 

which was used in Eq. (4.93) to compute the P-M spectrum shown on Figure 4.14. 
Note that the JONSWAP modal frequency decreases with increasing fetch, and that 
the peak of the spectrum increases conspicuously. Eventually a point will be 
reached where the sea is “saturated” (no further local energy storage is possible) and 
the area of the spectrum will stop growing. Energy is redistributed within the 
spectrum due to nonlinear wave-wave interactions, and eventually the equilibrium 
P-M spectrum is approached. 

, , JONSWAP, 100 km fetch 

0 8  I 
0 al 

N 

E 
ai 0.6 
m I 
.- 

5 04 - 
0 

w 
0.2 

0 0  

I ‘  
- Pierson- I 1 

0.5 1 .o 1.5 2.0 2.5 

w. radlsec 

Figure 4.14 Evolution of JONSWAP spectrum with fetch for U ~ O  = lords 

’ Another commonly used formula is the “power-law profile” 

where n is usually taken to be 7; however, “for naval and ocean engineering, [Eq. (4.120)j appears to be 
[more] suitable [having been obtained from] a series of studies of wind characteristics over a sea 
surface ...( Ochi [1993j). 
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It is often more convenient to work with the spectrum expressed as a function 
only of significant waveheight and a characteristic wave period (in the design of 
marine vehicles these are often specified, whereas the wind and fetch may not be). 
Unfortunately there are no analytic expressions for the moments of the JONSWAP 
spectrum, which are needed to relate the significant waveheight and the various 
periods to the JONSWAP parameters. However, we can obtain approximate values 
in terms of the ratio of the area of the spectrum to that of the “underlying P-M 
spectrum” (it,., JONSWAP with y = 1). This ratio can be approximated by 

z (y - 1)/6 (4.121) 

(Gran [1992]). In addition, it has been found empirically (Gran [1992]) that the 
peak enhancement factory is related to H, and oo: 

y z e x p  5.75-- - [ :$-I 
The parameter a may be approximated by 

(4.122) 

(4.123) 

Thus, when y = 1, q = 0 and the JONSWAP spectrum , Eqs. (4.118) and (4.123), 
reduces to the Bretschneider form (Eq. (4.114)). 

An additional relationship that may be useful is that between the average zero 
crossing period and the modal period: 

10.89+y 
T o = % /  5 + y  (4.124) 

4.2 Representation in the Time Domain 

Spectral analysis is an extremely convenient method to obtain statistics of the 
seaway, and, as we will see in the next chapter, statistics of vessel response in 
waves. However, for simulations we need a description of the wave field in the 
time domain. Given a measured or assumed spectral form, a time series can be 
generated using Eqs. (4.81) and (4.86), where one usually approximates the double 
integral. by a summation over a finite number of wave frequencies and directions. 
Thus at a particular location, 
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where as before the phase angles are randomly chosen from a uniform distribution 
in the range 0 6 < 2n. One should avoid selection of equally-spaced frequencies, 
since the resulting time series will then repeat with a period of n/Am. The required 
number of components depends to some degree on the application; a 
“qualitative.. .representation of the behavior [of a ship in waves] it is often sufficient 
to consider 20-30.. .wave components, irregularly chosen w i t h  the frequency 
region where the spectrum and transfer functions have significant values” (Gran 
[ 19921). For training simulators and other applications in which hgh-fidelity 
response is not required, as few as 10 wave components is sufficient to provide a 
qualitative indication of the response. 

5. Long-Term Wave Statistics 

The previous section dealt with wave systems whose statistical properties are 
essentially constant. This is true only for time periods that are relatively short 
compared to the lifetime of a typical vessel or offshore structure. For ships, 
specifications are often written in terms of what is expected in a given sea state, 
regardless of the probability of occurrence of that sea state. However, to determine, 
say, the probability of capsize in the design life of the ship, knowledge of the long- 
term distribution of wave heights is required. Similarly, for offshore structures, 
design wave conditions are often specified in the form of a “return period” or 
“recurrence interval”; a 100-year return period is common. This means that the 
structure must withstand the effects of the wave with a height that is expected to be 
exceeded once in 100 years. Determination of t h s  design wave height also requires 
knowledge of the long-term distribution of wave heights. 

5. I Maximum Waveheight from Occurrence Data 

Long-term wave statistics are often presented in the form of occurrence tables. 
An example is given in Table 4.4 below. This table pertains to the northern North 
Atlantic Ocean, based on the 10-year hmdcast data presented by Bales et. a1 [1981]. 

This data can be used to predict long-term wave statistics as follows. Returning 
to the short term for a moment, recall that the probability density fimction of wave 
peaks for narrow-band spectra is given by the Rayleigh distribution, Eq. (4.100). 
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The cumulative distribution F(H), giving the probability that the wave height is less 
than or equal to a particular value H, is determined by integration: 

(4.126) 

Now suppose that a seaway consists of N waves, and that we have managed to 
measure all of the wave heights. Now, what is the probability that the heights of all 
of these waves are less than or equal to some other value H? It is given by 

P(H,x I H) = P(H1 I H)P(H2 I H)P(H3 I H). . . .P(HN I H), 

where H,, is the largest measured value. But in the short term, each of these 
factors is given by the cumulative probability density function: 

P(Hi I H) = F(H) 

TABLE 4.4 Percentage occurrence of significant wave height and modal period. 

Hs. rn 
16-18 
14 ~ 16 0.1 + 0.1 
12 - 14 0.1 0.3 + 0.4 
10 - 12 0.1 0.5 0.3 + 0.9 
9 - 1 0  + 0.1 0.3 0.6 0.2 + 1.2 
8 - 9  + 0.3 1.2 0.5 0.2 2.2 
7 - 8  0.3 1.0 1.3 0.3 0.2 + 3.1 
6 - 7  + 0.1 1.8 1.6 1.4 0.4 0.2 + 5.4 
5 - 6  + 0.7 4.0 1.4 1.1 0.6 0.2 + 8.0 
4 - 5  + 0.5 3.7 4.1 1.2 0.8 0.5 0.1 + 10.9 
3 - 4  + 0.9 5.1 5.1 4.0 1.3 0.8 0.5 0.1 17.8 
2 - 3  + 1.9 6.2 6.0 3.5 2.7 1.2 0.7 0.5 + 23.0 
1 - 2  0.1 2.3 4.8 4.0 2.7 2.0 1.6 0.7 0.7 0.3 + 19.5 
0 -  1 0.1 0.2 1.9 1.5 1.2 1.2 0.5 0.4 0.2 0.2 0.1 7.5 

TOTAL 0.1 0.3 4.2 8.3 12.3 15.5 15.7 18.9 9.0 8.6 4.9 2.0 0.1 + 100.0 

3.2 4.9 6.3 7.5 8.8 9.7 10.9 12.3 13.9 14.9 16.4 17.8 20.0 22.7 25.6 TOTAL 

Based on 10-year hindcast data (Bales [ 198 11). 

Modal wave period, sec 

NOTE: + indicates value less than 0.05% 

Thus we have 

P(H,, IH)=[F(H)~  = 1-exp -2- [ [ :x (4.127) 

for a single sea state, whch is the cumulative distribution function for the largest 
wave in N observations. Differentiation of this function with respect to H gives the 
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associated PDF, the maximum of which corresponds to the most likely extreme 
value given (approximately) by Eq. (4.1 10). The cumulative probability of H,, in 
M sea states, then, is just 

P(H,,, I H ) =  [ 1-exp [ - 2 -  $ ]IN’ [I - - 2 5]IN* ...I - exp[- 2 5 ] I N M  

(4.128) 

where NM is the number of cycles in each sea state, which can be computed from 
the tabulated data and the total duration D (e.g., the design life of the structure): 

D.pi/100 
N i  = - 

Ti 
(4.129) 

where pi is the percentage occurrence from Table 4.4, and Ti is the associated 
average wave period, which can be computed from the tabulated modal period using 
the appropriate relationship (e.g., Eq. (4.115) for Bretschneider spectra). 

5.2 Maximum Significant Waveheight from Extreme Value Distributions 

Observed maximum significant waveheight data are often fit to an “extreme 
value distribution”k. A fundamental result in Extreme Value Theory, known as the 
“Fisher-Tippett theorem”, states that for a large number of observations, the limiting 
distribution of maxima of “independent identically-distributed random variables 
(suitably normalized)” approaches the generalized extreme value distribution, if the 
cumulative distribution converges. This theorem holds regardless of the specific 
form of the distribution of the random variables. The generalized extreme value 
distribution is 

where p and cp are “location” and “scale” parameters used to normalize x. The 
value of 5 depends on the behavior of the “tail” of the underlying distribution F(x): 

’ The same techniques could also be applied to observed maximum wave heights; however data on 
maximum heights are not as readily available (one reason being that ships usually avoid such conditions). 
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Type I: ‘‘exponential tail”, 1 - F(x) - e-g(x). . 6 = 0 Gumbei distribution 
Type 11: “long tail”, 1 - F(x) - x-”? 5 > 0 Frechet distribution 
Type 111: “short tail”, finite endpoint 5 < 0 Weibull distribution 

The Type 1 distribution is applicable to the case of the largest of N values as N gets 
large, with the underlying distribution having the limiting behavior shown above. 
The Type I1 distribution is applicable when the underlying distribution has a lower 
limit of zero but is unlimited “to the right”. For Type 111, the underlying 
distribution has a finite endpoint at 

x = x 0  =P--  5 (4.131) 
cp 

and behaves as follows as x+x, (Benjamin and Cornell [1970]): 

F(x) - ~ - c ( Q  - x)-”‘, x 5x0 

5.2.1 Weibull distribution 

(4.132) 

There are also Type I and Type I11 distributions applicable to the minimum of N 
For example, the Type I11 (Weibull) extreme value values as N gets large. 

distribution for the smallest of N values is: 

(4.133) 

where now the value x, given by Eq. (4.131) is to be regarded as the lower limit of 
the underlying distribution. Using Eq. (4.131) to eliminate the fnst 5 in Eq. (4.133), 
and substituting 

1 k E - - ;  k > O  
5 

in the exponent, we obtain the following form of the Weibull distribution of 
smallest values: 
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(4.134) 

Why are we talking about minimum values? Good question. It happens that 
Eq. (4.134) is widely used to fit observed wave height data (without theoretical 
justification). When applied to significant waveheight, for example, Eq. (4:3 14) is 
usually written as 

P(H, <H)=l-exp[-( H-Ho j”: 
H, -Ho 

(4.134a) 
L J 

where the parameters Ho, H, and k are determined from the data. Eq. (4.134a) gives 
the probability that the significant waveheight is less than or equal to a given value 
H. In practice the probability is set equal to some “target” value, and Eq. (4.134a) is 
used to calculate the corresponding significant waveheight. 

Before we can do this, we need to find the three parameters. There are several 
available methods, the simplest of which is probably the least-squares method. To 
apply the method, we first write Eq. (4.134a) in terms of the empirical cumulative 
distribution function of the data, 

Number of datapoints 2 H 
Total number of datapoints 

(4.135) Fe (H) = 

and take the log of both sides of the equation twice to obtain 

In[- ln(1- Fe (H))] = k[ln(H -Ho)-  In(H, - H,)] (4.136) 

The minimum value Ho is sometimes assumed to equal zero so that Eq. (4.136) can 
be simplified to the so-called “two-parameter’’ form: 

h[-h(l-F,(H))]= k[ln(H)-ln(Hc)] (4.136a) 

So by plotting In[-ln(1 - Fe(H))] vs. In(H), and fitting a straight line to the results, 
we can obtain k and H,. We could apply the same procedure to Eq. (4.136) by using 
a series of assumed values of Ho, and selecting the value that minimizes the error of 
the fit. 
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The sharp-eyed reader will have noticed a potential problem in applying Eq. 
(4.136a) and (4.135) to the largest observed value, i.e. when F,(H) = 1, the log of 
(1 - F,(H)) does not exist. In fact there are other problems with Eq. (4.135), 
particularly for small sample sizes. For example, one would expect F(H) = 0.5 for 
the median of a set of observations; however if N = 5 ,  say, Eq. (4.135) indicates 
F,(H) = 315 = 0.6 for the median value. These inconsistencies can be overcome by 
accounting for the fact that the measured quantities, and thus the empirical 
distribution, are themselves random quantities. Several methods are available; they 
are usually referred to as “plotting position formulas” because they determine what 
value of F,(H) to use when constructing the log - log plot discussed above in 
conjunction with Eq. (4.136a) (in the olden days these analyses were done 
graphically using special plotting paper). The two most popular plotting formulas 
are the Weibull formula, 

i F. =I-- 
’ N + l  

and the Benard or “median ranks” formula, 

i - 0.3 
’ N+0.4 

F. = 1 -- 

(4.1 37) 

(4.138) 

which are based on having the mean and median of the random variable F coincide 
with F = 0.5, respectively. In these formulas, which are independent of the 
underlyin frequency distribution, Fi denotes the cumulative distribution associated 
with the i point, when the points are in ranked order (i = 1 is the smallest, i = N is 
the largest). Other formulas have been derived based on various distributions of H; 
see (Liu and Frigaard [2001]), for example; however these are not widely used. 

L 

An alternative to the least-squares technique is the so-called “method of 
moments”, in which we attempt to match the moments of the empirical distribution 
to the theoretical values of the extreme value distribution. For the Weibull 
distribution the following relationships exist among the parameters H,, Ho and k, 
and the mean and standard deviation of H: 
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(4.139) 

where r is the Gamma function and mH and oH are the mean and standard deviation 
of the variable H. Notice that Eqs. (4.139) can only be used to determine only two 
of the three parameters. However for the two-parameter form we have Ho = 0 so the 
first of Eqs. (4.139) can be solved for k in terms of mH/oH. 

5.2.2 Gumbel distribution 

The other commonly used formulation for fitting wave height data is the Gumbel 
distribution. In this case, taking the log of both sides of Eq. (4.130, (=O) twice we 
obtain the plotting/fitting formula 

H-P In[- ln(F, (H))] = - - 
cp 

(4.140) 

or 

H = -cp In[- ln(F, (H))]+ p (4.140a) 

where one of the plotting position formulas would be used in the computation of 
F,(H). The slope and intercept of the best-fit line on a plot of H vs. -In[-ln(F,(H))] 
thus yield the parameters cp and p. 

The method of moments yields a simple relationship between the parameters p 
and UI and the mean and standard deviation of H for the Gumbel distribution: 

m H  =p+Y(P (4.1 4 1 a) 

(4.14 1 b) E(P O H  =- 
& 
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Year MaxHs 
1977 7 
1978 8 
1979 7.2 
1980 10 
1981 8.4 
1982 7.6 
1983 8.6 
1984 8.3 
1985 8.9 

where y is Euler's constant, y = 0.577. Note that since the Gumbel distribution has 
only two parameters, higher moments cannot be matched to the data. 

Year MaxHs Year MaxHs 
1986 10.1 1995 8.9 
1987 9.1 1996 10.98 
1988 7.1 1997 9.36 
1989 8.3 1998 6.88 
1990 8.1 1999 7.69 
1991 7.1 2000 9.55 
1992 9.9 2001 8.11 
1993 13.5 
1994 11.6 

5.2.3 Example 

To illustrate the use of the long-term distributions, we will apply them to find the 
100-year maximum significant waveheight at a particular location using buoy data. 
Historical data from the buoys owned and maintained by the U.S. NOAA National 
Data Buoy Center (NDBC) can be found online at http:\\www.ndbc.noaa.gov. 
Looking at Station 44004, for example, which is located 200 miles east of Cape 
May, New Jersey, we find that historical data are available back to 1977. The data 
is tabulated by year; each file contains hourly measurements of significant 
waveheight as well as several other meteorological quantities. Following is a table 
of the maximum significant waveheight measured at t h s  station in each year from 
1977 - 2001. 

To apply the least-squares methods described above, we must first compute the 
empirical cumulative distribution and plotting positions. Thus the values in Table 
4.5 must be sorted so that Eq. (4.137) or (4.138) can be applied; see Table 4.6. 
Next, we must compute the log of Fi or (1 - Fi) twice, according to Eqs. (4.140) or 
(4.136) for the Gumbel and Weibull distributions, respectively. Then we plot H vs. 
-ln[-ln(Fi)] or In[-ln(1 - Fi)] vs. ln(H - H,) for Gumbel or Weibull, and fit a straight 
line to the results; Ho is an assumed value whch can be set to zero initially. Ths 
procedure yields the parameters in Table 4.7. 

To apply the method of moments for the Gumbel distribution, we just need to 
compute the mean and standard deviation of the waveheight data and apply Eqs. 
(4.141). 

TABLE 4.5 annual maximum Significant Waveheight
at NDBC Buoy Statation 4404
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TABLE 4.6 Values for plotting Extreme Value distributions 

Rank, i H Fi 
Eq. (4.137) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

13.5 0.962 
11.6 0.923 
10.98 0.885 
10.1 0.846 
10 0.808 
9.9 0.769 

9.55 0.731 
9.36 0.692 
9.1 0.654 
8.9 0.615 
8.9 0.577 
8.6 0.538 
8.4 0.500 
8.3 0.462 
8.3 0.423 

8.11 0.385 
8.1 0.346 
8 0.308 

7.69 0.269 
7.6 0.231 
7.2 0.192 
7.1 0.154 
7.1 0.115 
7 0.077 

6.88 0.038 

W-WJ) 

3.239 
2.525 
2.099 
1.789 
1.544 
1.338 
1.159 
1 .ooo 
0.856 
0.723 
0.598 
0.480 
0.367 
0.257 
0.151 
0.046 
-0.059 
-0.164 
-0.272 
-0.383 
-0.500 
-0.627 
-0.770 
-0.942 
-1.181 

In(-In( 1 -  FJ) 

1.181 
0.942 
0.770 
0.627 
0.500 
0.383 
0.272 
0.164 
0.059 
-0.046 
-0.151 
-0.257 
-0.367 
-0.480 
-0.598 
-0.723 
-0.856 
-1,000 
-1.159 
-1.338 
-1.544 
-1.789 
-2.099 
-2.525 
-3.239 

Table 4.7a Results of Weibull fits to data in Table 4.6 
Distribution Weibull (Eq. 5.136a) Weibull (Eq. 5.136) 

HO 0, assumed 6.7 m 
Hc 9.475 m 9.068 m 
k 6.117 1.203 

r2 offit 0.857 0.983 
Predicted Hloo 12.16 m 15.13m 

Table 4.7b Results of Gumbel fits to data in Table 4.6 
Method Least Squares Moments 

(Eq. 5.139a) (Eqs. 5.140) 
cp 1.403 m 1.235 m 
c1 8.066 m 8.098 m 

r2 offit 0.973 -__ 
Predicted Hloo 14.52 m 13.78 m 

195 

The parameters obtained for the Gumbel and Weibull distributions are also 
included in Tables 4.7, as are the coefficients of determination (r2 values) of the 
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least-squares fits. For the three-parameter Weibull distribution, the value of Ho that 
minimizes r2 was determined by trial and error (which does not require many trials 
for single-place accuracy; note that the value of Ho cannot exceed the lowest 
tabulated value of H). The four best-fit distributions are plotted on Figure 4.15 
along with the data. 

6 8 10 12 14 

Significant Waveheight. rn 

FIGURE 4.15 Comparison of best-fit extreme value distributions with data 

Figure 4.15 clearly shows that the two-parameter Weibull distribution does not 
fit this data very well, particularly for large wave heights and small exceedance 
probabilities (which are generally of the most interest). Recall that Ho is supposed 
to represent a lower limit of the underlying distribution of significant waveheights; 
so it is perhaps not surprising that zero is not the best choice. The fit is considerably 
improved by appropriate adjustment of this parameter. The two Gumbel fits appear 
satisfactory for wave heights less than 12m, but underpredict the largest observation 
by a considerable amount. 

There is no compelling theoretical justification for choosing among the 
commonly-used extreme value distribution functions. In practice we usually pick 
the distribution that best fits the data in the range of interest, i.e. usually for the 
higher wave heights and lower exceedance probabilities. Note however that it is 
generally the case that data are available for only a small fraction of the return 
period of interest, so that considerable extrapolation is required. Needless to say, it 
is prudent to plot and examine the data along with the candidate distributions before 
making a choice. 

The final step in our example problem is to use the distribution parameters in 
the corresponding formulas to find the expected maximum significant waveheight in 
100 years. Note that this corresponds to an annual cumulative probability of 
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which is the ordinate of the horizontal axis in Figure 4.14. The predicted values can 
also be found in Tables 4.7. Figure 4.14 clearly shows that the 100-year significant 
waveheight predicted using the two-parameter Weibull distribution is considerably 
lower than the greatest value in the 25 years of observations, which is highly 
unlikely. It appears that the two-parameter Weibull distribution should be used with 
caution in such applications. 

In the following chapter we will apply many of the formulas introduced above 
in the examination of the wave-induced motions of marine craft. 



This page intentionally left blank



CHAPTER 5 

WAVE-INDUCED FORCES ON MARINE CRAFT 

Ocean waves may generate significant forces and moments on marine vehicles and 
fixed structures which must be considered by designers. In the previous chapter, 
formulas for the wave-induced force on vertical walls and circular cylinders were 
given. In this chapter we will focus on evaluation of the forces and moments on 
marine vehicles, and the resulting motions, which are also of considerable interest. 
We begin by studying the response of a floating body in small-amplitude waves; we 
will see that the frequency (spectral) analysis introduced in the previous chapter is 
applicable for determination of the statistics of the wave-induced response. Some 
important nonlinear effects will be investigated, and the effects of a mooring system 
will be briefly examined. 

1. Wave-induced Motions: Linear Theory 

We will consider a floating body acted on by waves which can be represented using 
the linear theory described in the previous Chapter; that is, 

kA<< 1 

in deep water (see Eq. (4.74)) for all components of the incident wave spectrum. 
This might seem to be overly restrictive, but we will see that the linear theory 
generally works quite well, even in cases where this assumption is not strictly met. 
Furthermore, we will assume that the body is stable, so that small disturbances will 
yield proportionately small responses. In addition, we will for the moment neglect 
viscosity, which acts to produce some nonlinear effects which we will discuss later. 
Under these assumptions the body can be represented as a linear system, with the 
waves as the input, and the resulting motions as the output. 

With the additional assumption that the system is time invariant (meaning that 
the output produced by a given input is independent of the time at which the input is 
applied), it can be shown that the output y(t) can be expressed as a function of the 
input x(t) as follows: 

199 
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where h(t) is the impulse response function, defined as the response to a unit 
impulsive input. Thus the output depends in general on the entire time history of 
the input; Eq. (5.2) applies to “causal” systems, which cannot have an output prior 
to application of the input. As we will see, this is not necessarily the case for the 
systems we will be examining here, so we will employ the more general expression 

(5.2a) 

which applies to non-causal as well as causal systemsa 

Expressions like Eq. (5.2a) are generally difficult to deal with, requiring 
knowledge of the entire time history of the motion and evaluation of indefinite 
integrals. This can conveniently be avoided by considering the Fourier transform of 
Eq. (5.2a). This is because a convolution in the time domain corresponds to a 
simple product in the frequency domain: 

where X, Y and H represent Fourier transforms of the input, output, and impulse 
response function, respectively. Eq. (5.3) tells us that the output of a linear, time- 
invariant system at a particular frequency depends only on the value of the input at 
that same frequency, and the system characteristics at that frequency. Note that in 
general H and Y are complex quantities, which means that the output has a phase 
angle (given by the argument of Y) relative to the input. 

The quantity H(o), which characterizes the system response in the frequency 
domain, is called the frequency response functionb; it is also referred to as the 
Response Amplitude Operator (RAO for short) in the seakeeping literature. The 
magnitude of H(o) gives the magnitude of the response per unit input a particular 
frequency, and its argument gives the phase of the response relative to that of the 
input (the phase of the input is usually taken to be zero). Thus we could find the 

The “non-causal” systems we will examine are actually only apparently so, because of how we choose 

The frequency response function is a special case of a transfer function, which is given by the Laplace 
to measure the input quantity. 

transform of the impulse response function. 
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frequency response function corresponding to a particular mode or component of 
the motions of a ship by measuring the motion amplitude and phase in a series of 
regular, small-amplitude waves of various frequencies. This procedure is in fact 
carried out in seakeeping basins to find RAO’s. 

To find the mean square spectral density of the output, we could apply Eq. 
(4.91): 

where Yk(o,T) is thefinite Fourier transform of the k’ output record of length T, 

T 

Yk(o,T)= Iyk(t)e-im‘dt 
0 

( 5 . 5 )  

Inserting Eq. (5.3) in Eq. (5.4) and making use of the fact that 

IHXf = IH1*1X12 

we obtain 

Thus we can obtain the output spectrum directly from the input spectrum, via 
multiplication by the square of the RAO magnitude. Eq. (5 .6)  provides an 
alternative means to find the RAO (in addition to the “frequency domain” approach 
described above), by dividing the spectral density of the output by that of the input 
and taking the square root of the result. Furthermore, all of the formulas for wave 
peak statistics are applicable for computation of the statistics of motion maxima, 
using the motion spectrum S y y .  These computations and their applications will be 
discussed at length in Section 7 below. 

For completeness and for hture reference we will mention that it is also 
possible to detiie a cross-spectral density Sxu(o): 
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where xk* is the complex conjugate of xk. It can be shown (Price and Bishop 
[ 19741) that 

Note that knowledge of the cross-spectral density function, together with the input 
spectrum, permits evaluation of both the magnitude and phase of the RAO, whereas 
use of only the input and output spectra (“autospectra” to be more precise) in Eq. 
(5.6) allows us only to find the magnitude of H(w). 

Prediction of the wave-induced ship motions (in waves satisfying Eq. (5.1)) 
thus boils down to finding the RAO’s, or the motions per unit wave amplitude in the 
frequency domain. 

I .  1 Hydrodynamic forces: Superposition 

Finding the RAO’s of a floating body amounts to solving the equations of motion in 
the frequency domain. Thus we need to obtain the hydrodynamic forces and 
moments acting on the body. 

The assumed linearity of the system makes it possible to break a complicated 
problem down into a series of simpler ones, since solutions can be superimposed. 
We will make use of this property extensively in this chapter. The first application 
will be to express the total hydrodynamic force as the sum of two basic components: 

1. Wave-exciting forces: The forces due to the wave system only, with the body 
assumed to be fixed in its mean position; these forces are linearly proportional 
to the wave amplitude. 
Radiation forces: The forces generated by the motions of the body in calm 
water; these forces are linearly proportional to the motion amplitudes. 

2. 

We have seen that a sinusoidal input to the linear system produces a sinusoidal 
output at the same frequency. Thus we expect the motions to be of the form 

xj = xo,cos(wt - 6,) = Re (xoje-iot) (5.9) 

where, in the final expression, the motion amplitude xo, is complex; the phase 6, is 
measured with respect to the wave crest at the origin. The subscript j ranges from 1 
to 6 to indicate the direction or mode of motion: surge, sway, heave, roll, pitch and 
yaw, respectively. The velocity and acceleration components can easily be found 
by differentiating Eq. (5.10): 
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uj = Re{-iwxojeimt}; aj = Re{-02x,,jeiot) (5.10) 

It is traditional to further decompose the hydrodynamic radlation force into 
components which are in phase with the acceleration and velocity: 

6 6 

FRi(o)=-x[Aijaj  +Bi ju j ]  =Re{c[w2A, j=1 +iwBijlxoje-iot 1 (5.11) 
j=1 

Here Ajk and Sij  are the added mass and damping coefficients, respectively. The 
negative sign is inserted because these forces are expected to typically oppose the 
motions of the body, resulting in positive values of the coefficientsc. The added 
mass coefficients should be familiar from Chapter 3 (if this is not the case, please go 
back and read Chapter 3!); however, we now see that the added mass coefficient (as 
well as the damping coefficient) are fimctions of the frequency of oscillation; the 
results presented in Chapter 3 correspond to steady motion, or the zero-frequency 
values of the coefficients. The steady-state values of BG are zero in accordance with 
d'Alembert's paradox; the damping force at nonzero frequency is associated with 
the energy carried away by the radiated waves. We will derive a relationship 
between the damping coefficient Bij and the amplitude of the radiated waves far 
from the body a bit later in th s  chapter. 

The wave-exciting force Fx can be written as follows 

Fx, = Fxicos(ot - Si) = Re{AXie-'"'} (5.12) 

where A is the wave amplitude; Xi is the complex wave-exciting force amplitude 
per unit wave amplitude (the phase of the force relative to the wave crest, Si, will 
generally be nonzero). 

Considering the body to be at zero speed (aside from the zero-mean wave- 
induced velocities; the effects of forward speed will be addressed later), the other 
forces that act on the floating body in waves are those associated with gravity and 
buoyancy which we derived in Chapter 2. Using the "small-amplitude" gravity- 
buoyancy relationships, Eq. (2.33), together with the sinusoidal motions given by 
Eq. (5.9), we can obtain the following expression for the gravity-buoyancy or 
restoring forces: 

We will see that Bij must be positive from energy considerations but that Ad may in fact be negative 
under some circumstances. 
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FG-B~ =-Re I C - x  .e-iwt !n, O’ } (5.13) 

The elements of the restoring force matrix C are listed on page 24. 

We can now write down the expression for the total hydrodynamic force and 
moment acting on a body at zero speed, “in the frequency domain” (i.e., for a body 
oscillating at a given frequency and amplitude in response to regular waves): 

We are now in a position to write down the equations of motion of the floating 
body. 

1.2 Equations ofMotion; Simple I-DOF Case 

Up to this point we have not specifically identified the coordinate system that we 
are working with. To be consistent with Chapter 3, we should use body-fixed axes. 
However it is more convenient in seakeeping analysis to work in fixed axes as in 
Chapter 4. This dilemma is conveniently resolved, for the time being, by noting our 
assumption of small amplitudes. If the motions are small, we may adopt the 
linearized equations of motion in which terms involving products of displacements, 
velocities and/or accelerations are assumed to be negligibly small, e.g., Eqs (3.139)- 
(3.140). In this case, if the forward speed is zero, the terms that arise due to rotation 
of the coordinate system disappear, and the resulting equations are identical to those 
expressed relative to a fixed system! Since we will eventually want to integrate 
these results with those of Chapter 3, we will generally refer to body axes when 
expressing forces and motions. 

Before considering the full system of equations, it is instructive to examine a 
simple single degree-of-system case, such as the heaving motion of a spherical 
buoy. From Eq. (1.36), neglecting coupling terms, the equation for heaving motion 
is just 

Z = F3 = mw = Re{- m02~~3e- io t )  (5.15) 

(note that in the “indicia1 notation” of the current chapter, the amplitude of heaving 
motion is ~ 0 3  and Z = F3). Notice that when Eq. (5.14) is inserted in Eq. (5.15), with 
I = j = 3 for uncoupled heaving, the common exponential factor cancels. We can 
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also drop the ‘‘Re(}” on both sides of the equation, since the expression must be 
valid for all t (implying that the imaginary parts must also be equal). Collecting all 
terms involving ~ 0 3  on the left-hand side then yields 

1- w (rn + A33 )- ioB33 + C33 b 0 3  = AX 3 (5.16) 

or 

x 03 x3 -= 
A - ~ ~ ( m + A ~ ~ ) - i m B ~ ~  +C33 

(5.17) 

which is the heave l2AO. 

You have probably noticed the similarity of Eq. (5.16) to the equation 
describing the forced oscillations of a spring-mass-damper system; in fact the 
equation is formally identical, with (rn + A33), B33, and C33 representing the mass, 
damping, and spring characteristics, respectively. The difference is that A33, 
B33,and X3 are frequency dependent in the present case. 

The magnitude of the heave RAO is 

-- 1x3 I 1x03 I - 
J[- o2 (m + A33)+ C33 p + u ~ B ~ ~  

A 
(5.18) 

We will study the frequency-dependent added mass, damping and wave-exciting 
forces in detail later in this chapter. For now, we will merely present the results for 
a heaving semi-submerged sphere (hemisphere) in deep water. Nondimensional 
values of the force coefficients are shown on Figure 5.1 below, as functions of the 
dimensionless wavenumber, ka, where a is the radius of the sphere. 

Some of the salient features of the forces are worth discussing at this point. 
Note that the wave-exciting force magnitude has been normalized using (pg) 
multiplied by the waterplane area; this is identical to the heave restoring force 
coefficient (heave force per unit heave displacement). At low frequency the 
exciting force coefficient approaches 1.0, indicating that the force on the fixed 
sphere in very long waves (with unit amplitude) is equivalent to that on a sphere 
heaving (with unit amplitude) in calm water. At high frequencies, when the 
wavelength is much less than the diameter of the sphere, the effects of the waves 
tend to cancel; in addition, the dynamic wave-induced pressure is proportional to 
exp(-02</g) in deep water; thus the net force approaches zero. 
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0 1 2 3 4 5 

ka 

Figure 5.1 Force coefficients for a heaving hemisphere 

Relative to the radiation forces, we will see that the free surface boundary 
condition can be simplified in the limits of zero and infinite frequency. The 
problem of an oscillating floating body can thus be reduced to a simpler, equivalent 
problem of the body plus its image oscillating or pulsating (depending on the mode 
of motion) in an unbounded fluid. In particular, a floating hemisphere heaving at 
high frequency is equivalent to a heaving sphere in an unbounded fluid; the added 
mass is in this case equal to half the displaced mass (see Figure 5.1) so A33' 
approaches 0.5 in the high-frequency limit. In the opposite frequency extreme, the 
hemisphere is equivalent to a sphere which is undergoing oscillatory dilation 
parallel to the z-axis. This is different than the high-frequency problem and so the 
added mass coefficient is different; in fact it can be shown that 

(5.19) 

and furthermore, that A33(0) possesses a maximum and a minimum for three- 
dimensional bodies (more on this later). 

Recall that the damping component of the radiation force is associated with the 
energy generated by the oscillations of the body which is carried away by the 
radiated waves. Since there is no free surface in the equivalent zero- and infinite- 
frequency problems, there is no mechanism for removal of energy and so the 
damping force must go to zero in these limits. Since the damping coefficient is non- 
negative at zero speed (from conservation of energy), it must have a maximum 
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value, at the frequency for which the oscillating body produces the largest far-field 
disturbance. 

Inserting the values shown on Figure 5.1 into Eq. (5.18), we obtain the RAO 
magnitude shown on Figure 5.2. 

ka 

Figure 5.2 Magnitude of heave response in regular waves 

The behavior is very similar to the response of a linear mass-spring-damper system. 
Note the presence of a peak, which we would expect at the natural or resonant 
frequency; this occurs where the denominator of Eq. (5.18) is a minimum. By 
inspection of Eq. (5.18) it is easy to see that the undamped natural frequency is 
determined by solution of 

(5.20) 

for heaving motion. 
function offrequency. If we assume that A33' = 0.5, we obtain 

This is not an explicit equation, however, since A33 is a 
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in agreement with the result shown on Figure 5.2. 

Recall that for the simple mass-spring-damper system, the critical damping 
coefficient is given by 

In the present case the mass M must be replaced by the (mass + added mass). Again 
assuming that A33‘ = 0.5, we obtain 

for the normalized heave critical damping coefficient; thus at resonance the fraction 
of critical damping is roughly (0.25/3) = 8%, so the damping is relatively light. 
Typical marine vehicles have larger relative heave damping coefficients so that the 
peak heave RAO value is usually around 1.3. 

The value of the RAO at zero frequency is 1.0, as can easily be verified using 
Eq. (5.18) and the zero-frequency value of the exciting force discussed above. This 
is a characteristic of all linear-displacement RAO’s in deep waterd, and indicates 
that in very long waves, the body follows the wave, behaving as a fluid particle on 
the surface (angular displacements follow the slope of the surface at low frequency). 
At high frequency, we have seen that the wave-exciting force goes to zero, so we 
expect the motions to approach zero at high frequency. 

One type of wave measuring device consists of an accelerometer housed in a 
spherical buoy; the wave elevation is obtained by integration of the acceleration 
signal. In order for the buoy to accurately track the waves, the nondimensional 
wavenumber, ka, must be “much less” than 1 .O. This means that 

2na a 
h h 

ka=-<<1 or -<<0.16 

or in terms of frequency, 

Recall that in finite water depths, the particle trajectories become elongated in the horizontal direction 
(see Eq. (4.24)); the surge and sway RAO’s approach l/tanh(kh) in this case. 
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If the buoy radius is 0 . 5 ~  the frequency of the waves being measured must be 
much less than 4.4 radsec. Referring to Figure 4.10, we see that this is quite 
satisfactory for Pierson-Moskowitz spectra, which have little energy at frequencies 
above about 1.5 radsec. However, this limitation must be kept in mind if very short 
waves are to be measurede. 

We will now look at the computation of the linear wave-induced forces and 
moments in more detail. 

2. Radiation Forces: Added Mass and Damping 

2.1 General computational procedure, zero speed 

As stated above, radiation forces are defined as the hydrodynamic forces (exclusive 
of hydrostatic) that arise as a result of forced oscillations of the body on otherwise 
calm water. The added mass and damping forces are the components of the total 
radiation force which are in phase with the acceleration and velocity of the body, 
respectively, in the frequency domain. Unfortunately, even with the assumptions of 
no viscosity and small amplitudes, there are no analytical solutions available for 
these forces for any cases of practical interest except for the limiting values of some 
simple forms at zero and infinite frequency (e.g., the sphere discussed above). 

Fortunately there are a variety of numerical methods available to determine 
these forces. All are computationally intensive, but well within the capabilities of a 
modem personal computer. Probably the easiest method to understand is the 
“source distribution method”. You should recall that a solid body of revolution 
moving in an unbounded fluid can be hydrodynamically modeled using an axial 
distribution of singularities. Distributing singularities on the body surface can 
accurately represent more general shapes. The function of the singularity is to 
produce a fictitious flow which will cancel the normal component of the fluid 
velocity (relative to the body) on the surface, thus satisfying the “no penetration” 
boundary condition. The strength of the singularity is thus determined by the 
n o m l  component of the body velocity relative to the fluid. 

Of course if the heave RAO of the buoy is known, a correction can be applied to the high-frequency 
data, provided that the motions are measurable. 
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For a floating body undergoing small sinusoidal oscillations, the normal 
velocity varies sinusoidally and so the source strength must vary in the same 
manner. Furthermore, the free surface boundary condition also has to be satisfied. 
Perhaps the most straightfoxward way to do this would be to place singularities all 
over the free surface (and on the sea bottom, for finite water depth), with strengths 
determined by application of the free surface boundary condition. T h s  method is in 
fact used, but can be unwieldy due to the large number of singularities required. 

An alternative approach would be to distribute singularities which themselves 
satisfy the boundary conditions at the free surface and on the sea bottom. The 
drawback here is that the expressions for the source potential are difficult to deal 
with because they contain either complicated, indefinite integrals or summations of 
infinite series (depending on which of the available forms of the potential is 
chosen). The problem is slightly less complicated in two-dimensional flow 
(oscillating cylinders) because the potentials involve only trigonometric and 
exponential or hyperbolic functions whereas the three-dimensional potentials 
involve these plus Bessel functions. The expressions are given by Wehausen and 
Laitone [ 19601. 

The basic procedure in the source distribution method is to divide the mean 
wetted surface of the body (i.e., the wetted surface beneath the undisturbed 
waterplane? into a number of planar panels (usually triangles or quadrilaterals)g. A 
pulsating source, satisfying the free surface and bottom boundary conditions but 
with unknown strength, is placed at the centroid of each panel. The total velocity 
induced by all of the sources can then be computed (for unit source strength) at any 
point in the fluid (the “observation point”); to obtain the source strengths, the 
normal component of the velocity is computed on each panelh. Setting the normal 
component of the fluid velocity equal to the normal component of the body velocity 
on each panel results in a set of 2N simultaneous equations for the source strengths, 
where N is the number of panels. The factor of 2 is due to the fact that the source 
pulsation is not necessarily in phase with the velocity so that each source requires 
two equations (for “in-phase” and “out-of-phase” or “real” and “imaginary” 
components). 

It is convenient to express the source potential in the form 

‘ This is consistent with the linearization of the problem since the effects of changes in the underwater 
hull shape due to the body motions are of higher order. 

“For good accuracy, the size of the panels must be much less than the wavelength and the local radius 
of curvature ofthe body” (Mei [1978]). 
” Special treatment is required for the velocity induced by the source which is located on the panel being 
examined, since there is a singularity at the source location. One usually assumes in this case that the 
source is uniformly “smeared out” over the panel. The velocity, determined by integration of the 
distributed source potential over the panel surface, is finite. 
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(5.21) 

where (t, q,5) and (&, qs,&) represent the coordinates of the observation and source 
points, m and n denote the observation and source panels, o is the complex source 
strength, and gij is the amplitude of the unit source potential. As before, the real 
part of the expression is implied. The total velocity potential is determined by 
integration over the body surface; approximating the integral by a summation, we 
have 

(5.22) 

where dS, is the area of the n* panel. If we write the local velocity of the m* panel 
in the form 

the boundary condition on the body surface, 

(5.24) 

where n,, is the normal vector on the m* panel (directed out of the fluid), can be 
formally expressed as 

[ 2 dSn]{cjn } = {Urn . n m }  ; (5.25) 

The exponential factor conveniently cancels, which is an advantage of using the 
complex notation. The source strengths are thus determined by inverting the 
[as/&] matrix and multiplying the result by the vector of normal velocities. 

There are several available alternatives to the source distribution method; the 
most popular is probably the “boundary integral method” which is based on 
applying Green’s theorem to the velocity potential and another function, called the 
Green’s function, which satisfies all of the boundary conditions except for that on 
the body surface. This should sound familiar; in fact the Green’s function for the 
floating body problem is the same as the unit source potential g;j (which is why we 
used that symbol!). Thus it should not be surprising that the boundary integral 
method turns out to be essentially the same as the source distribution method, 
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although they differ in some of the details (Mei [1978]). 
applicable only for two-dimensional sections, will be discussed below. 

Yet another method, 

Once the source strengths have been determined, the dynamic pressure can be 
computed anywhere in the fluid using Eq. (4.27). In particular, the pressure on the 
body surface can be computed; the hydrodynamic radiation force is then found by 
integrating the pressure on the surface: 

(5.26) 

where R is the position vector of the point on the body surface S .  

Note that we have been using the special coordinate system (5, q, 6 )  introduced 
in the previous chapter, with the origin at the undisturbed free surface and having 
the caxis positive upwards; this is fairly conventional in the seakeeping literature 
(as well as the literature on wave theory). Thus when integrating the wave-induced 
forces and moments into the model developed in Chapters 1 - 3, we must transform 
these quantities into our standard body axes; we will discuss this further below. 

2.2 Two-dimensional methods 

Inversion of the [a4,/&] matrix (whch has 2N x 2N elements) is computationally 
intensive; this precluded extensive use of three-dimensional solution procedures 
prior to the availability of computers whch were powerful enough to do these 
operations in a reasonable amount of time. In the 1950’s a pragmatic approach 
employing two-dimensional solutions was developed (Korvin-Kroukovsky [ 1955]), 
which is formally equivalent to the “strip theory” introduced in Chapter 3 for 
computation of added mass coefficients. A two-dimensional cross-section can be 
well represented by 50 linear segments (or less), whereas a complete ship usually 
requires at least 1000 panels. Furthermore, solutions for the Lewis forms described 
in Chapter 3 can be obtained by another technique, called “multipole expansion”. 
In this method it is not necessary to discretize the body surface, but the section must 
be represented by a conformal transformation of a circle; the potential is expressed 
as the sum of a source and a series of higher-order singularities or “multipoles” 
located at the origin (Ursell [1950]). As explained in Chapter 3, not all ship cross- 
sections can be represented in this way, but use of the “equivalent” Lewis forms 
was found to be adequate in many cases. 
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Strictly speaking, in order for the two-dimensional representation to be valid, 
the slope of the body in the longitudinal direction must be very small'. This is not a 
bad assumption for many shp  hulls, except possibly near a bulbous bow or at a 
transom stem. Strip theory continues to be widely used [e.g., in the U.S. Navy's 
Standard Ship Motion Program, SMP (Meyers, Applebee and Baitis [1981])) 
despite the present availability of computing power which can handle hlly 3-D 
methods. In addition to the fact that the 2-D computations can be carried out more 
rapidly (on the order of minutes for a typical range of wave frequencies and 
headings, as opposed to hours for 3-D methods), much less effort is usually required 
to model 20 cross sections (which is typical for a shp) than to create a 3-D panel 
model of the ship surface. Also, a 3-D panel model applies only to a specific hull 
whereas a database of 2-D sectional results can be used to (approximately) represent 
a variety of hull forms. We will present some 2-D results below. 

2.3 Frequency dependence 

The linearized free surface boundary condition was given by Eq. (4.8): 

-+g-=O a2$ a$ on <=O 
at2 a< 

If we write the potential in the form 

the free surface boundary condition can be expressed as 

2 acp 
a< 

--o cp+g-=O on < = 0  

(5.27) 

(5.28) 

which demonstrates that cp must be a function of the frequency. In particular, in the 
extremes of zero and infinite frequency, Eq. (5.28) reduces to 

(5.29a) 

cp-+Oon < = O ;  w+o3 (5.29b) 

acp 
a< -+0 on <=O; 0-0 

I There are other limitations when the speed is nonzero, as will be discussed later. 
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These expressions correspond to solid wall and zero dynamic pressure conditions, 
respectively; thus two distinct solutions are indicated. Both solutions may be 
obtained using the method of images; the solid-wall condition can be met by placing 
an identical source at <=  -4 (above the free surface); this amounts to creating a 
double-body in a fluid without a free surface. The zero pressure condition can be 
met by placing an image of opposite sign (i.e., out of phase) at c= -&. In both cases 
the free surface “disappears” and so there can be no radiated waves. 

Keep in mind that the pulsating sources are located on the surface of the body 
in its mean position. Downward heaving motion is simulated by flow emanating 
from sources located on the bottom of the body, effectively “pushing” the fluid 
beneath the body out of the way (the draft effectively increases); conversely, 
upward heaving is simulated by water being sucked into the singularities, “pulling” 
the surrounding fluid upwards (thus effectively reducing the draft). At zero 
frequency the image sources are behaving in exactly the same way so that the 
heaving body is equivalent to a double body which is expanding and contracting 
vertically, symmetrically about the plane 6 = 0, as we pointed out in the sphere 
example above. At high frequency the sources are pulsating 180” out-of-phase with 
the images. In this case, when the body heaves down, so does the image and so the 
double-body behaves as a single heaving rigid body. 

For lateral motions, the situation is somewhat different. Consider the behavior 
of a two sources symmetrically located on the port and starboard sides of a swaying 
body which is symmetric about 77 = 0. In general we expect that the two sources 
will be pulsating 180” out-of-phase because when the starboard side “expands” 
(moves to the right), the port side must “contract” (also move to the right) by the 
same amount. Now let’s look at what the images are doing. At zero frequency the 
images are in-phase with the corresponding sources, so the image is moving along 
with the swaying body. Thus the double-body behaves as a single rigid body 
(which was the case for heaving at high frequencies; a consequence of ths  is that 
the added mass expressions originally developed for high-frequency vertical 
vibrations of Lewis forms are also applicable for low-frequency lateral motions!). 
At high frequencies, the images are out-of-phase with the corresponding sources so 
that the actual and image bodies are moving in opposite directions. The double- 
body is thus undergoing periodic horizontal shearing deformations parallel to r= @. 

The discussion in this and the preceding paragraph is largely based on the eloquent presentation by 
Newman [ 19771. 
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2.4 Added mass and damping forces 

As mentioned above, it is traditional (and physically meaningful) to break the 
radiation force down into components which are in phase with the acceleration and 
velocity of the body, defined as added mass and damping forces, respectively. We 
thus obtain Eq. (5.11) which we will repeat for convenience: 

6 

FRi (o ) = [a A 1J + ioB oj e-’@’ 
j=l 

(5.30) 

where the real part is implied and -A, (-Bi,) corresponds to the force component in 
direction “i” induced by acceleration (velocity) with unit amplitude in direction ‘3”. 
Recall that i and j range fi-om 1 to 6 and that the “force” is actually a moment when 
i = 4, 5, and 6. 

We can also invoke linearity to write the velocity potential in a similar form: 

(5.31) 

where cpj is the complex amplitude of the potential for motion with unit amplitude in 
direction j .  The normal velocity of a point on the body can also be written in terms 
of its components (for reasons which will be apparent shortly): 

e - i ~ t  
6 

(5.32) 

Here the first and second summations represent the effects of linear and angular 
velocities of the body, respectively. Invoking 
that 

the body boundary condition, we find 

j = 1,2,3 
j = 4,5,6 

From Eqs. (5.3 1) and (4.27) the dynamic pressure can be written in the form 

(5.33) 

(5.34) 
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and the radiation force components can be obtained using Eqs. (5.26): 

(5.35) 

or, inserting Eq. (5.33), 

Finally, comparison with Eq. (5.30) shows that 

(5.36) 

(5.37) 

which shows how the added mass and damping coefficients are computed from the 
values of the velocity potential and its normal derivative, integrated over the wetted 
surface of the body. Using Eq. (5.37) and Green's theorem, it may be shown 
(Newman [ 19771) that at zero speed, the radiation force is symmetrical with respect 
to the force and motion directions: 

It can be shown that the added mass and damping coefficients are related by the 
so-called Kramers-Kronig relations (Kotik and Mangulis [ 19621): 

(5.39a) 

(5.39b) 

Thus if one coefficient is known as a function of frequency, the other can be 
calculated. From Eq. (5.39a) at w = 0 we find that 
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2 BijM 

= o  P2 
A G (0) - A (a) = - I- dp (5.40) 

As we mentioned above, the damping is associated with energy dissipation by the 
radiated waves and so must be positive (at zero speed); thus the quantity on the 
right-hand side of Eq. (5.40) must be positive and so 

Aij(0) ’ Aij(m) (5.41) 

again at zero speedk. It can also be shown (Kotik and Lurye [ 19641) at zero speed 
that 

(5.42) 

We have stated several times that the damping force B ~ u j  is associated with 
energy radiation. In fact one can derive a relationship between the waves in the 
“far-field” radiated by the body motions and the damping coefficient. It can be 
shown that the average power required to sustain general sinusoidal oscillations is 

where x* indicates the complex conjugate of x. 

Far from the body, the free surface elevation induced by the forced motion in 
mode i is of the form 

(5.44) 

where R is the horizontal-plane distance from the body, x is the wave direction, and 
Aj is the complex amplitude of the waves generated by unit-amplitude motions of 
the body in mode j. The average power carried away by the waves is equal to the 
mean rate of energy flux across a cylindrical control surface with radius R: 

At forward speed, energy may be “fed in” from the free stream, similar to the aeroelastic flutter 
phenomenon, resulting in negative damping (Newman [1961]). 
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(5.45) 

where we have used Eqs. (4.43) and (4.44); V, is the group velocity of the radiated 
waves. Setting the “power in” from Eq. (5.43) equal to the “power out” from Eq. 
(5.45) yields a general (but not very useful) relationship between the damping 
forces and the radiated waves. A more useful expression can be obtained by 
considering a special case in which the body is constrained to move in only one 
degree-of-freedom; in this case i = j in Eqs (5.43) and (5.45) and by equating the 
“power in” to the “power out” we obtain 

(5.46) 

which shows that the diagonal terms in the damping matrix can be obtained by 
oscillating the body in the desired direction and measuring the radiated waves in all 
directions. In fact, it can be shown (Wehausen [1971]) that a more general 
relationship exists: 

(5.47) 

SO that in principle, all of the damping coefficients could be obtained by 
measurement of the waves radiated by forced oscillations in each of the 6 modes. 

The presence of the factor R in Eqns. (5.45)-(5.47) may seem puzzling; 
however, you can rest assured that the values of the damping coefficients do not 
depend on the radial location chosen for the measurement of Aj (provided that it is 
far enough from the body so that “near-field” effects are negligible). In fact the 
asymptotic behavior of the free surface elevation amplitude is 

- (TC~R)-‘” as R 3 0 0  (5.48) 

(as required for conservation of energy in three dimensions) so that the results of 
Eqs. (5.45) - (5.47) are actually independent of R. 



5. Wuve-Induced Forces on Marine Crufi 219 

In two-dimensional flow the expression for the damping coefficients is 
somewhat different than Eq. (5.47), because of the fact that the radiated energy is 
not spread over an increasing area as the distance from the body increases; thus we 
must replace Eq. (5.48) with an expression of the form 

Aj - Ajf as 6 + kco (5.49) 

where A: and Aj- are constants. The expression for the damping coefficient turns 
out to be (Mei [1989]): 

(5.50) 

2.5 Radiation Forces in the Time Domain 

For simulation of body motions, we require the hydrodynamic forces in the time 
domain. For steady-state sinusoidal oscillations, these are just given by Eq. (5.30). 
However, for situations involving non-steady state conditions (such as transients), 
Eq. (5.30) is not valid and we must adopt a strictly time-domain approach. One 
solution method would be to use a distribution of sources whose strength varies 
arbitrarily in time (“transient sources”) in Eq. (5.25); this would require a 
determination of the required source strength at each instant of time (i.e., at each 
integration time step). However, since time- and frequency-domain quantities can 
be related using Fourier transforms, a more efficient approach for small-amplitude 
motions is to compute the radiation forces in the frequency domain and then to 
transform these quantities into the time domain. 

It can be shown (e.g., Cummins [1962]) that the radiation forces (for zero 
speed) can be expressed in the time domain as follows: 

6 6 t  

FRi (t) = -2 a j(t)Aijm -2 jK i j  (t - ~ ) u  (r)dz 
j=1 j=l 

where ai and uj are the acceleration and velocity components, Aijm is defined as 

(5.51) 

and Kij(t) is a “memory hnction” accounting for the past history of the motion of 
the body (the waves generated by the motion of the body at time (t - z) will still be 
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present at time t and thus will continue to exert forces on the body)’. Taking a 
Fourier transform of Eq. (5.5 l), and using 

aj(a) = -iouj(w) 

we obtain 

j=l j=1 

(5.52) 

By comparison with Eq. (5.1 1) we see that 

F(K,)= -im[Aij(a)-A,m]+13ij(o) (5.53) 

Since Kij, A, and B, are all real quantities, we can separate real and imaginary parts 
in Eq. (5.53) to obtain 

JKg(t)cos(at)dt = B,(a) (5.54a) 
m 

0 
m 

F,(t)sin(at)dt  = a[A,(a)-A,m] (5.54b) 
0 

Thus the “memory function” Kij may be determined using inverse Fourier cosine or 
sine functions of the frequency-domain damping or added mass coefficients, 
respectively: 

In practice Aijm is usually not known, so that one would use Bij to compute Kij; A,“ 
could then be obtained using Eq. (5.54b). 

It is important to remember that since the radiation forces include added mass 
effects, it would be redundant to include the added mass forces presented in Chapter 
3. Thus when wave-induced radiation forces are added to the equations of motion 

’ The formulation given in Eq. (5.51) is not unique, as pointed out by Bingham et.al. [1993]; alternative 
expressions involving convolutions with the displacement or acceleration of the body can also be 
developed. 
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(Eqs. (2.1)), the “added mass forces” should be set to zero. In the limit of very low 
frequency, the radiation force will be equal to the added mass force from Chapter 3,  
as we have previously stated”’. 

The memory function K3,(t) for heaving motion of a hemisphere of radius a, 
computed using Eq. (5.54a) with the damping coefficient shown on Figure 5.1, is 
illustrated on Figure 5.3 below. Physically, K33 can be interpreted as the heave 
force experienced at time t, induced by a heave velocity impulse that occurred at t = 

0; the figure shows that the effects of the impulse have essentially vanished at a 
dimensionless time of 10 (e.g., 2.26 sec for a l m  diameter sphere). Figure 5.4 
shows the values of A33m calculated from this data using Eq. (5.54b) and A33(0) 
from Figure 5.1. Note that A33(0) approaches the correct high-frequency value of 
O.Sxmass, but is still 5% lower even at the hlghest available frequency of d(5gla) 
(nearly 10 radsec for the Im diameter sphere!). Values computed using Eq. (5.54b) 
are quite accurate. 

-0.2 4 
0 2 4 6 8 10 

t W a )  

FIGURE 5.3 Heave memory function for a floating hemisphere 

One might expect a similar redundancy of the damping and steady forces; however this is not the case 
since the wave-induced damping is a potential-flow phenomenon whereas the steady forces are viscous- 
fluid effects. 
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1 .o I 

Computed A,,“ 

Actual value, A,,“ = 0.50 

I 

FIGURE 5.4 Computation of A33m using Eq. (5.54b) 

2.6 Eflects of<Fonuard Speed on Radiation Forces 

2.6.1 General case 

The discussions above were limited to situations in whch the mean position of the 
body is fixed. If the body has an arbitrarily-varying velocity Uo(t) in addition to the 
wave-induced motions, the problem is fundamentally different: 

Since U is not necessarily a small quantity, the linearized pressure equation 
contains additional terms involving products of Uo and the perturbation 
velocities. 

The body boundary condition is complicated by interactions between the 
“steady” and ‘‘oscillating’’ flows. 

These factors preclude a simple superposition of the zero-speed radiation forces and 
the forces induced by Uo. 

To solve this problem using the source distribution technique, we should use 
the expression for the potential of a pulsating, translating source. This expression is 
of course more complicated than that for the fixed pulsating source; furthermore, a 
new source distribution is required for each combination of speed and frequency of 
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oscillation. Alternatively, we could distribute simpler sources (which do not 
themselves satisfy the free surface boundary condition) on the body and on a 
portion of the free surface near the body, as in the fixed-source case (this is referred 
to as a “Rankine source method”). Another approach would be to use sources of 
arbitrarily variable strength and velocity which satisfy the free surface boundary 
condition (the “transient source technique”, Lin and Yue [ 19901). The expression 
for the potential is formally somewhat simpler than that for the fixed pulsating 
source, but now the strengths have to be computed continuously in time (i.e., at each 
integration time step). 

For small-amplitude motions, the velocity potential can be decomposed as in 
Eq. (5.3 I), with the addition of terms representing the effects of the speed Uo: 

where we will now allow the coordinate system (&q,< ) to translate with the 
constant velocity Uo , remaining paralleVperpendicular to the undisturbed free 
surface, and 

(5.5 6a) 

is the potential for oscillations in mode j with amplitude %”. 
represents the potential of the “basis flow” relative to the body, generally taken to 
be that which would exist (relative to the moving coordinate system) if the body 
were not present: 

The function 

V@ = -Uo = -Ud- VJ- W& (5.57) 

where (I,J,K) are unit vectors in the (&q,<) coordinate system. The function & 
represents the “steady” (nonoscillatory) perturbation to the basis flow due to the 
presence of the body, and the last term in Eq. (5.56) accounts for the effects of the 
imposed small oscillations. 

To make the problem a bit more tractable, in the literature the velocity Uo is 
almost always assumed to be constant, aligned with the 5-axis: 

” Note that the frequency of oscillation of a body with forward speed will not generally be equal to the 
wave frequency; the body oscillates at the encounter frequency. The distinction becomes important 
when we combine radiation and diffraction forces (see Section 3.5.1 below). 
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In this case the linearized free surface boundary condition becomes 

relative to the moving frame. The body boundary condition is 

(5.58) 

(5.59) 

on the body surface, where the subscript “u” indicates “unsteady”, which is the 
imposed oscillatory motion. We stated above that for small motions, it doesn’t 
really matter whether we refer to body axes or fixed axes when evaluating the 
velocity on the body surface; the results are the same relative to either system to 
leading order in the perturbations. Stated another way, the exact location of the 
body is immaterial. However, this only holds at zero speed. Since the velocity Uo 
was assumed to have a constant magnitude and direction, there will be L‘crossflow 
velocities’’ proportional to the product of Uo and the angular displacements of the 
body (these products are not of “higher order” because Uo is not necessarily 
“’small”). Thus we must apply the boundary condition on the “exact” (displaced) 
body surface. 

To express the boundary condition in terms of the displaced location of the 
body, we must transform the normal vector n from body axes to the {qcaxes (we 
should also express the hull surface position vector p relative to this system). 
Unfortunately, our standard body axes have the z-axis pointing downwards and the 
y-axis to starboard, which are opposite to the positive senses of rand  q. In order to 
avoid these additional transformations at this point, we will temporarily introduce 
“seakeeping body axes” (x,y,z) which are fixed relative to the body but whch have 
the same general directions as the corresponding (<,v,<) axes, as shown on Figure 
5.5 below. In the figure, 0 represents the origin of the waveheakeeping coordinates, 
located on the intersection of the mean free surface plane and the centerplane of the 
body; 0’ is the origin of the seakeeping body axes (displaced from 0 due to wave- 
induced motions); and the body axes are shown with origin at the CG (their origin 
could in general be at any point on the body, however). 

Transformation of the unit vector n from the seakeeping body axes to the 
“fixed” (Cqc) axes can now be accomplished using the transformation matrix [TI 
given in Eq. (1 3). This expression is nonlinear, containing products of sines and 
cosines of the angular displacements; however, since we are still only considering 
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small perturbations, we can use the linearized form of the transformation matrix, 
Eq. (2.21): 

c 

(5.60) 

z 

FIGURE 5.5 Coordinate systems 

where the Euler angles (Q,,O,y) correspond to rotations about the x, y and z axes. 
Inserting this expression and 0 = -U& in Eq. (5.59) and using 

we obtain 

-U,(n, -Vn, + 8 n , ) + - + ~ ~ + . . . = ( U u  a+ +R,  xp).n+ ... (5.61) 
j=1 al 

Here "+. . ," indicates the presence of higher-order terms. Since Q,s, k, U, and R, are 
all small, only the main diagonal elements of [TI contribute to the leading-order 
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terms in Eq. (5.59) that involve these quantities. By collecting “steady” and 
“unsteady” terms in Eq. (5.61) we can separate the boundary conditions on I& and 
4j: 

j = 1,2,3 

(5.62) 

(5.63) 

where we have examined the radiation potentials one-at-a-time; the uj are the 
components of the unsteady velocity perturbation. In the literature, the boundary 
condition (5.63) is usually expressed in the following form: 

j = 1,2,3 
+ m j x j ,  j=4,5,6 

(5.63 a) 

where in the present case’, 

mj (0,O,O,O,Uon, ,-UOn,) (5.64) 

These so-called “m-terms” are the source of the coupling between the steady and 
unsteady potentials. The forces and moments induced by the steady component & 
are the same as those which would be experienced in calm water; these effects are 
the subject of Chapter 3 and will not be discussed m h e r  here. 

The linear dynamic pressure relative to the moving coordinate system is 

(5.65) 

Integration of the pressure induced by the radiation potentials yields the radiation 
forces, as before; however, due to the presence of the “m-terms” there is a 
“radiation restoring force” in addition to added mass and damping forces. Thus Eq. 
(5.1 1) becomes 

A more general formulation is given by Magee[l991] 
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6 

FRi (a, U, ) = c [. Aij (0, U, )+ iwBij (0, U , )- cij (Uo)lxoje-iot (5.66) 
j=1 

where cij denotes the “radiation restoring force” matrix (recall that Ci represents the 
hydrostatic restoring force matrix). Notice that now the added mass and damping 
coefficients are functions of the forward speed as well as frequency, and that the 
radiation damping is a fimction of the speed (only). In addition, because of the 
change in the body boundary condition due to the forward speed, the radiation force 
coefficients are not necessarily symmetrical with respect to i and j (i.e., Eq. (5.38) 
holds only for Uo=O). 

In the time domain, Eq. (5.51) is replaced by 

The added mass coefficient AcW is independent of both speed and frequency and in 
addition possesses the symmetry property A,“ = A,?. On the other hand, it can be 
shown (Bingham et. al. [1993]) that the speed-dependent damping coefficients 
satisfy 

b- = O  for i = j 
bij = -bji for i # j 

U 

(5.68) 

The relationship between the time and frequency domain coefficients may again be 
determined using Fourier transforms; following the procedure that led to Eqs. (5.54) 
we can obtain 

(5.69b) Cij (UO 1 W 

JK,, (t, U,)sin(wt)dt = w[As (w, Uo)-Aijm]+- 
w 0 
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2.6.2 Slender bodies 

As mentioned in section 2.2 above, a simplified approach to the computation of the 
radiation forces and moments is available if it can be assumed that the body is 
“slender”, meaning that the ratio of its maximum lateral dimension to its length is 
small. This in turn means that the body geometry, and consequently the flow 
induced by the motions of the body, are slowly-varying in the x-directionP. Thus 
the flow near the body is locally two-dimensional and a strip theory approach is 
justified. To see how this assumption can be applied in a case with forward speed, 
we will use Eq. (5.56a) for the unsteady velocity potential in Eq. (5.65) to obtain the 
dynamic pressure. Integrating the result first over a 2-dimensional cross-section and 
then over the length of the body we obtain the radiation force; formally: 

F- ‘J =-pe-iwt (5.70) 

for i = 1,2,3 and j = 1,2,3,4. Here the inner integral is over a 2-D contour C. For i = 

4, q is to be replaced by (p x n)i-3 as before; the pitch and yaw terms ( i j  = 5,6) will 
be discussed below. However, the displacement xoj in Eq. (5.70) must be regarded 
as a local value and is thus (generally) a function of the longitudinal coordinate 6. 
Furthermore, we need to account for the “crossflow effect” of the steady speed Uo in 
combination with angular displacements 8 and w. In the more “exact” treatment 
described in the previous section, these effects were accounted for by inclusion of 
the “m terms” in the body boundary condition, Eqs. (5.63). The easiest way to do 
this in the present case is to add an “effective transverse displacement” relative to 
the fluid such that the v- and w- velocity components contain the L‘crossflow 
components” 

V, = - u o ~ ;  w, = uoe 
which correspond to “displacements” of 

Consequently the total local displacement (complex) amplitudes are: 

(5.71) 

(5.72) 

In this discussion, the body will be assumed to be ship-like, i.e. elongated in the x-direction, coincident 
with the direction of the velocity Uo. 
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Y 0 (5) = Y 0 (o)+ W O  (5 +$) 
(5.73) 

for j = 1 to 4, where for example ~ ( 0 )  indicates the amplitude of the surge motion 
measured at the origin. 

Thus Eq. (5.70) should actually be written in the form 

Fi, =-pe-iwt s(-io-Uo $ ) [ ~ ~ ~ ~ n , d s ] d {  
L 

Fi2,6 = -pe-iwt s(- iw - u O  $)[[YO + w 0 (5 +2)]k2ni ds]d4 
(5.74) L 

Fi3,5 = L s(- iw - Uo $)[ [ zo - 8, (5 + 2 ] ] k 3 n i d s ] d {  

F. I4 =-pe-iot [-iw-Uo$)[$o 
L 

for i = 1,2,3,4; we will adopt the convention that (for example) Q = ~ ( 0 ) .  Notice 
that the expressions for the sway- and yaw-induced forces are combined by use of 
Eqs. (5.73), as are those for the heave- and pitch-induced forces. Pitch and yaw 
moments, F ,  and F6j, are obtained by multiplying the integrands of the third and 
second of Eqs. (5.74) by -5and {, respectively. 

From Eqs. (5.33) and (5.37) we have 

piwjcpjnidS= 0 2 A i  +iwBi (5.75) 

or, for a 2D contour, 
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pio cpjnids = 0 2 A i j ( ~ ) + i w B i j ( ~ ) = f R i j ( ~ )  (5.76) I 
z 

(per unit length) which is meaningful only for i j  = 2, 3 or 4 [again with the 
convention that Q = (pxn),]. Strictly speaking, the added mass and damping 
coefficients in Eqs. (5.73) and (5.74) differ from the corresponding zero-speed 
values because of the modification of the free-surface boundary condition on q,, Eq. 
(5.5 6). 

The slenderness assumption means that 

so that we may substitute Eq. (5.76) in Eqs. (5.74). By integrating the resulting 
expressions by parts, and assuming that the sectional radiation forces vanish at the 
bow and at the stem, we can eventually obtain: 

(5.78) 

for i = 2,3,4, and 
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(5.79) 

for i = 5 and 6, for a body which has podstarboard symmetry. Notice that we 
cannot obtain the surge force or surge-induced forces and moments using this 
approach. By separating real and imaginary parts, and using Eq. (5.76), we can 
easily rewrite Eqs. (5.78) and (5.79) in the form of “total” added-mass and damping 
coefficients, as functions of the 2-D sectional values, again for a body which has 
podstarboard symmetry and pointed ends (i.e., the sectional added mass and 
damping are zero at the ends). See Eqs. (5.80) below. Notice that the coefficients 
are no longer necessarily symmetrical with respect to i and j (AZ6 + A62, etc.). 

There is however one small complication, in that these 2-D added mass and 
damping coefficients differ from the corresponding zero-speed values because of 
the modification of the free-surface boundary condition on ‘pj, Eq. (5.58). However, 
the slenderness assumption allows us to argue that the a/ag term will be small 
relative to the other terms in Eq. (5.56); thus this boundary condition reduces to that 
in the zero-speed case. Hence it is consistent with the strip-theory approach to use 
the zero-speed sectional added-mass and damping coefficients in Eqs. (5.79) and 
(5.80). 

This approach is equivalent to that of Salvesen, Tuck and Faltinsen [1970]. 
However, it has been pointed out (e.g., Newman [1977]) that this approach is 
inconsistent with respect to the order of magnitude of the terms retained. Ogilvie 
and Tuck [ 19691 Rave presented a more consistent “rational” approach, which 
includes several additional terms; an alternative derivation of these was developed 
by Wang [1976]. However, although including these terms is technically more 
correct than neglecting them, it is unclear whether they contribute to the accuracy of 
the predictions. On the other hand, predictions based on the simpler method 
described here have been shown to be quite satisfactory, particularly for pitching 
and heaving motions, even in waves which would not be considered “small”. 
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(5.80) 

In the theoretical development of strip theory it is assumed that the lengths of 
the radiated waves are of the same order of magnitude as the beam of the ship and 
(as a consequence of the slenderness assumption) short relative to the ship length. 
In fact it can be shown that the two-dimensional radiation forces behave quite 
differently than their three-dimensional counterparts. For example, the heave- 
induced heave added mass of a 3-D body obviously remains finite as the frequency 
of oscillation approaches zero, but the heave added mass coefficient of a two- 
dimensional cylinder in deep water “blows up”; for a circular cylinder it can be 
shown that 
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8 
A,, (0) -+ -- pA h(ka), w + 0 

‘x: 

where A and a are the cylinder’s submerged area and radius and k is the 
wavenumber. The usual explanation is that in the low-frequency limit in two- 
dimensional flow, the entire mass of fluid is accelerated when the body accelerates 
at “zero” frequency. Since the waves generated by body motions can be thought of 
as being “confined” in a 2-D channel, their amplitude remains constant even 
infinitely far from the body. 

Interestingly, the zero-frequency behavior of the 2-D radiation force is different 
in water of finite depth. In this case it can be shown that the heave added mass does 
approach a finite value, and that the heave damping force is nonzero, in the zero- 
frequency limit. The latter effect may be difficult to understand in light of our 
statement in Section 2.3 that in the low frequency limit, the damping force must 
vanish because there are no waves in this limit. In finite water depths, which can be 
regarded as “shallow water” in the zero-frequency limit because the wavelength is 
infinite, we must refine that statement a bit. If one defines “waves” as a vertical 
deflection of the free surface, then it is certainly true that there are no waves at zero 
frequency. However, using Eqs. (4.23) we can show that 

in the low-frequency limit. Thus energy can continue to be carried away in this 
limit in shallow water. In three dimensions, however, the body does not generate 
the plane waves described by Eqs. (4.23); energy is carried away in all directions, 
and the net result is that the damping approaches zero at low frequency for 3-D 
bodies. 

For transom-stem shlps, the sectional area is not zero at the stern which results 
in the addition of several “end terms” to Eqs. (5.78) and (5.79). These terms are 
presented by Loukakis and Sclavounos [1978], who point out that they include these 
terms “for the sake of mathematical completeness only” since there was  “no
experimental verification for their validity”, and since the hndamental “small 
slope” assumption of strip theory is not valid at the stem. 

It is important to keep in mind that w in the formulas in th s  section refers to the 
frequency of oscillation of the body. As mentioned in the footnote on page ??, at 
forward speed this is not necessarily equal to the wave frequency but rather should 
be taken as theji-equency of encounter, discussed in Section 3.5.1 below. 
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2.7 Transformation to "standard" body axes 

The radiation forces and moments presented above were developed with respect to 
the translating inertial coordinate system ( 5  7 6) defined in Section 2.6.1, which is 
consistent with virtually all of the available literature on the subject. However, in 
order to use expressions such as Eqs. (5.80) in the equations of motion that we 
developed in the previous chapters, we must first transform them to the standard 
maneuvering body axes. The following sequence is recommended: 
1. Rotation through angles (w,e,$) to the body orientation, using the small-angle 

transformation matrix (transformation to the xyz system) 
2. 180" rotation about the 6 -axis 
3. Translate from 0 to the origin of the body axes, using Eq. (1.37) (the origin of 

the body axes does not have to be at the CG). 

For small-amplitude motions, the first step is accomplished by resolving the 
forward speed Uo in body axes (Schmitke [1978]; see also Wang [1976]) so that the 
velocity components become: 

(5.8 1 a) 

Here u is the velocity with respect to the (x y z) system; the angular velocity 
components are unaffected by this transformation. Thus in terms of the velocities in 
the seakeeping body axes, the velocities relative to ( 6  7 6) are 

(5.81b) 

The transfonnations for the accelerations are of the same form since Uo is assumed 
to be constant. The expression for the radiation force relative to (x y z )  can now be 
found by inserting Eqs. (5.81b) in the expression for the radiation force: 

6 

F R i ( ~ ) = - x [ A i j j j  + B i t  j ]  (5.82) 
j=l 

where we have used the notation 5 I = 6 ,  C2 = 7, etc. and the wave-induced motions 
are of the usual form t j  = <oje-io'. By introducing the expressions for added mass 
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and damping, Eqs. (5.80), using Eqs. (5.81), and collecting coefficients of 
tj and ti , we can obtain expressions for the added mass and damping coefficients 
relative to the “seakeeping body axes” XYZ:~ 

U 
‘453 = -j‘433(5kd5+-p33 

E 

(5.83) 

The next step in the coordinate transformation, a 180-degree rotation about the 
x-axis, orients the y- and z-axes to starboard and downward, respectively, as is 
conventional in maneuvering. This is far fi-om being a “small angle” rotation, so we 
have to use the full transformation matrix, Eq. (1.8), with w = 8 = 0; 4 = 71 so that 

The ambitious reader who actually carries out these steps will find that he ends up with terms 
containing the pitch or yaw angular displacements. These could be grouped with the “radiation restoring 
forces” cij in Eq. (5.66); however, it is conventional to divide by (-m2) and group them with the added 
mass forces. 
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(5.84) 

With our convention of expressing the force and moment together as a 6-element 
vector F, we can write the transformation in the form 

Fxyz = [TIFxp (5.85) 

where the “enhanced transformation matrix” [TI is defined as 

- 
1 0 0 0 0 0  
0 - 1 0  0 0 0 
0 0 - 1 0  0 0 

0 0 1 0  0 
0 0 0 0 - 1 0  

0 0 0 0 0 - 1  - 

(5.86) 

Note that Eq. (5.85) transforms the forces and moments, but they are still expressed 
in terms of the velocities and accelerations in the xyz frame. So, a second 
transformation is necessary. Using Eq. (5.1 1) we can write the radiation force as 

F = [R]x 

where 

[R] = [02Aij + (5.87) 

Since x = [T]x (note that [TI-’ = [TI), Eq. (5.85) becomes 

where A,, Bij are to be determined using Eqs. (5.83)‘. Ths can be written in scalar 
form as 

~~ 

Recall that matrix multiplication is no# commutative, so [T][R][T] # [T]’[R] 



5. Wave-Induced Forces on Marine Craji 237 

6 

FRi = (26,,, +26,*, -1)c(26j,, +Xj , ,  -1]02Aij +iwBij~oje- im'  (5.89) 
j=l 

where is the Dirac delta fimction, 

Eq. (5.89), with the added mass and damping coefficients from Eq. (5.83), 
determines the radiation forces with respect to maneuvering body axes with origin 
at 0, the origin used in the computation of A, and Bij (usually on the intersection of 
the undisturbed fiee surface with the longitudinal centerplane of the body). The 
final step in the transformation, then, is to use the translation-of-axes formula, Eq. 
(1.37), to obtain the moments about the new origin. 

2.8 Radiation forces: Available data 

There are no known sources of experimental or 3-D computational results for 
radiation forces on systematic series of hull forms, which is perhaps not surprising 
in view of the substantial effort involved in either case. The experiments in 
particular are difficult, requiring a special apparatus to oscillate the model in each of 
the six degrees of freedom, and the capability to make dynamic force measurements 
with high precision (accurate determination of the phase of the force relative to the 
motion is critical). Furthermore, the effects of the inertia of the model and 
apparatus, and the hydrostatic forces and moments, must be independently 
determined and subtracted from the data. In the case of computations, generation of 
the panel model is a time-consuming task. In either case, the resulting data would 
be of limited value in assessing hullforms falling outside of its envelope of 
characteristics. 

On the other hand, such data has been available for 2-D ship-ldce sections for 
quite some time. For example, Grim [1960], Porter [1966], and Tasai [1961] 
produced charts and/or tables of computed added mass and wave amplitude ratios 
(from which the damping coefficient can be obtained by use of Eq. (5.50)) for 
Lewis forms. Porter includes values for sections obtained using a three-parameter 
mapping function, which can be used to represent a wider range of sections than is 
possible with the original two-parameter formulation (the original Lewis 
formulation includes two parameters, which can be expressed in terms of the section 
bearddraft and area ratios; see Eqs (3.19)-(3.20)). Vugts [1968] published a 
comprehensive set of experimental data (along with some theoretical results) for 2- 
D cylinders including semicircles, triangles, several ship-llke sections, and 



238 The Dynamics of Marine Crafl 

rectangles, the latter at a range of drafts. The experimental data obviously include 
all forces and moments acting on the sections, not just those due to radiation; thus 
some disagreement is not unexpected. Nevertheless, Vugts’ results show that the 
theory works pretty well €or heave and sway motions; viscous effects are much 
more significant for rolling motion (which will be discussed later). 

Rather than reproducing some of these results here, with their inconsistent 
nomenclature and normalizations, we instead present a new set of charts obtained 
from computations using the U.S. Navy’s Ship Motion Program, SMP, which was 
mentioned above. Results are shown on Figures 5.6 and 5.7 for Lewis forms having 
half bearddraft ratios of 0.5, 1.0, 1.5, 2.0, 3.0 and 5.0 and section area ratios up to 
0.9, and for a rectangular sectionS (not a Lewis form: Recall that the Lewis forms 
are possible only within a certain range of parameters; see Section 2.1 in Chapter 3), 
in deep water. Note that it is not necessary to use the Lewis forms in SMP; 
however, this is a convenient way to represent ship-like sections for back-of-the- 
envelope estimates, and to convey a general impression of the behavior of the 
radiation forces. 

Each panel in Figures 5.6 and 5.7 shows the dimensionless added mass and 
damping coefficient, respectively, for a particular half-beam to draft ratio, plotted 
against dimensionless frequency, for various values of the section area ratio (the 
lower limit is determined by the permissible range for Lewis forms). Calculations 
were carried out for dimensionless frequencies of 0.0625 to 12.47 (the range is 
hardwired in SMP); the plots show only the lower end of this range, where 
significant variations of the added mass and damping forces occur. 

3. Wave Exciting Forces 

3. I Radiation forces: Available data 

Wave exciting forces are induced by the direct action of the incident waves on the 
body. In linear theory, these forces are directly proportional to the wave amplitude, 
which is assumed to be small. The leading-order interactions between the exciting 
forces and the radiation forces, which are proportional to the small body motions, 
are thus expected to be of the order of the product of the wave and body motion 
amplitudes. These interactions can therefore be neglected in linear theory, so that 
the body can be assumed to be fixed in its equilibrium position for evaluation of the 
exciting forces. 

Since SMP uses splines to interpolate between offsets, it is not possible to obtain a truly rectangular 
section; however by spacing the offsets more densely near the comers, we can obtain a good 
approximation. 
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Making use of Eq. (5.12) and the superposition principle, we can write the 
exciting force in the form 

F Xi = AXie-i"" = A(Xri+XDi)e-im' 

where 

(5.91) 

and A is the wave amplitude. The potentials cpI and 'pD represent the effects of the 
incident and diffracted waves, respectively, and are functions of location as well as 
the wave heading and frequency. Because of the assumption that the body is fixed, 
the body boundary condition is just 

or 

(5.92) 

on the body surface. Note that the incident wave potential 
(4.20)); thus 

is known (see Eq. 

Since this "diffraction problem" differs kom the previously considered radiation 
problem only in the right-hand side of the body boundary condition, we can use the 
same procedures to obtain the diffraction potential as those we used to obtain the 
radiation potentials. In particular, if the body is discretized as described above, we 
can use Eq. (5.25) in the form 

(5.94) 
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Note that the matrix of “influence coefficients” on the left-hand side, 

representing the effect on Panel m of a unit velocity “disturbance” on Panel n, is 
identical for the diffraction and radiation problems (for all six modes of motion of 
the body), and thus only has to be computed once at each wave frequency of 
interest. Each boundary condition, on the right-hand side of Eq. (5.92), yields a 
distinct set of source strengths; in the diffraction problem the source strengths are 
functions of the wave heading as well as the wave frequency. 

3.2 Frequency dependence 

We can easily predict the low- and high-frequency behavior of the components of 
the wave-exciting force. In the zero-frequency limit, the waves are much longer 
than the body and thus will not be much disturbed by it. Thus we expect diffraction 
to be negligible so that the wave-exciting force can be determined by integration of 
the pressure induced by the incident waves, as if the body were not present. This is 
known as the “Froude-Krylov hypothesis” after two early investigators who 
employed this assumption; the forces thus computed are called “Froude-Krylov 
forces” in the literature. 

In the zero-frequency limit the free surface remains essentially horizontal so 
that the wave-induced pressure is effectively hydrostatic; thus we expect 

Xi X,i + Ci, as w 4 0 (5.95) 

where Cij is the restoring force coefficient defined in Chapter 2. The only nonzero 
restoring force coefficients with j = 3 are C33 and C53; thus only the heave exciting 
force and pitch exciting moment have nonzero values at zero frequency: 

and X1,2,4,6 -+ 0 as o + 0. 

In the high-frequency limit, we expect all components of the wave exciting 
force to go to zero. At high frequencies the waves are very short, and thus their 
effects will tend to cancel when integrated over the body surface. In addition, at 
high frequencies the wave-induced pressure is behaves as e“, approaching zero 



5. Wave-Induced Forces on Murine Craft 249 

everywhere but in a thin layer at the free surface (the depth of the layer is 
proportional to l/k and thus also goes to zero!). 

3.3 The Haskind relations 

Combining Eqs. (5.33) and (5.78) we can express the wave exciting force per unit 
wave amplitude Xi in terms of the radiation potential ‘pi: 

(5.97) 

A very interesting and usehl result can be obtained by applying Greens theorem to 
the potentials (PI and ‘pD and combining the result with Eq. (5.97). You should recall 
that Green’s theorem states that for any two functions $I  and $2 that satisfy the 
Laplace equation within a region enclosed by a closed surface Stotal, the following 
relationship holds: 

(5.48) 

We will apply Eq. (5.98) to the potentials ‘pi and ‘pD, in a region bounded by the 
body surface S, the free surface, the sea bottom, and an artificial surface consisting 
of a vertical cylinder located far from the body. The contribution of the integration 
on the bottom is obviously zero because of the bottom boundary condition on both 
(pi and c p ~ .  On the free surface, when the boundary condition (Eq. (5.28)) is applied, 
the two terms in the integrand cancel; the same thing occurs on the vertical 
cylindrical surface since both potentials must satisfy the so-called “radiation 
condition” far from the body: 

(5.99) 

which means that body motions and wave diffraction result in a system of waves 
that move away from the body. Thus Eq. (5.98) can be written in terms of integrals 
over the body surface alone: 
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where the final expression results from application of the body boundary condition, 
Eq. (5.92). By substituting this expression in Eq. (5.97) we can obtain an equation 
for the wave exciting force that is independent of the diffraction potential: 

(5.100) 

What this means is that we do not have to solve the diffraction problem to obtain the 
total wave exciting force! It is only necessary to solve the diffraction problem if 
one is specifically interested in the diffraction potential (or the associated pressure 
and force) or the form ofthe diffracted waves. 

We can derive another useful result by noting that Green’s theorem can also be 
applied to qr and (pi in the closed region described above. The contributions of the 
integration on the bottom and free surface are zero for the same reasons as in the 
case discussed above; however there is a nonzero contribution from the vertical 
cylindrical surface because (pr does not satisfy the radiation condition. Denoting this 
surface as S, , Green’s theorem leads to 

so that 

(5.1 OOa) 

This equation can be used to express the wave exciting force in direction i as a 
hnction of the amplitude of the waves radiated in the far-field by forced body 
motions in direction i! By inserting Eq. (5.84) for (pi and the far-field asymptotic 
expression for ( p I  (which can be found in Wehausen [1971]), and using the method 
of stationery phase to evaluate the surface integral, we can eventually obtain 

(5.101) 

where Ai is the complex wave amplitude in the far-field induced by motion with 
unit amplitude in direction i. As pointed out previously, Ai is a function of wave 
direction and radial distance, as well as frequency; Xi is a function of the incident 
wave direction and frequency (since Ai behaves as UdR, there is no net dependence 
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on radial distance). This result is interesting but not particularly useful; however, 
solving for Ai and plugging the result into Eq. (5.47) yields 

(5.102) 

showing how one can obtain the damping coefficient from the wave exciting force 
(unfortunately it is not possible to obtain the exciting force from the damping 
coefficient, however!). The 2-dimensional analog is 

(5.103) 

where the superscripts indicate the effects of waves incident from the positive and 
negative directions. Eqs. (5.102) and (5.103) are known as the “Haskind relations”. 

3.4 Exciting Forces in the Time Domain 

The wave exciting force can be expressed in the time domain as a convolution 
integral of the wave elevation and the wave force impulse response function (IRF): 

(5.104) 

where KD is the wave force IW. Notice that the range of integration is doubly- 
infinite. The force will generally depend on the wave profile atfuture times as well 
as past times. This would seem to violate the principle of causality: How can the 
effects of the waves be felt before they occur? The answer is simple: The wave 
elevation in Eq. (5.104) is specified at the reference point of the coordinate system 
(which could be located arbitrarily). Thus, for example, head waves are felt at the 
bow of a ship before they reach a reference point located near amidships; their 
effects are felt by the ship before they are observed at the reference point. 

To relate these quantities to the frequency-domain results, we can again take a 
Fourier transform, as we did for the radiation forces. Recalling that a convolution in 
the time domain correponds to a simple product in the frequency domain, we obtain: 
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Comparing with Eq. (5.78), we obtain 

and so 

03 

1 
2n 

KDi (t, x) = - ki (0, X)ei"'dw 

(5.106) 

(5.107) 
-m 

It is tempting to discard the negative frequency range of ths  integral; however, this 
is not correct (even though this part of the range is not "physically realizable"). 
Since KD is real, we can use Eq. (5.106) to show that 

Xi(-W) = Xi(0)* (5.1 08) 

so that 

3.5 Efects ofForward Speed on Wave Exciting Forces 

3.5.1 Encounter frequency and encounter spectra 

The salient effect of forward speed is the apparent change in the frequency of the 
incident waves; this is the same phenomenon as the "Doppler shiR" that causes an 
apparent change in the pitch of sound generated by a moving source. 
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The time taken for one wave to pass by a stationary observer is obviously equal 
to the wave period T. However, if the observer moves with velocity Uo in the 
direction from which the waves are emanating, the time will be shorter, 

where V, is the phase velocity of the wave. The apparent or encounterfrequency is 
then given by 

2n 
0 =-- - o + U , k ,  

, t  

indicating that the frequency of encounter is higher than the wave frequency for an 
observer moving into the waves, as expected. More generally, for arbitrary wave 
heading x, the encounter frequency is 

W, =w-U,kcosX (5.1 10) 

with x = 180" representing the case just discussed. In deep water, Eq. (5.1 10) can 
be written in the form 

w 2  
0, = 0-u, -cosx 

g 
(5.1 10a) 

Note that negative encounter frequencies are possible in stem seas (where cosx > 
0); physically this corresponds to the ship overtaking the waves. Eq. (5.110a) can 
be explicitly solved for the wave frequency: 

w=(R+Jn'-4Ro,)y2 (5.111) 

where we have defined 

u, cosx 
(5.11 la) 

For bow seas, 90"s x I 270°, SZ 5 0 so that the square-root term in Eq. (5.11 1) 
must be greater in magnitude than SZ. Since the wave frequency cannot be negative, 
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the negative root must be rejected and the physical solution is unique. However, in 
stern seas, 0'1 x I 90" and 270'1 x I 360°, there are two physically meaningful 
(positive) solutions to Eq. (5.1 10) when the waves overtake the ship. Ths is most 
easily visualized in a plot of Eq. (5.110a) re-arranged in the form 

Eq. (5.1 12) is plotted on Figure 5.8. 

(5.1 12) 

0 0  0 2  0 4  0 6  0 8  1 0  1 2  1 4  

om 

FIGURE 5.8 Behavior of encounter frequency in stem seas (CbO) 

The figure shows that for w/R < 1, the encounter frequency is positive, indicating 
that the waves overtake the ship. This is equivalent to 

g u, cosx <- = v, 
0 

i.e., the component of the observer's velocity in the wave propagation direction is 
less than the phase speed, as expected. At small values of oln, indicating low 
frequencies (associated with high phase speeds) andor low observer speeds, the 
figure shows that 0, = w. At increasing wave frequencies, the phase speed 
decreases, eventually reaching a point where it is equal to the vessel (observer) 
speed Uo (at R = 1 as noted above). Thus there must be a maximum encounter 
frequency for the overtahg waves, between w=O and o=R. The figure shows that 
ths  maximum value is 
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occurring at w = R/2. 

A consequence of the multi-valued nature of the solution of Eq. (5.1 11) is that 
the wave spectrum cannot be calculated from measurements made by a moving 
observer (such as an instrument on a moving shp) in stern seas. The moving 
observer can obtain only the encounter spectrum (i.e., the spectrum in the encounter 
frequency domain), but there is no way to determine how the energy at a given 
value of we is distributed among the wave frequencies which may correspond to it. 
In fact there are three corresponding wave frequencies: the two solutions to Eq. 
(5.111) for overtaking waves and the solution corresponding to -we for waves 
overtaken by the observer (who cannot distinguish between positive and negative 
encounter frequencies). On the other hand, it is possible to transform the wave 
spectrum to the encounter frequency domain: 

(5.1 13) 

The transformation is constructed to preserve the area under the spectrum; thus the 
area is finite despite the singularity at w/Q = 0.5. 

Some care is required in order to compute encounter response spectra using the 
encounter spectrum; this will be discussed under “Motions in Irregular Waves” 
below. 

3.5.2 Froude-Krylov force with forward speed 

To find the pressure induced by the incident waves alone, in a frame moving at the 
forward velocity Uo, we can use Eq. (5.65) and the velocity potential given by Eq. 
(4.20), afer  substitution of the encounter frequency (i.e., the wave frequency 
relative to the moving fkame) for  the wave frequency. Using 

$I = Aqle-imet 

with ‘pI given by Eq. (5.84), we obtain 

(5.1 14) 

(5.115) 
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where we have used Eq. (5.1 lo). This has the same form as the expression in the 
fixed frame, with the substitution of o, for o. Thus this must be true for the 
Froude-Krylov force as well; i.e., the Froude-Krylov force on a vessel moving in 
waves, with encounter frequency me, is identical to that experienced by the vessel at 
zero speed in waves of frequency o = 0,. 

3.5.3 Diffraction force with forward speed 

We have seen that the boundary value problem for the diffraction potential is 
formally identical to that for the radiation potential; the only difference (aside from 
the temporal dependence on encounter frequency) is in the specified normal 
velocity on the body surface. Thus the methods described above to obtain the 
radiation potentials and forces are also applicable to the diffraction problem. 

For slender bodies a development parallel to that in Section 2.6.2 can be 
followed. First we will plug the expression for the incident wave potential, Eq. 
(5.90), into the body boundary condition, Eq. (5.92): 

- _  - ig cash k(h+6) ei(k{cosX+kqsinX) [in,k cos x + in,k sin x + n,k tanh k(h + 4‘)] 
o coshkh 

(5.1 16) 

on the body surface. We will now invoke the slenderness assumption, Eq. (5.77), 
which allows us to neglect the first term in the square brackets in Eq. (5.1 16). In 
addition, we must make an assumption about the wavelength. Since the most 
significant heave, pitch and roll motions occur near the resonant frequencies, we 
should focus on a range of encounter frequencies bracketing these values. If we 
define a “slenderness parameter” E: 

E = (B or T)/L (5.1 17) 

which for slender bodies is small (B and T are assumed to be of the same “order”, 
both small relative to L), we can use Eq. (5.20) to show that 
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Thus, assuming that Uo is not “small” (is., the Froude number Uo/d(gL) is of “order 
I”), as a consequence of the dispersion relation and the expression for the encounter 
frequency, 

k ~ ,  oc E -‘I2 ; A/L a E”’ (5.1 18) 

or, using Eq. (5.115), 

k(B or T) oc E ‘ I 2  ; h/(B or T) oc E-”’ (5.1 19) 

so that the waves must be short relative to the length but long relative to the beam! 
This seems very restrictive; however we will show that the wave exciting forces 
computed according to strip theory approach the expected zero-frequency limits; 
thus our approximate results are also usehl for wavelengths that are substantially 
longer than the ship length. 

Eq. (5.118) shows that k v  and kcare both small on the body surface (relative to 
kc) .  Thus for slender bodies in waves satisfying Eq. (5.1 18), Eq. (5.1 16) becomes 

--- a(PD - ig eik~CoSX[in2ksin~+n3ktanhkh] 
a n a  

(5.120) 

Following Newman [1977], based on Eq. (5.120) we propose the following form for 
the diffraction potential near the body surface: 

‘pD =-e 
tanh kh 

where Y2 and Y3 are functions of (c ,  q,<)  that satisfy 

- -ion, --Ian,; -- -- ay, . av3 
dn an 

(5.121) 

(5.122) 

on the body surface. Furthermore, plugging Eq. (5.121) into the Laplace equation 
and using 



258 The Dynamics ofMarine Craji 

based on slenderness, we find that to first order, Y2 and Y3 each satisfy the 2-D 
Laplace equation in a transverse plane'. 

Applying the free-surface boundary condition, Eq. (5.58), to the expression for the 
diffraction potential, 

yields 

Inserting the expression for ' p ~  from Eq. (5.1 1 l), and carrying out the 6 -derivatives 
and some algebra, we eventually obtain 

which is identical to the boundary condition on the radiation potentials q,, obtained 
by substitution of Eq. (5.56a) in Eq. (5.58). However, in a moving coordinate 
system the frequency of excitation in the radiation problem is the encounter 

frequency whereas the frequency appearing in Eq. (5.124) is the wave frequency. 
Thus we have 

where the potentials are for two-dimensional flow. 

We can now obtain an expression for the diffraction pressure in terms of the 
radiation potentials 'p2 and q3, by combining Eqs. (5.65), (5.121), and (5.125): 

It can be shown, using Eqs. (5.1 lo), that Y2 and Y3 arefunctionally independent, thus each satisfies the 
Laplace equation individually. 
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To obtain the diffraction force we integrate the pressure on the body surface in a 
stripwise manner, as in Eqs. (5.74): 

F . - d< pDnids, i=2,3,4 (5.127) 
0 1 - I  I 

L Z  

with the convention adopted in Section 2.6, that Q = (pxn)l. Inserting Eq. (5.126) 
in Eq. (5.127) we obtain 

for i = 2,3,4. Using Eq. (5.76), this can be written in terms of the zero-speed 
sectional radiation force coefficient fKj: 

where we have also made use of the dispersion relation, and it has been assumed 
that the radiation force vanishes at the forward and aft ends of the body. Note that 
the radiation force coefficients appear as functions of the wave frequency. 

For a body with podstarboard symmetry, f~~~ = fm3 = 0 and fM4 = 0; thus we 
have for the individual components 

F,,, = O  

R33 (6 f FD3 =-- w e  &wet je ikccosxf  

L w 

kikS cosXf R42 (6 7 0)d6 . me -iw,t  sin^ F,, =-n-Ae 
w tanhkh 

(5.130) 

For the yaw and pitch moments, we multiply the integrand in Eq. (5.127) by kc, 
respectively; this results in a contribution from the I3/I36 term in the pressure, even 
for a body with pointed ends. After integrating this term by parts, and again 
assuming that fRi,=O at the ends of the body, we obtain: 
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It is convenient at t h s  point to develop the corresponding equations for the 
Froude-Krylov forces and moments, which when added to Eqs. (5.130) and (5.131) 
give complete expressions for the wave exciting force and moment components. To 
do this we once more employ Eq. (5.127), replacing p D  with pI from Eq. (5.114). 
Again following Newman [ 19771 we can simplify the result by using Eqs. (5.118) to 
argue that 

COShk(h+<)ekrlsinX = 1 +ikq sin x + k< tanh kh (5.132) 
cosh kh 

plus terms of higher order in kq  and k g  Makmg this substitution in Eq. (5.1 14) and 
integrating in the manner of Eq. (5.127) we obtain 

FIi = pgAe-iWe' leik:COSX f(l+ikqsinX+k<tanhkh)nids (5.133) 
L z 

again for i = 2,3,4. Assuming that the body has port-starboard symmetry, we can 
carry out the contour integrals to obtain 

F,, =-pgikAe 
L 

(5.134) 

where the dispersion relation has been used; B( 4 ) and A( 5 ) are the local beam and 
section area, respectively, and Q ( 4 )  is the first moment of the section area about the 
7-axis: 

(5.135) 



5. Wave-Induced Forces on Marine Craft 26 1 

Here v+ denotes positive values of 17 (i.e., the integration is carried out in one 
quadrant; the factor of 2 comes from port-starboard symmetry). Note that Q will 
always be negative in our coordinate system; in fact, dividing Q({) by the section 
area A( { ) yields the <-coordinate of the centroid of the section, whch corresponds 
to the “center of buoyancy of the section” (i.e., the center of buoyancy of a cylinder 
with the given section properties). 

As a simple example we can consider rectangular prismatic barge in beam seas; 
in t h s  case 

1 0 

A({) = BT; Q(O= 2g[L<2] = --BT2 
2 2 -T 2 

so that for x = +_90°, 

F13 =pgAe-jaet(Aw -$V) (5.136) 

The first of these expressions looks peculiar; however it is easy to verify: Figure 
5.9 is a sketch of a cross-section of the barge, showing the free surface at a phase of 
x/2 (ie., a point of maximum wave slope is located on the centerline of the barge). 
With the assumption that the waves are long relative to the beam (see Eq. (5.1 19) 
above), the free surface can be approximated by a straight line with a slope of kA as 
shown on the figure. The hydrostatic force on the vertical sides is given by the 
product of the hydrostatic pressure at the centroid of each side and the 
corresponding area; the values are shown on the figure. The net horizontal force is 
the vector sum of the values, 

in agreement with Eq. (5.136). With regard to the heave force, we recognize the 
first term as the heave restoring force coefficient, pgAwp, multiplied by the wave 
amplitude A, again a hydrostatic effect. The second term, involving the wave 
particle acceleration amplitude, is associated with the force induced by the ambient 
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pressure gradient, which we discussed in the previous chapter in connection with 
Morison’s formula (see Eq. (4.55)). 

The expression for the roll moment can also be verified by consideration of the 
hydrostatic effect of the wave. A roll angle equal to kA would induce a roll 
moment of 

2 I2LBT 

for the rectangular barge; the hydrostatic portion of this (exclusive of the 
gravitational contribution) approximates the wave-induced moment: 

again in agreement with Eq. (5.136)”. 

r F=pg(T-kAB/Z)’UZ 

f F=pg(T+kAB/2)2U2 

F=pg(T-kAB/Z)’UZ 

FIGURE 5.9 Horizontal “hydrostatic” forces o n  barge cross-section in a wave 

The Froude-Krylov yaw and pitch moments are found by multiplying the 
integrand of Eq. (5.133) by +c, with i = 2 and 3 respectively; thus 

” Recall that the origin of the coordinate system that we are currently using is on the undisturbed free 
surface. For an origin at the CG, the Froude-Krylov moment is in fact given by AGMTW; more on this 
later. 
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In the limit of zero frequency, it can be seen that the diffraction force and 
moment components are all equal to zero, since 

2 fN2,fRd2 - w as w+O 
fR3, - w21n(k) as o+O 

For the Froude-Krylov component, F12, F14, and F16 are all zero in the zero frequency 
limit because of the factor of k, and 

F,, - pgA, Ae-ioet as w + O  

as 0-0 Ae-ioct 
Frs - -pgx CFA WP 

in agreement with Eqs. (5.96). 

Unfortunately, the behavior of the approximations at high frequency is not as 
satisfactory (which should not be surprising in light of Eq. (5.128)). In this limit we 
expect the wave exciting forces to approach zero, as argued in Section 3.2. 
However, the diffraction force expressions, Eqs. (5.130)-(5.13 l), “blow up” at high 
frequencies, since f& contains a term proportional to w2Aij(o), and Aij(oo) is 
generally nonzero. The Froude-Krylov forces, as given by Eqs. (5.134) and (5.137), 
exhlbit a similar behavior due to the factor of k. This latter deficiency can be 
remedied by applying the “exact” form of the Froude-Krylov pressure, Eq. (5.1 15), 
instead of the approximate form used in Eq. (5.133). 

As for the diffraction component, our approach again does not yield an 
expression that is appropriate at high frequencies. However, the following 
pragmatic (though theoretically unjustified) argument could be made to obtain 
correction factors for Eqs. (5.130) and (5.131): At high frequencies we have 

‘Osh k(h + ‘) + ekr ; tan kk(h + <) + 1 
cosh kh 

Thus, using Eq. (5.115) and the slenderness assumption, the diffraction potential 
would be expected to be of the form 

ik<cosX e k< [ i ~ ,  s i n x + y 3 ]  ‘pD =-e (5.138) 

(which is also applicable in deep water at any frequency). As pointed out by 
Newman [ 19771, the diffraction force cannot be expressed in terms of the radiation 
force when Eq. (5.138) is used, because of the eki factor, so that the approach is no 
simpler than solving the two-dimensional diffraction problem at each section. This 
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difficulty can be circumvented by replacing the ek5 factor with e-kT*, where the 
“effective draft” T* of each section can be defined as 

T*(U = A ( W ( 5 )  

(Beck et.al. [1989]). The factor e-kT’ thus becomes a “high frequency correction 
factor” for Eqs. (5.130) and (5.131); in fact, there is no harm in retaining this factor 
at all frequencies since it is essentially unity in the range for which the equations are 
strictly applicable.” 

As was the case for the radiation forces, transom sterns (for which fRijf0) 
require the addition of several “end terms” to the expressions for the diffi-action 
force and moment; see (for example) Loukakis and Sclavounos [ 19781. 

3.4 Transformation to “standard” body axes 

As with the treatment of radiation forces, the wave exciting forces in the 
expressions above refer to the seakeeping coordinate system. However, since the 
body is assumed to be fixed in the diffraction problem, the transformation is 
considerably less complicated, amounting only to Steps 2 and 3 in Section 2.7 
above: Rotation through 180” about the longitudinal axis and translation of the 
origin. The rotation is carried out as in Eq. (5.85) using the transformation matrix 
[TI defined in Eq. (5.86). This just amounts to reversing the signs of the sway, 
heave, yaw and pitch components. The effect of this transformation is to change the 
phase of these components relative to the incident wave. Note that the wave 
elevation is not to be transformed; a downward sense for the wave maxima would 
be totally confusing to both the maneuvering and the seakeeping communities. 
However you must keep in mind that a phase of zero for heave (for example) means 
that the heave maxima (positive down) coincide with the wave maxima (positive 
up); this is contrary to the usual seakeeping convention. Thus it is recommended 
that unless time domain maneuvering simulations are to be performed, seakeeping 
axes (z axis upwards) be employed for calculation and presentation of wave- 
induced motions. 

” An identical correction factor, but with a more elaborate expression for T*, is referred to as the “Smith 
correction” by Price and Bishop [1974]; see also Wang [2000]. 
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4. Viscous Roll Damping 

265 

We are now at the point at which we can set up and solve the equations of motion 
for a floating body under the influence of small-amplitude waves in an inviscid 
fluid. However, the results will turn out to be quite unsatisfactory for one mode of 
motion in particular: rolling. The reason for this is that viscous effects contribute 
significantly to roll damping. Neglecting these effects will result in predictions 
which are considerably higher than measured values, particularly near resonance. 

The viscous contribution is significant in the case of roll damping simply 
because the wavemaking contribution is so small for slender (ship-like) bodies. 
Forced rolling motion generally does not produce much of a disturbance to the 
fluid; in fact for a semicircular cylinder rolling about its axis, no waves are radiated 
and so the wavemaking damping is zero. However, we know that some effort is 
required to produce the motion; the resistance comes from frictional drag on the hull 
surface. In addition, if the hull has sharp comers (llke a rectangular barge) there 
will be additional damping due to flow separation and eddy formation. Also, 
appendages contribute significantly to roll damping, particularly at speed. Thus in 
order to make reasonable predictions of rolling motion, we need to be able to 
account for these effects. 

Unfortunately, the theoretical prediction of viscous roll damping is beyond the 
current state-of-the-art for ship-like bodies. The available tools of computational 
fluid dynamics (CFD) are being applied to the problem, but results are just 
becoming available for very simple geometries under somewhat idealized 
conditions (see Salui et.al. [2000], Korpus et.al. [1997]), for example). Thus we 
must use semi-empirical methods or experiments to determine the damping 
moments. 

Note that, as was the case for added mass, the possibility exists for double- 
accounting if viscous roll damping is included in the “wave-induced roll moment” 
term; it could also justifiably be included in the “steady” roll moment (e.g., the 
coefficients d, andd,, in Eq. (3.389d)). Care must be taken to avoid this 
duplication when incorporating wave-induced moments in the equations of motion. 

4.1 Experimental determination 

The best way to find the roll damping moment for a ship would be to impart a roll 
velocity to the hull and measure the hydrodynamic roll moment; ths  would have to 
be done for a range of angular velocities as well as forward speeds. Unfortunately 
this is seldom (if ever) possible in practice, even in model tests. Thus one is usually 
forced to resort to a so-called “roll decay test”, in which rolling motion is induced 
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by releasing the hull after somehow applying a roll inclination (for example), and 
the subsequent rolling motion is measured; the roll damping is computed from these 
measurements. To see how this is done, we will start with the single degree-of- 
freedom equation for small-amplitude “unforced’ roll motion: 

(‘xx f A 4 4 b + B 4 4 T 4 ) + C 4 4 $ = 0  (5.139) 

where B44T denotes “total” roll damping, including viscous effects, and 4 is the roll 
angle. This equation can be written in a more standard form by dividing by the 
coefficient of the acceleration: 

where 

$+2v4)+ wo2$ = 0 (5.139a) 

(5.1 3 9b) 

You should recall that the solution of Eq. (5.139a) is of the form 

where 
the auxiliary equation 

is the initial roll amplitude. Substituting Eq. (5.140) in Eq. (5.139) yields 

o2 + 2v0 + I$ = 0 (5.141) 

Solving for o we obtain 

(5.142) O=-v+Jv’-wo 2 

Note that v and coo are always positive quantities (C44 is positive for a stable vessel 
as we showed back in Chapter 2). If v > coo, Eq. (5.142) yields two real solutions 
and we can write (5.140) in the form 

$(t) = e? (A, ebt + A 2 C b t )  (5.143) 

where 
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(5.144) 

and A, and A2 are determined from initial conditions. In this case the roll angle 
exponentially approaches the equilibrium value (zero) without oscillating. 

However, for rolling motion it is more usual to have v < coo, so that the 
solutions given by Eq. (5.142) are complex; in this case the solution is of the 
general form 

@(t) = e-”‘ (A, cos bt + A sin bt) , 

or, equivalently, 

$(t) = $Oe-vt cos(bt + 6) (5.145) 

where b = ib and 6 is a phase angle. The motion in this case exhlbits decaying 
oscillations. Thus we see that the quantity 

b =Jwo2 -v2  (5.146) 

is the damped natural rolling@equency, and since v = 0 when B 4 4 ~  = 0, 00 is the 
undamped natural rolling frequency (as we have already seen in connection with 
heave in Section 1.2 above).” 

The intermediate case, when v = coo, is known as “critically damped”; in this 
case Eq. (5.139b) gives 

*44T = B44CR = 2d- (5.147) 

where B44CR is the “critical damping” coefficient. Thus the coefficient v can be 
expressed in terms of the fraction of critical damping K (see Section 1.2 above): 

(5.148) 

~ ~ 

As alluded to in Section 1.2, the quantities b, wo and v as defined in Eqs. (5.139b) and (5.146) are 
actually functions of the wave frequency o. To determine the hue undamped natural frequency (for 
example), one could compute 00  using Eq. (5.139b) at a range of frequencies and plot the resulting 
values against o. The true natural frequency is given by the point on this curve at which o = o0. 
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and, from Eq. (5.146), 
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b = w , d z  (5.149) 

A typical time history of unforced rolling motion is shown on Figure 5.10. 
Successive extrema are labeled 4, on the figure. In ths  case there is a maximum at 
t=O and so the phase 6 = 0. According to Eq. (5.145), the extrema should be given 
by 

. K  
- JX- + j = (-1)' +oe 4 2  (5.150) 

where we have made use of Eqs. (5.148) and (5.1490). The ratio of successive 
maxima or minima is then given by 

or 

(5.15 1) 

which provides a means of determining K from the data, if the damping coefficient 
(or fraction of critical damping) is independent of the roll angle (in whch case the 
ratio of extrema is constant) and frequency (since in th s  type of test we can only 
look at the natural frequency"). 

In practice, however, the ratio of extrema usually varies as a function of the roll 
angle due to nonlinear effects. To attempt to account for these nonlinearities we can 
re-write Eqs. (5.139) and (5.139a) as followsy: 

The wavemaking contribution (which we h o w  to be a function of frequency) would in this case be 
computed at o = 00  and subtracted from BUT, determined from K using Eq. (5.148), to obtain the linear 
viscous contribution. 

The restoring moment is also nonlinear; we will ignore this for the moment. 
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(5.152a) 

Time 

FIGURE 5.10 Typical roll decay time history 

Returning now to the roll decay data, we will define the mean roll angle $m and 
roll decrement A$ as 

By integrating Eq. (5.152a) over a half-period and equating the energy dissipated by 
damping to the work done by the restoring moment, we eventually obtain the 
following expression for the roll decrement as a function of the mean roll amplitude 
(Himeno[ 19811): 

(5.153) 

Thus, one could find the coefficients K, cx and p (and so B44,1, B44,2 and B44,3) by 
plotting the roll decrement against the mean roll angle (the “roll extinction curve”), 
and fitting a cubic polynomial to the data, at a range of vessel speeds. 
Unfortunately we are once again unable to identify any frequency dependence of the 
coefficients by thls method, and in addition the coefficients are tacitly assumed to 
be independent of the amplitude of the roll motion. However it is certady an 
improvement over neglecting the viscous contribution and should be fairly accurate 
at the frequency at whch the rolling motion is largest, provided that the amplitude 
range of the extinction data brackets that experienced by the ship. 
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To illustrate the procedure, the first 8 extrema of a roll decay time history (such 
as that in Figure 5.9) are given in the second column of Table 5.1 below. The third 
and fourth columns contain the mean roll angle and the roll decrement, computed as 
indicated above. These are plotted on Figure 5.1 1. The results of the regression 
with a cubic polynomial (with constant term set equal to zero) are also shown. 

By comparing the coefficients of the regression equation to those of Eq. (5.153) 
we can obtain the following values of the quantities K, a and p: 

B44,3 - 0.00056 = 0.00456; f3 = -- B44,2 
K = 0.18776l~ = 0.060; a = 

1, +A44 Ixx+A44 0 0  

Care must be taken in canylng out the curve fit, since it is possible to get 
nonsensical results if there is an insufficient number of data points available or if, 
for whatever reason, the data does not define a smooth curve (it seldom does). In 
these cases it is quite possible to obtain negative values for the regression 
coefficients; however, it is difficult to justify a negative fraction of critical damping 
physically. Similarly, the coefficient B44,2, which is in essence a “crossflow drag 
coefficient” multiplied by a lever arm, is expected to be positive. The coefficient 
B44,3, on the other hand, does not have a simple physical justification and so could 
be viewed as an empirical “adjustment” to the second-order tenn, which may be 
positive or negative, provided that the total nonlinear contribution is positive (we 
note that the values of B44,3 presented by Himeno [ 198 11 for four different ships, at a 
range of speeds, are all positive).

0 2 4 6 8 10 12 

Om, deg 

FIGURE 5.1 1 Roll extinction curve and regression results 
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TABLE 5.1 Roll decay data 
j b Qm A+ 

deg deg deg 
0 13.40 

11.43 3.93 
1 9.46 

8.32 2.28 
2 7.18 

6.32 1.72 
3 5.46 

4.91 1.09 
4 4.37 

3.92 0.88 
5 3.48 

3.15 0.66 
6 2.82 

2.56 0.51 
7 2.31 

4.1.1 General single degree-of-freedom response 

At this point it is useful to digress somewhat to write the general expression for 
the single degree-of-freedom response' for a floating body in the frequency domain 
(Eq. (5.18) was the solution for heave motion), in terms of the dimensionless 
quantities defined above: 

which can be re-written in the simple form 

(5.154a) 

(5.154b) 

Note that the effects of coupling among the modes of motion may be significant; the degree of coupling 
is a function of hull shape as well as the choice of the origin. Thus the single DOF equations should in 
general be used with caution. 
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if Cjj # 0 (that is, if there is a natural frequency in mode j ;  thus Eq. (5.154b) holds 
for j = 3 , 4  and 5), where 

(5.154~) 

If the natural frequency is Pow enough to pennit the wave exciting force to be 
approximated using the Froude-Krylov component, Eqs. (5.134) and (5.137), and if 
we transfer the moments to a coordinate system with origin at the CG””, it can be 
shown that 

so that Eq. (5.154b) becomes 

which can be regarded as “magnification factors” for the responses relative to the 
wave amplitude or wave slope. At the resonant frequencies (A = l), Eq. (5.155) 
reduces to 

(5.156) 

The behavior of the magnification factor with the frequency ratio A for several 
different values of the damping ratio is illustrated on Figure 5.12 (note the 
logarithmic vertical scale). 

For heave and pitch motions, the damping is generally quite substantial, and 
magnification factors less than 2 are typical. However, for typical s h p  forms the 
total roll damping moment is small (generally less than 5% of critical for ships 
without bilge keels). Thus the roll magnification factor may be greater than 10 at 
resonance. This could result in large roll motions if the encountered wave system 
contains a significant amount of energy near the roll resonant period, particularly if 
the operator cannot alter course to reduce the excitation (due, for example, to loss of 
power). The (undamped) roll resonant frequency was given in Eq. (5.139b) above; 
the period is 

dd For other choices of the origin, coupling among the various motions must be considered; the same 
conclusions will eventually be reached, however. 
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which can be approximated for typical ship forms using (Beck[1989]) 

2.27B 
a 4 s ;  (5.157) 

where B is the beam. Roll resonant periods for typical large ships are in the range 
of 10 to 16 seconds (possibly considerably longer for containerships, which 
generally have low values of GMT). As shown in Table 4.1, wave modal periods in 
this range are most probable in Sea States 6 and hgher, which are relatively 
uncommon events. However, encounter periods in th s  range are quite possible in 
lower sea states, in following seas. Thus there is motivation to increase the roll 
damping and various methods have been applied. 

10 

8 
5 I-  

2 

C 
2 
._ 

E 
m 

0.1 7 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Frequency ratio, A 

FIGURE 5.12 Magnification factor (Eq. (5.155)) vs. frequency ratio 

The simplest and most common of these are bilge keels, which are usually 
nothing more than flat plates installed along the bilge. The bilge keels are generally 
aligned with the local longitudinal flow lines (determined from the results of flow 
visualization tests) to minimize resistance. They usually extend about one-third of 
the length of the ship, and spans of 0.5m - 1.0m are common on large ships (the 
bilge keels are typically sized so that they do not extend below the baseline or 
outboard of the maximum beam). The bilge keels can increase the roll damping by 
a factor of 2 or more, thus reducing the magnification factor at resonance by this 
factor. This reduction of rolling motion is generally well worth the small price in 



214 The Dynamics rfMarine Craft 

the form of increased resistance (the increase in power is typically on the order of 
3%). Other anti-roll devices are discussed below. 

4.2 Prediction of roll damping 

As discussed above, the only techniques that are presently generally available for 
the prediction of viscous roll damping of realistic ship forms consist of semi- 
empirical formulas. The principal weakness of these methods is that their use is 
restricted to the hullforms comprising the database of each formulation. In addition, 
the fit of these expressions to the data that they represent can only be described as 
fair, particularly for the expressions representing the effects of forward speed. 

The most popular semi-empirical method currently in use is the “component 
analysis” described by Himeno [1981]. In this method (actually an amalgamation 
of the methods of several researchers) the total roll damping is broken down into its 
components, consisting of 

Friction on the hull surface (BF); 
“Eddy damping” caused by flow separation at the bilge or near the stem 
and stem (BE); 
Damping induced by lift forces on the hull (BJ; and 
Bilge keel damping, due to: 

Normal force on the bilge keels (BBKN); 
Pressure on the hull induced by the flow around the bilge keels (BBKH); 
and 
Wavemaking damping of the bilge keels (BBK~) .  

This method “can be safely applied to the case of [an] ordinary ship hull form with 
single screw and rudder if the ship is in its normally loaded condition” 
(Himeno[ 198 13). The resulting damping moment is a function of frequency, 
amplitude, and forward speed. The relative contributions of the various components 
are shown on Figure 5.13. 

The Himeno method is, unfortunately, a little complicated. The expressions for 
the eddy damping and bilge keel-induced hull pressure components are presented as 
2-D sectional values, which must be integrated over the length of the hull. No 
expression is available for the bilge keel wavemaking component; Himeno states 
that “for bilge keels with ordinary breadth of B/60 to B/80 [B = maximum beam], 
we can safely neglect the wave effect of bilge keels”. 
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0.0 0.1 0.1 Fn 0.3 

FIGURE 5.13 Contributions of components of roll damping 
(from Himeno [ 198 11) 

An alternative, less complicated (but probably also less accurate) approach, 
originally formulated by Watanabe and Inoue [1964], is also presented by 
Himeno[l981]; a simplified version was developed by de Kat (see Beck et.al. 
[ 19891). This formulation is based on “an extensive series of model tests and some 
theoretical considerations on the pressure distribution on the hull caused by ship roll 
motion” at zero speed (a forward-speed “multiplier” was later proposed by another 
investigator). Himeno likens the approach to a “drag coefficient” for the hull and 
bilge keels; thus the formulation would appear to be applicable only to the quadratic 
coefficient Ba,*; this is further supported by the fact that the method is presented in 
terms of the so-called “N-coefficient”. where 

So, despite the fact that Himeno and Beck et. al. present formulas for both Ba , ,  and 
B44,2, there is little justification for a linear term in this approach. 

Using the expressions given in Himeno’s report, we obtain the following 
expression for the quadratic damping coefficient: 

[ CBT ABKoo +0.01 f(Fn,A) 1 B44.2 = h 1.42-+2- 
L L2 

(5.158) 

where 
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mB2 180 +- ___- h=[( KG - T/2 ]3+(x]zL c B ]  
B 4B 64T 4x2CB 7~ , 

c zz 1.1994Cwp’ -0.1926Cwp 

and KG is the height of the CG from the keel, Cwp is the waterplane area 
coefficient, m is the mass of the ship, and c0 is a “bilge keel efficiency” factor, 
shown as a function of the aspect ratio of the bilge keel on Figure 5.14. The 
expression for the factor c is the result of fitting a curve to the results of the more 
complicated equations given by Himeno; the results match to w i t h  1% for 0.55 I 
Cwp 5 1 .O.  The factor f(Fn,A) represents the effect of forward speed: 

1-~-10Fn  

f(Fn,A)=1+0.8 
A2 

(5.158a) 

where Fn is the Froude number and A is the frequency ratio (eq. (5.154~)). These 
formulas are based on “detailed analysis of many typical commercial ships, 
including some very high block coefficient tankers”. An additional caveat added by 
Himeno [1981] stems from the fact that roll decay data was used, limiting the 
applicability of the formulas to the natural roll frequency: “. , .these formulas should 
be applied to the case of a normally loaded shp, and then only near the natural 
frequency.. .”. 

4.3 Equivalent linear roll damping 

Unfortunately, it is not easy to make use of the nonlinear roll damping terms in 
a frequency-domain analysis (they are by definition excluded from our standard 
linear “small amplitude” model). However, these effects can be extremely 
important, particularly near resonance where the roll motion is dominated by the 
damping moment. To incorporate the nonlinear effects in the linear model, it is 
common to define an “equivalent linear damping” coefficient, which is generally a 
function of the roll amplitude and frequency. One way to define the equivalent 
linear damping is to determine the linear damping coefficient that produces the 
same energy dissipation in a half-cycle of motion as the actual (nonlinear) process 
(similar to the analysis that led to Eq. (5.153)). This method leads to the following 
expression: 
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(5.159) 

where $0 is the amplitude of the roll motion. Thus we need to know the roll motion 
before we can solve the roll equation! In practice this difficulty is usually 
surmounted by employing an iterative procedure, in which an initial amplitude is 
assumed for the first calculations and subsequently “tuned” based on the results. 

50 /------ - 

.so 

.45  

I ,  I I I 1  I I 
-002 .003 .005 .01 .02 .03 . 0 5  .10 

barc/t,, (aspect ratio of bilge kee l .  

FIGURE 5.14 Bilge keel efficiency 00 (Eq. (5.158)), from Himeno [1981] 
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5. Some Examples 

5.1 Heaving and Pitching in Head Seas 

As a first example, we will compute the heaving and pitching motions of the 
merchant ship that we used in Chapter 3, in regular head waves. Characteristics are 
given in Table 3.1 and the body plan is shown on Figure 3.8. We will make use of 
strip theory, using Equations (5.80) along with the results shown on Figures 5.6-5.7 
to find the added mass and damping forces and moments. We will assume a speed 
of 10 knots, and waves with amplitude 2.0m and period 9.5s in “deep” water. 

Strictly speaking, we need to consider the surge motion, also, since surge is 
coupled with heave and pitch. Unfortunately, though, surge forces and surge- 
induced forces and moments cannot be computed with the aid of strip theory. 
However, we can make use of the (zero-frequency) added mass and steady forces 
that we obtained in Chapter 3 for surge, tacitly assuming that the frequency effect is 
small (and ignoring the inconsistency in the orders of magnitude between the surge 
and heave/pitch terms). In addition, the net thrust will be assumed to be of the 
simple form adopted in the example in Section 7.2.3 in Chapter 3, Eq. (3.160): 

a. + X, = aoou* (5.160) 

(consideration of the effects of the propulsion system dynamics, described in 
Section 4.2 in Chapter 3, is an interesting and non-trivial problem that we will forgo 
here). We can use the Holtrop method (Appendix A, Chapter 3) to estimate the 
resistance, wake fraction and thrust deduction, and the B-series data (Appendix B, 
Chapter 3) to find the thrust. For the required propeller data we will assume 

Diameter 5.5m 
Pitc WDiameter 1.2 
Expanded area ratio 0.90 
Number of Blades 5 

In addition, the Holtrop method requires information on the appendages; we will 
assume that these consist only of a rudder. The area can be estimated based on the 
DnV rules for minimum rudder area (Det norske Veritas, [1975]): 

(5.161) 
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With the ship characteristics given in Table 3.1 and the rudder area from Eq. 
(5.161), the Holtrop method predicts a resistance of 145.8 kN, w = 0.201 and t = 

0.188, at 10 knots. Following the method given in Section 7.2.4 in Chapter 3, we 
find an equilibrium propeller speed of No Y 54.42 RPM and 

aoo N -109.5 kN/(m/sec). 

Additional applied forces that we must consider include radiation and wave- 
exciting forces, other steady-flow forces (in addition to ao), and gravityhuoyancy 
forces. To be consistent with the treatment for the wave-induced forces presented 
above, we will consider only terms that are linear in the motion or velocity 
perturbations. 

With the assumption of head seas and port-starboard symmetry, sway, roll and 
yaw and all of their derivatives will be zero. Thus the surge-sway-yaw equations, 
from Eqs. (3.2) and (3.3) (considering linear terms only), become 

x = m[G + z , ~ ]  
z = m[\; - u,q - XGq] 
M = 1 ~ 4  + m{zGG - x,[\; - U,q] 

(5.162) 

Referring to Eqs. (3.37a,c,e), we find that in the present case the only linear 
steady force terms on a vessel with port-starboard symmetry are 

X, = a o  
z, =c ,  +c,w+c,q 
M, = e o  +e,w+e,q 

The coefficients co and eo (expected to be functions of the speed Uo) result from the 
asymmetry of the hull about a horizontal plane; they induce a mean “sinkage” and 
“trim” which are generally small relative to the wave-induced motions and which 
will be neglected here. The coefficients cI, c2, el and e2 represent linear lift and 
damping induced by viscous effects, which again are expected to be negligibly 
small relative to the wavemaking damping termsbb. The drag term a. has been 
accounted for already in Eq. (5.160). 

bb Forces related to “crossflow drag” may become important in large, steep waves; however these terms 
are expected to be quadratic in wand q. 
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The gravity-buoyancy terms are usually expressed in terms of the restoring 
force matrix C; however it is a bit more convenient here to use Eqs. (2.35), which 
define the heave force and pitch moment explicitly: 

For small motions we can replace the displacements relative to the fixed axes with 
their body-axes counterparts in these expressions. 

The equations of motion and gravity-buoyancy forces have been expressed with 
respect to maneuvering body axes, so we must use the expressions for wave- 
induced forces in a consistent coordinate system. For radiation forces we have Eq. 
(5.89) : 

(5.164) 

where it is assumed that A, and BG have been evaluated with respect to seakeeping 
coordinates (e.g., x,y,z on Figure 5.5), and we have defined 

Dij = (26i,1 + 26i,4 - 1)(26j,l + 26j,4 - 1) (5.165) 

We will estimate the coefficients using Eqs. (5.83) and the Lewis-form results 
shown on Figures 5.6-5.7. 

To use these figures, we need the usual Lewis-form coefficients for each 
section (we have these already in Table 3.2), and the nondimensional encounter 
frequency o,d(B/g). The encounter frequency is computed from Eq. (5.1 10a); the 
heading angle is 180" so cosx = - 1 ; the wave frequency is 

2n 
9.5 

o = - = 0.661 rad / sec 

and 10 knots = 5.15 mlsec so 

= 0.89lrad/sec 
0.6612 

9.81 
0, =0.661+5.15- 
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Since we are using 2-D sectional values, the local beam is to be used to normalize 
the frequency. Results for the (nondimensional) sectional values of A33’(5), B33f(5), 
found by interpolation from Figures 5.4b and 5Sb, are given in Table 5.2 below 
(columns 7 and 8). Note that the nondimensional sectional values must be 
“dimensionalized” (i.e., multiplied by the appropriate dimensional factor) prior to 
carrying out the numerical integration along the body length, because the 
normalizing factor is a function of the local section properties. 

Knowledge of A33f( 5 ), B33‘( 6 ) allows us to calculate the coefficients A33, B33, 
A35, B35, Ass and Bss; strip theory gives no information about the surge force and 
the surge-induced heave force and pitch moments (other than that they are small 
relative to the heave and pitch forces and moments). So, as mentioned above, we 
will make use of the zero-frequency added mass coefficients from Chapter 3; since 
there are no waves in this limit, we have to assume that B l j  = B,,* = 0. We have an 
approximation for All from the previous example in Chapter 3, and A15 can be 
estimated with Al l  and the vertical coordinate of the center of buoyancy using Eq. 
(3.13). 

Unfortunately there is no “back of the envelope” method to estimate the heave- 
induced surge added mass A1.3 (equal to the surge-induced heave added mass). 
Qualitatively, it should be related to the degree of bow-stern asymmetry of the 
body; the effect is undoubtedly small for a “slender” ship hull and we will set it 
equal to zero for lack of a better alternative. 

Finally, we need to add the wave exciting forces, Eqs. (5.130) and (5.131) for 
diffraction and Eqs. (5.134) and (5.137) for Froude-Krylov. Note that these must be 
transformed into standard body axes as explained in Section 3.6. The combined 
expressions for Fx = F, + FD in body axes can be written in the form 

Fx3 = -Ae-’weP je-kT*(5)([A(&, w, o,)cos k& - B (5, o, @,)sin k&] 
(5.166a) 

-i[A(C, w,o,)sin k 5  + B (5, w, w,)cos k5)dC 
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TABLE 5.2 Sectional added mass and damping coefficients 

B 
0.00 
7.28 
14.60 
21.42 
27.36 
39.66 
52.46 
69.32 
74.80 
74.80 
74.80 
73.88 
59.78 
48.79 
36.94 
29.66 
24.64 
18.24 
7.28 
3.64 
0.00 

T 
0.00 

22.80 
26.57 
29.23 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
30.51 
4.00 
1.77 
0.00 

B/2T Beta omegae’ A33’ 833’ omega’ A33’ 833’ 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.160 0.540 0.424 0.500 0.180 0.315 0.594 0.138 
0.275 0.562 0.600 0.611 0.416 0.445 0.833 0.318 
0.366 0.548 0.727 0.761 0.646 0.540 0.907 0.581 
0.448 0.556 0.821 0.870 0.838 0.610 1.069 0.744 
0.650 0.669 0.989 0.940 1.128 0.734 1.232 0.991 
0.860 0.679 1.137 1.128 1.691 0.844 1.573 1.457 
1.136 0.782 1.308 1.128 2.133 0.971 1.723 1.820 
1.226 0.870 1.358 1.072 2.033 1.008 1.666 1.732 
1.226 0.921 1.358 1.063 1.833 1.008 1.617 1.565 
1.226 0.885 1.358 1.066 1.974 1.008 1.648 1.682 
1.211 0.774 1.350 1.158 2.380 1.002 1.821 2.022 
0.980 0.674 1.214 1.224 2.079 0.901 1.775 1.775 
0.799 0.529 1.097 1.444 2.008 0.814 1.952 1.707 
0.605 0.410 0.955 1.339 1.602 0.709 1.728 1.372 
0.486 0.440 0.855 1.067 1.129 0.635 1.334 0.985 
0.404 0.470 0.780 0.904 0.851 0.579 1.099 0.753 
0.299 0.500 0.671 0.685 0.554 0.498 0.804 0.501 
0.910 0.572 0.424 3.495 1.165 0.315 4.058 0.914 
1.028 0.500 0.300 5.417 1.105 0.222 5.917 0.876 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

where we have set the heading x = 180” for head seascc, and for convenience 
defined the quantities 

where (you will recall) A(< ) and B(< ) are the local section area and beam, 
respectively. Note also that we have employed the “high frequency correction 
factor”, 

e-kT*(<) 
7 

discussed in Section 3.5.3. It is important to note that the sectional added mass and 
damping coefficients in these expressions are to be evaluated at the wave frequency, 
not the encounter frequency, as explained in Section 3.5.3 above. So, unfortunately, 
we cannot use the values listed in Table 5.2; values corresponding to the 
dimensionless wave frequency are tabulated in Columns 10 and 11 of Table 5.2. 
Notice also that we have separated real and imaginary parts of the portion of these 
expressions “to the right” of the e-iact factor; that factor is retained because it will 
ultimately “cancel out” of the equations. 

cc The corresponding expressions for arbitrary heading are obtained by substituting (-kcosx) fork in Eqs. 
(5.166). 
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Unfortunately we have no corresponding expression for the longitudinal 
component of the wave exciting force, since in strip theory the longitudinal force is 
“of higher order” in the slenderness parameter. Thus to be consistent we must set 
the longitudinal component of wave exciting force equal to zero. It is tempting to 
employ a low frequency approximation such as Morison’s formula, Eq. (4.55). For 
Morison’s formula to be valid, the variation of the wave-induced particle velocities 
must be negligibly small over the length of the body; t h s  is equivalent to the 
requirement that the body be short relative to the wavelength. In the present 
example the wavelength is 

indicating that the hull is longer than the wave. Thus use of the Morison formula 
would result in an over-prediction of the force in this case, because the cancellation 
that occurs due to the reversal of the particle velocities over the length of the hull is 
not accounted for. 

We are now at last in a position to write the equations of motion. We anticipate 
a solution of the form 

as assumed in Eqs. (5.164) above; recall that the ~i are complex motion amplitudes. 
Inserting these expressions in Eqs. (5.162) and combining with Eqs. (5.163)-(5.164) 
we obtain after some rearrangement: 

[-m,2(m+A,,)-iwea,,~ol - m e 2 ( r n z G  +AI5)x,5 =AX,  = O  (5.168a) 

or, in matrix fonq 
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where X3 and Xs are given by Eqs. (5.166a) and (5.166b), respectively; note that the 
motion amplitudes are complex. 

in 1 
the 

Table 5.3 is a summary of the input quantities, computed using the information 
'ables 4.land 6.2. The pitch gyradius was assumed to be equal to one quarter of 
waterline length, which is a common assumption if detailed mass distribution 

data is not available. The waterplane area and its first and second moments (used in 
the computation of LCF and GM) were obtained by simple numerical integration of 
the local beam along the length of the ship. Values of the added mass and damping 
forces were similarly obtained from the sectional quantities, according to Eqs. 
(5.83) with the coordinate transformation (Eq. (5.165)). A value of KG = 10.86m 
was assumed for the computation of GM as indicated in the table; KB was estimated 
using sectional values calculated using the Lewis-form offsets. Finally, the exciting 
forces were obtained by numerical integration of Eqs. (5.166) using the values of 
A33(5) and B33(5) at the wuvefrequency as indicated. 

TABLE 5.3 Calculated ouantities 
KG (assumed) 1 10.861m I I a00 I - 1 09.5 I kN/( d s )  

I I I 

Now all that remains to be done is to plug into Eq. (5.169) and solve by 
inverting the matrix and multiplying by the force vector (if you prefer not to work 
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with complex numbers, Eq. (5.169) can be separated into real and imaginary parts, 
yielding 6 simultaneous equations). The solution (per unit wave amplitude) is: 

xol/A = 0.021 - 0.013i meterslmeter 
xo3/A = -0.130 - 0.049i meterdmeter 
Gs/A = 0.015 - 0.009361 radianslmeter 

The final answer is obtained by multiplying by the wave amplitude (2m). Results in 
the conventional (amplitude and phase) format are given below: 

xol = 0.05m 
xo3 = 0.28m 

= -3 1.7" 
63 = -159.3" 

~5 = 2.03" 6s = -32.0" 

The surge motion is small, as expected, since it is (in this calculation) entirely 
due to coupling with pitch; it would be even smaller if the origin were taken at the 
VCG. To evaluate the importance of coupling with surge on the heave and pitch 
motions in ths  case, we can compare th s  solution with that obtained from the heave 
and pitch equations alone: 

xo3 = 0.28m = -159.3" 
~5 = 2.03" 6s = -3 1.9" 

which is virtually identical to the solution with surge. Thus we might as well 
neglect surge in such calculations. If surge is of particular interest, strip theory 
should not be used! 

As a "sanity check" on these results, it is useful to examine the non-dimensional 
response amplitudes and natural frequencies. The dimensionless heave amplitude is 
simply xo3JA = 0.17; however the pitch amplitude should be normalized based on 
the amplitude of the wave slope. In the present example, 

Max. wave slope = kA = 0.089 = 5.1" 

so the dimensionless pitch is 0.40. 

Using Eq. (5.20) we can calculate the undamped heave natural frequency; the 
expression for pitch natural frequency is obtained by replacing m, A33 and C33 by 
I,, ASS and Cs5 respectively: 
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ao3 =/==0.875rad/sec; m+A33 ao5 = /T=0.850rad/sec I, +A55 

Note that the values of A33 and AS5 used in these formulas should correspond to the 
corresponding natural frequencies so that in general an iterative procedure is 
required. In the present example 

w 
- 1.02; -2- = 1.05 0, -- 

a 03 a 05 

so we are pretty close to the natural frequencies. It is also useful to look at the 
fractions of critical damping as described in Section 1.2 above (see also Eq. 
(5.1 47)): 

K~ = 2,/- = 0.31; K~ = 2 d m  = 0.26 

If the waves are long enough to justify the zero-frequency Froude-Krylov 
approximation, we can use Eq. (5.156) to find the magnification factors at 
resonance: 

These values are substantially hgher than our solution. However, the zero 
frequency Froude-Krylov assumption is not justified in the present case because the 
wavelength is not long with respect to the s h p  length, as we have seen above (it is 
in fact shorter than the shp  length). So we expect some cancellation to occur 
among the sectional exciting-force values along the length of the shp, yielding a 
result that is smaller than the result of the zero-frequency approximation. In 
addition, there is a term in the expressions for Froude-Krylov heave force and pitch 
moment that is proportional to a2; Eqs (5.134) and (5.135) show that this term acts 
to reduce the exciting force and moment relative to the zero-frequency value, 
regardless of the heading. Thus we expect the heave and pitch to be lower (possibly 
substantially lower) than the values indicated by these magnification factors. 

5.2 Rolling in Beam Seas 

The second example we will consider is the behavior of a simple barge in beam seas 
at zero speed. A body plan is shown on Figure 5.15 and particulars are summarized 
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in Table 5.4. The barge is symmetrical fore and aft (we assume that the mass is 
symmetrically distributed also) so that we need to consider only the coupled yaw 
and roll equations. For small motions and with Uo = 0, Eqs. (3.2) and (3.3) reduce 
to 

Y =m[+-z,~j] 
K = I , P -  mz,v 

(5.1 70) 

relative to the standard (maneuvering) coordinates. In the present example, since 
there is no steady motion, the only forces in addition to gravityhuoyancy are those 
induced by the waves. Thus we expect the response to again be of the form of Eq. 
(5.167). By inserting this and the expressions for the radiation force and moment, 
Eq. (5.164), the roll restoring moment, Eq. (2.36), and the wave exciting force and 
moment Fxi = Axoie-iat in Eq. (5.170), and doing some algebra, we finally obtain 

I- o (m + A 22)-  ioB,, b( o2 + lo2 (mzG + A2,)+ioB2, b( o4 = AX, (5.17 1 a) 

[02(mzG + A 4 2 ) + i w B 4 2 ~ 0 2  + [-02(Im +A,,)-ioB,,, +pgV,GM,b(,, =AX4 
(5.17 lb) 

where the added mass and damping coefficients are to be computed with respect to 
the seakeeping coordinate system (x,y,z on Figure 5.5)dd, and we have used 

Notice that we have used the equivalent linear damping coefficient defined in 
Section 4.3. 

Length on waterline, m 60.0 
Beam, m 10.0 
Draft, m 2.5 
Displacement, tons 1 I79 
KG, m 3.0 
KB, m 1.38 
Roll gyradius, m 3.50 
CB 0.766 
Sectional area coefficient(al1 sections) 0.950 

This may seem confusing, but as we have stated before, all known sources of such data (software dd 

output, experimental data, tabulated 2-D coefficients, etc.) have been computed or measured relative to a 
coordinate system in which the z-axis is positive upwards. 

TABLE 5.4 Characteristics of Barge
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FIGURE 5.15 Body plan of barge. Dimensions in meters. 

To proceed further we need to defme the wave condition. Let's assume a 
wavelength of 50m and a height of 1.25m (and assume that the water is "deep"). 
We can now compute the following quantities: 

Quantity Equation Value 
k 2nIh 0.126 m-' 
0 dispersion 1.1 1 radsec 
T 2nlo 5.66 sec 

GMT (2.37) 2.73m 
I,, mgyradius2 14,430,000 kg-m2 
c44 (2.33) 31,540,000 kg-m 

oO4 (estimated)" (5.139b) 1.2 radsec 
A (5.154~) 0.93 

TO4 (estimated) 2do04 5.28 sec 
kA 0.0785 rad = 4.5" 

*using A44(0) from Table 5.6 below 

Notice that the predicted roll period is quite short; this is generally true for barges, 
which are usually wide and shallow (resulting in higher values of S,,/VO) relative to 
ships. Since the wave period is close to the roll natural period, we expect relatively 
large roll motions. Figure 5.12 indicates that the magnification factor should be 
around 5, assuming that the damping is around 5% of critical. This corresponds to 
a roll angle of 22.5" in the present example. It is likely, however, that the actual 
value will be lower since the long wave approximation for the exciting moment 

TABLE 5.5  Calculated quantities
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cannot be expected to be valid at this relatively high frequency; also, the nonlinear 
roll damping will probably reduce th s  further. 

The added mass and wavemaking damping coefficients can be obtained using 
the Lewis form charts, Figures 5.6 and 5.7, and the exciting forces computed using 
these results and Eqs. (5.130) and (5.134) as in the previous example (in this case 
we do not need a second set of added mass and damping values since w, = 0). Note 
that one of the strip theory restrictions on wavelength is not met since h > L. 
However, we know that strip theory yields the correct low-frequency results so strip 
theory shouldn't be too bad. 

The quadratic roll damping coefficient can be estimated using Eq. (5.158). To 
avoid having to deal with a nonlinear equation, the equivalent linear roll damping, 
Eq. (5.159), will be used as mentioned above. 

Computed values of the added masses, damping coefficients, and wave exciting 
forces are given in Table 5.6. Before solving for the motion amplitudes as we did in 
the previous example, we need an initial estimate of the roll amplitude. Based on 
the discussion above, a value of 15" = 0.26 radians will be chosen. The equivalent 
roll damping is then 

8 0  
3x 

B44e = B,,,, +-I~)~B,, ,~ = 6,270,000kNm 

which is only 3.5% hgher than the linear component alone. Thus the nonlinear 
contribution does not appear to be very significant in the present case (remember 
that this is based on the initial guess value for the roll amplitude). 

We can now plug the coefficients into Eqs. (5.171) and solve for the complex 
motion amplitudes: 

xo21A = 0.034 - 0.9721 meterslmeter 
xo41A = -0.036 + 0.3 17i radiansfmeter 

TABLE 5.6  More calculated quantities



290 

or 

The Dynaniics ($Marine Crufi 

xo2 = 0.61m 2j2 = -88.0" 
~ 0 4  = 1 1.4' 84= 96.5" 

We can now carry out a second iteration, re-computing the equivalent linear roll 
damping with I $ ~  = 1 1.4'; the results are: 

x02 = 0.61m i?j2 = -87.8" 
~ 0 4 =  11.5" 84= 96.4" 

which is (to quote the host of a popular television quiz show) our "final answer" 

This amount of rolling is probably not acceptable for most applications. If 
these wave conditions are typical for the operational area, the options are to change 
the natural roll period or to provide more roll damping. Changing the roll period 
requires either modifying the hull design (e.g., changing the beam) or altering the 
weight distribution (changing KG andor I=). This may not be feasible due to other 
constraints on the design. It is usually far easier to increase roll damping, and the 
simplest method is to install bilge keels. 

The bilge keels are generally oriented at 45" to the baseline to maximize the 
projected area normal to the flow induced by rolling. The span is generally limited 
by a requirement that the bilge keels cannot extend below the baseline. In the 
present example, the maximum span would then be just over 0.5m. We will use Eq. 
(5.158) to predict the impact of adding a pair of 0.5m x 40m bilge keels to the 
barge. 

Referring to Figure 5.14, we find that for 

bbk - 0'5 -0.0125; C, =0.766 
'bk 40 

the bilge keel efficiency is o0 = 113. Plugging into Eq. (5.158), we find 

B44,2 = 20,649,000 kg-m2, 

substantially higher than the value for the unappended hull. The equivalent linear 
roll damping becomes 

B44e = 7,750,000 kg-m2/sec 
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using an estimated roll amplitude of 5". T h s  is an increase of about 27% relative to 
the unappended case. Thus we expect a reduction by a factor of about 

1 -- 
4-57 - 0.89 

in the roll amplitude, based on Eq. (5.156). T h s  means that our estimate of 5" has 
to be revised upwards; however th s  in turn increases the contribution of B44,2 to 
the roll damping. After a couple of iterations we find 

xo2 = 0.62m 62 = -93.2" 
~4 = 8.8" 64 = 98.2" 

The roll amplitude is reduced by about 24%. 

6. Roll stabilization devices 

Bilge keels are the simplest of the roll mitigation devices. They are quite effective 
at reducing roll motions near resonance, where the most severe motions generally 
occur. However they add to the resistance of the ship, and are vulnerable to 
damage. There are numerous of other devices currently in use that are more 
effective, at the penalty of increased complexity. We will briefly introduce each of 
these here. 

6. I Passive devices 

Passive devices are advantageous because they have no moving parts and require no 
power or control systems for operation. Popular passive devices in addition to bilge 
keels include free surface tanks and U-tube tanks (Figure 5.16). These anti-roll 
tanks are based on the fact that at their resonant frequency, the roll moment applied 
by the tanks to the ship is 180" out of phase with the roll velocity and thus increases 
the total roll damping. A disadvantage of these anti-roll tanks is that they reduce the 
roll restoring moment, llke any tank that has a free surface. Imagine that the entire 
hull was filled with water: The hydrostatic pressure on the inner surface would 
cancel that on the outer surface, resulting in no net hydrostatic force or moment. If 
only a portion of the ship is "flooded", the effect is of course reduced 
proportionally. This effect leads to increased rolling due to the stabilization device 
at low frequencies, which may be a limiting factor on the size of the tank. 
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FIGURE 5.16 Free surface (left) and U-tube passive anti-rolling tanks 

The free surface or flume tank consists of an open rectangular duct running 
When the ship rolls, the fluid (usually but not necessarily water) 

The fundamental frequency of the fluid motion in a 
athwartships. 
sloshes back and forth. 
rectangular tank is 

(5.172) 

where b and h, are the tank width (athwartships) and water depth; the approximate 
form is good for h, << b, which is the usual case. To be effective, the damped 
natural frequency of the tank must be equal to that of the ship (the undamped 
natural frequency of the tank should thus be somewhat larger than that of the ship, 
because the tank fraction of critical damping is generally larger than the value for 
the ship). Ignoring this small difference and setting the tank width b equal to the 
beam of the ship allows us to estimate the required depth of the water in the tank: 

(5.173) 

Combining this with our back-of-the-envelope estimate for the roll period, Eq. 
(5.157), we obtain the following simple result: 

h t=0.78GM~ (5.173a) 

The fore-and-aft dimension of the tank L, is limited by the maximum acceptable 
reduction of the roll restoring moment, which is generally expressed as a “free 
surface correction” to GMT. The reduction in the effective metacentric height is 

(5.174) 
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where pt is the density of the tank fluid and it is the tank transverse waterplane 
moment of inertia. Passive tanks usually have a ratio of p = GGMT/GMT of 0.15 to 
0.30 (Faltensen [1990]) with a value of 0.2 representing a “typical good design” 
(Beck et.al. [1989]). For a rectangular tank, 

Ltb3  
12 

i t  =- 

so that the tank length is given by 

12v 

Pt -b3 
L, = pGMT - (5.175) 

P 

Eq. (5.174) can also be re-written in terms of the ratio of the mass of the tank 
liquid to that of the shp: 

(5.176) 

Assuming a full-beam tank we can use the estimate for ht from Eq. (5.173a) and p = 
0.2 to find 

A typical value for the mass ratio is 0.02. 

Relative to location, the tanks are more effective the higher they are located in 
the ship. 

U-tube tanks are somewhat more attractive because of their reduced free 
surface area. These tanks can be open at the top, as in Figure 5.16, or they may be 
connected by an air duct. For the open U-tube, a simple theory for computing the 
tank moment is outlined by Lloyd [1998] (such a theory is apparently unavailable 
for the seemingly simpler flume tank). For a unit consisting of two rectangular 
prismatic tanks connected by a transverse rectangular duct, all having longitudinal 
dimension Lt, the result is 
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2 

ctt [ 1 - At ’) 
, tan&, =-- (5.177) 

1 - At2 

where A, and K, are the frequency ratio (m/mot) and fraction of critical damping 
associated with the oscillation of the fluid within the tank, 

btt 
mot = i b , b h ’ ’ K t = 2 6  (5.178) 

and at4 and a, are coefficients of the tank moment in phase with the tank and fluid 
acceleration, respectively; b, is the damping coefficient of the tank fluid and c, is 
the component of the moment in phase with the fluid displacement. The other 
quantities represent tank dimensions, identified on Figure 5.17. 

I I 

FIGURE 5.17 Dimensions of simple U-tube anti-roll tank 

The quantities a,, at4 and c, can be approximated as follows (Lloyd[1998]): 

(h, +rd)  (5.179) Ptbrbc2Lt (%+$); at4 = 2 
a, = ptbr2bc2Lt 

2 

(5.180) 

Typical results are shown on Figure 5.18, where we have plotted the tank 
moment, normalized using the zero-frequency value, and phase as a function of 
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. -. --... _ _ _ _  

frequency. Note that the tank moment predicted using Eq. (5.177) increases without 
bound (- A3 ) at hgh  fiequencies; t h s  is not realistic due to a variety of nonlinear 
effects. It is recommended that t h s  formulation only be used up to a frequency 
ratio of 2 or 3. 

Note that the hydrostatic term ctt represents the reduction in the total roll 
restoring moment due to the free surface: If the tank is rolled to starboard (for 
example), the fluid level increases in the starboard side of the U-tube, resulting in a 
hydrostatic moment to starboard. The reduction of effective metacentric height is in 
this case just 

C 
6GM, =L 

V 
(5.181) 

4 

1 

0 
0.0 0.5 1 .o 1 5  2 0  2.5 

Frequency ratio A, 

FIGURE 5.18 U-tube tank moment amplitude and phase vs. frequency 

Both types of anti-roll tanks have a limiting roll angle, above which they lose 
effectiveness (this is known as “saturation”). One limit is reached when the tank 
fluid hits the top of the tank, which occurs when 

2(H - h) 
b 

I$=----- (5.1 82) 
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where h = ht for the flume tank, and h = h, and b = b, for the U-tube. For the U- 
tube, however, the effectiveness can be reduced before this point is reached because 
the fluid may have already drained from the upper side; thls occurs when 

H 
- > 2  
hr 

and the limiting value is then 

(5.183) 

Note that in the latter case the saturation angle can be increased by raising the tank 
water level, but that this has the opposite effect in the former case (in this case the 
tank height H must be increased). 

6.2 Active devices 

Active roll control devices are generally more effective than passive devices, at the 
expense of greatly increased mechanical and electronic complexity. Active devices 
include active anti-roll tanks and fin stabilizers. 

Active anti-roll tanks are similar in construction to the U-tube tank, except that 
they incorporate a pump to move the water (as well as sensors to measure the roll 
angle). This system is effective at a wider frequency range than the passive tank, 
and requires less water than a comparable passive tank due to more efficient 
movement of the water. However the power required to attain significantly better 
performance than the passive system is generally considerable, and the time lag 
between starting the pump and moving the desired amount of water limits its 
effectiveness. 

The most effective stabilization method employs active fins. The symmetrical 
pair of tins is generally located on the sides of the hull near the turn of the bilge; the 
tins are deflected in opposite directions to produce a roll moment. The fins are 
usually made retractable; they are drawn in for doclung maneuvers and during 
transits in calm seas to reduce resistance. Besides this added resistance, another 
disadvantage of the fins is that they are ineffective at low speeds, because the force 
they produce is proportional to the square of the local flow velocity. However, 
except for vessels that operate exclusively at zero or low speeds, these 
disadvantages are outweighed by the large stabilizing moments that can be 
generated at speed with much lower phase lags than those of tank stabilizer systems. 
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Fin stabilizers can be characterized by their “wave slope capacity” I$ws,  which 
corresponds to the maximum heel angle that the fins can generate at the service 
speed of the vessel. Thus the fins are capable of producing the roll moment 
required to maintain zero roll in waves having a maximum slope of $ws. A typical 
value is 5” (Bhattacharyya [ 19781). This permits the size of the fins to be estimated: 
The roll moment produced by the two fins is 

F,f = PUf*AfCLfRf (5.1 84) 

where Uf, Af, CLf, and Rf are the local flow velocity, fin planform area (one fin), lift 
coefficient, and radial distance from the x-axis to the center of pressure on the fin. 
The restoring moment at a heel angle of I$ws is 

Setting Eq. (5.184) equal to Eq. (5.185) and solving for the fin area yields 

gGM T ’$ ws A, = 
Uf2CLfRf 

whch can be written in non-dimensional form as 

(5.186) 

(5.186a) 

where we have used an approximation for the fin radius, 

Rf” = (B/2)’ + T2 

For the 170m ship considered in the example in Section 5.1 above, at a speed of 20 
kt, with a GMT of 1.5m and I$ws = 5” we find Af /B2 = 0.032 or Af = 16.8m2, 
assuming a maximum lift coefficient of 1 .O. It is somewhat counterintuitive that the 
fin area is proportional to GMT, that is, a more stable vessel requires Iarger fins than 
a less stable one; this is of course due to the fact that it is easier to change the roll 
angle of the less stable ship. 

Another method of active control is rudder stabiiization. Here the rudder is 
used to generate the stabilizing moment. For this method to be successhl, the 
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center of pressure on the rudder must be far enough below the roll axis that a 
significant roll moment is induced by rudder deflection. In addition, hgh  rudder 
rates are generally required. This method is most suitable for small, high-speed 
craft, which have rudders mounted low on the hull (possibly extending below the 
baseline); such craft heel into turns (at least initially) because of the substantial roll 
moment generated by the rudder. Coursekeeping ability is generally not affected 
since the ship will respond more quickly in roll than in yaw (roll inertia is much 
lower than yaw inertia). This method obviates the need for dedicated roll control 
hardware (with the exception of the roll sensor and computer associated with the 
control system), at the expense of more robust steering gear. A disadvantage is that 
like the active fins, the rudder loses effectiveness at low speeds. 

7. Motions in Irregular Waves, Frequency Domain 

In this Section we will apply linear system theory outlined in Section 1 above, to 
find the spectra and statistics of the output (vessel responses). In the time domain, 
of course, we already have the necessary tools; see Sections 2.5 and 3.4 above for 
radiation and wave exciting forces, respectively. The wave exciting forces depend 
on the time history of the wave elevation, which can be calculated from the wave 
spectrum using Eq. (4.125), for example. However if statistics of the responses are 
of primary interest, and only wave-induced forces are applied, it is much more 
efficient to do the computations in the frequency domain; these computations 
amount to first finding the response spectra and then fmding the moments of the 
response spectra, as will be shown below. 

The relationship between the spectrum of the ship motions and that of the 
incident waves, under the assumption of linearity and time-invariance, was derived 
in Section 1 above: 

(5.187) 

where S f  and Sxw correspond to input (wave) and output (motion) spectra. H(o) is 
the frequency response function or “Response Amplitude Operator” (RAO), which 
is just the amplitude of the response per unit wave amplitude in the frequency 
domain. Note that Eq. (5.187) provides a means to compute the spectrum of any 
process that is linearly proportional to the wave height, including motions, 
velocities, accelerations, and forces computed using the linear theory described 
above. 

Eq. (5.187) can be written in the more general form 
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where * indicates complex conjugate; the frequency and heading dependence has 
been omitted from the functions on the right-hand side for convenience. Here 
the Sx ,x ,  represent cross-spectral densities between the output quantities for i f j .  

The input-output cross-spectral density can also be found, using Eq. (5.8): 
J 

(5.189) 

More of interest than the spectra themselves are the statistics that can be 
computed from them. Recall that the area under the spectrum (which we referred to 
as the mean square spectral density in Chapter 4) is equal to the mean square of the 
process. Furthermore, we can compute other interesting statistics from this and the 
other moments of the spectrum, defined in Eq. (4.95): 

CC 

m, = /an~(a)dw 
0 

(5.190) 

In particular, we can use Eq. (4.110) to compute the maximum expected value of 
the output in N cycles, and Eq. (4.105) to calculate the average of the l/n* highest 
peaks (assuming a narrow-banded output process). These statistics are much more 
useful to characterize seakeeping performance than the frequency-domain results, 
because they account for the full range of wave amplitude and frequency 
combinations present in the actual seaway. Seakeeping specifications for new ships 
(if they exist at all!) are generally given in terms of motion and/or acceleration 
statistics. It must be remembered, however, that the spectrum is a short-term 
characterization of the seaway. To obtain statistics for longer periods (such as the 
design lifetime of a ship) we must consider the effects of all spectra (i.e., 
combinations of significant waveheight and modal period) expected to be 
encountered during this period, each weighted according to its likelihood of 
occurrence. 

An example of a computed heave motion spectrum for a large cargo ship is 
shown on Figure 5.18. The sea is represented by a Bretschneider spectrum with a 
significant waveheight of 4m and a modal period of 9.7 sec (this is a high Sea State 
5); the motions are for beam seas at zero speed. The response spectral ordinate is 
computed by multiplying the wave spectral ordinate by the square of the RAO at 
each frequency as indicated by Eq. (5.187). Notice that the peak of the RAO is 
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nearly coincident with that of the wave spectrum, which is undesirable but not 
easily circumvented: Eq. (5.20) shows that for a given displacement, length, and 
beam (quantities usually determined by requirements unrelated to seakeeping), the 
heave natural frequency is proportional to the square root of the waterplane area 
coefficient. It is doubtful that this coefficient can be changed enough to have a 
significant effect (without changing to a totally different hullform). Notice also that 
the peak of the heave spectrum does not coincide with those of the wave spectrum 
or motion RAO. If the wave spectrum and RAO maxima are close together, the 
peak of the output spectrum will be somewhere in between; if they are separated, 
the output spectrum will exhibit two peaks. 
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.6 2.0 

o, radlsec 
FIGURE 5.19 Sxample of wave and response spectra 

Carrying out the integrations in Eq. (5.190) numerically, we obtain for the first 
five moments of the heave spectrum: 

m,, 0.926mL 
ml 0,628 m2/sec 
m2 0,468 m2/sec2 
m3 0.348m2/sec3 

0.268m2/sec4 

The RMS heave is thus 40.926 = 0.962m. The bandwidth of the output spectrum 
can now be computed using Eq. (4.97): 

m L  
E = l - L =  0.1 17 

m 0 m 4  
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indicating a narrow-band process, as is evident from Figure 5.19. We can now 
apply Eq. (4.107) (which was obtained from Eq. (4.105) with confidence to predict 
the average heave amplitude, 

- 
xO3 = 1.25,/m0 = 1.20m 

for example. It has become common to refer to the “significant single amplitude” 
of motions; in this case 

x ] , ~  = 2 6  = 1.92m 

(we have left out the subscripts 03 denoting “heave amplitude” for clarity); however 
it is not clear what the physical significance of “significant heave amplitude” is. 

Eq. (5.10) gives the velocity and acceleration amplitudes in terms of the 
frequency of the motion and the displacement amplitudes: 

Thus the velocity and acceleration RAO’s can be computed from the displacement 
RAO’s as follows: 

Looking at Eqs. (5.190) and (5.192) it is apparent that if S is a motion spectrum, m2 
and Q represent the corresponding mean square velocity and acceleration; i.e., 
these are the “zeroth moments” of the velocity and acceleration spectra. So we can 
apply the expressions above to find statistics of velocity and acceleration as well as 
of displacement. 

7.1 Encounter spectra 

The expressions above are presented in terms of the wave frequency a. However, 
the ship responds at the encounterfrequency as we discussed in Section 3.5.1 above, 
so in some cases it might be usefkl to work in the encounter frequency domain. 
Quantities measured on a moving model or ship, for example, are necessarily in the 
encounter domain. We can determine the RMS motions from the area under the 
encounter spectrum; since it can be shown (see Eq. (5.113)) that 

S(a)da = S(a,)dw, (5.193) 
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it is apparent that the areas under the spectra are the same in the wave-frequency 
and encounter-frequency domains. This should come as no surprise: The incident 
waves (for example) have the same RMS height whether they are measured by a 
stationery buoy or by someone on the moving ship. 

Caution must be exercised in passing from the encounter domain to the fixed or 
wave-frequency domain, in stem seas, due to the multi-valued nature of the 
encounter frequency at these headings. As shown in section 3.5.1, in stem seas, if 

(Q is defined in Eq. (5.llla)), waves having three distinct frequencies have the 
same encounter frequency. In th s  case we should write 

where the o(oe), are the three wave frequencies corresponding to the encounter 
frequency we. Thus we cannot transform the measured encountered spectra to the 
wave-frequency domain since it is impossible to determine the contributions at the 
various wave frequencies which may correspond to the same encounter frequency. 

We can transform from the wave frequency domain to the encounter frequency 
domain, however. This would be required in order to compare theoretical 
predictions to measurements, for example. The usual procedure is to divide the 
wave frequency domain into three regions, so that the corresponding value of the 
encounter frequency is unique in each region; see Figure 5.20. 

The incident wave spectrum is next partitioned in the same way; within each 
region, the transformation given by Eq. (5.113) yields a unique value of the wave 
encounter spectrum. The three values are summed at each encounter frequency to 
obtain the encounter spectrum. Based on Figure 5.20 and the transformation 
equation, we expect two salient differences between the wave and encounter 
spectra: 

Since we must divide the wave spectrum by the slope of the curve in Figure 
5.20, the value of the encounter spectrum will be infinite at w = 5212 (a, = Q14). 
The value of the encounter spectrum at we = 0 will usually be nonzero because 
of the contribution at wave frequency w = SZ.  

The first point should not be cause for alarm since the area beneath the spectrum 
remains finite (and equal to the mean square of the process) as stated above. 



5. Wcive-Induced Forces on Murine Crcrft 303 

0.5 

lo,I/n 

0.4 

0.3 

0.2 

0.1 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

o/n 
FIGURE 5.20 Frequency regions for stem seas (Cb0) 

Figure 5.21 shows the partitioning of the wave spectrum used in the previous 
example (Figure 5.19) for a case of following seas (x = 0) with a ship speed of 16 
knots; in this case Eq. (5.11 la) gives SZ = 1.19. The corresponding encounter 
spectra for the three regions, and the total encounter spectrum are shown on Figure 
5.22. It can be seen that all three regions contribute at encounter frequencies below 
!2/4 whereas only Region 111 contributes above this encounter frequency. 

To obtain the response spectrum in the encounter frequency domain, we can 
employ Eq. (5.187); however we must handle the three regions individually and add 
them up as before: 

Note that we really need the RAO in the wave frequency domain in order to carry 
out this computation, since the three regions must be transformed individually 
before the summation. Thus it is more straightforward to compute the output 
spectrum in the wave frequency domain first, and then convert to the encounter 
domain using Eq. (5.120). 

Since the vessel oscillates at frequency we, to compute velocity and acceleration 
we must re-write Eq. (5.191) using the encounter frequency: 
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with corresponding changes in Eqs (5.192). Similarly, we must compute the first 
and hlgher spectral moments in terms of the encounter frequency: 

(5.1 97) 

0 0  0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 2  

o, radkec 
FIGURE 5.2 1 Wave spectrum showing regions for encounter spectrum calculation 

for R = 1.19 

TOTAL 

0 0  0 2  n/4 0 4  0 6  0 8  1 0  

me, radlsec 

FIGURE 5.22 Wave encounter spectrum corresponding to Figure 5.21, for 16 knots 
in stem seas 
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Since analytical expressions for the output spectra are seldom (if ever) available, 
these integrals must be carried out numerically. T h s  is problematic in the 
encounter frequency domain in stem seas because of the singularity at we = Ql4; 
however, we can circumvent ths  problem by writing Eq. (5.197) in terms of the 
wave frequency and malung use of Eq. (5.193): 

(5.198) 
0 

which can be written explicitly in terms of the input (wave) spectrum and R.40: 

(5.198a) 

This integral can be carried out numerically in a straightforward manner. Thus 
moments of the output spectra can be computed without explicitly transforming to 
the encounter frequency domain. 

For short-crested waves (see Section 4.1.1, Chapter 4), we must incorporate the 
“spreading function” G(o,x), and integrate over x; remembering that SZ is a function 
of heading: 

It is important to realize, however, that this wave frequency formulation is valid 
only for computation of moments; the integrand in the expression for (for 
example) from Eq. (5.198a) is not the encounter spectrum, but does have the same 
area. In addition to avoiding problems with the singularity in the integrand, this 
formulation also circumvents complications relating to the range of the x- 
integration: Since the encounter frequency is a function of the heading, and the 
range of encounter frequencies is limited in Regions 1 and 11, the corresponding 
heading range is also limited and is a function of the encounter frequency. 
Furthermore, since the short-crested seaway will generally also contain components 
with headings in the range 90” 5 x S270” (bow waves), a fourth “region” is required 
(recall that there is a unique encounter frequency for each wave frequency in this 
region; see Section 3.5.1 above). The process is sufficiently complicated that 
“estimates of the virtual response spectrum in short-crested seas are virtually never 
done” (Beck et.al. [1989]). Further details can be found in Price and Bishop [1974]. 
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7.2 Statistics of maxima 

We have mentioned that the moments of the response spectra can be used with Eq. 
(4.110) to compute the expected maximum value of the output in N cycles. The 
number of cycles would be determined from the duration D in which the spectral 
moments remain essentially constant: 

(5.199) 

for example, where D is in seconds and T, is the average period between successive 
maxima. However, the expected (or most Ilkely) maximum may not be appropriate 
for design purposes because the probability of exceeding the most likely extreme 
value is high. For a Rayleigh distribution of peaks (narrow-banded spectrum) and a 
large number of cycles, it can be shown (Ochi [ 19731) that 

P[x > xmx] = 1 - e-l = 0.632 

which is “better than even”; i.e., it is “more likely than not” that the most likely 
extreme value will be exceeded (due to the shape of the Rayleigh probability 
density function)! 

For design purposes it is better to use the value which will be exceeded with a 
given (lower) probability: 

where a is a small number. The likelihood that X,, design will not be exceeded is 
thus (I-a), which is sometimes referred to as the “confidence” associated with the 
design maximum value. Ochi [1973] provides an approximate formula for the 
design maximum value that is good for “small a” and for 
majority of cases of practical interest): 

E 2 0.9 (i.e., the vast 

(5.201) 

Figure 5.23 shows the ratio of the design maximum value to the RMS value as a 
fimction of the number of cycles, in the narrowband limit, for several values of a. 
The most ‘likely maximum is also shown. 
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The most likely and design maximum values can be expressed as functions of 
the duration of the sea state using Eq. (5.199). However, if we define N as the 
number of maxima having positive values (negative maxima are generally not of 
much interest), somethmg interesting happens. Ochi [ 19731 gives an expression for 
the expected number of positive maxima per unit time: 

The total number of positive maxima would thus be 

Inserting this in Eq. (5.202), we find that the bandwidth cancels out: 

(5.202) 

(5.203) 

Thus the design maximum value is independent of the bandwidth of the response 
spectrum. Like Eq. (5.201), this expression is valid for small values of a. In 
addition, as pointed out by Dalzell (Beck et.al. [1989]), Eq. (5.202) is applicable 
only under the assumption that successive positive maxima are statistically 
independent, whch is dubious for processes having narrow-banded spectra. 
However, he goes on to say that the effect of violating this assumption is to “inject 
some conservatism” into the prediction, typically amounting to less than 10% even 
for narrow-banded processes. 

As an example we can use the heave spectrum that we computed at the 
beginning of the present section (Figure 5.19). The spectral moments are tabulated 
on Page 301. To find the design maximum value of heave for a duration of 1 day, 
for example we plug D = (24)(60)(60) = 86,400 sec and the spectral moments into 
Eq. (5.203); results are shown on Figure 5.24 as a function of confidence (1-a). 
Specific values are tabulated below; the most likely maximum value is 4.12m. Ochi 
recommends a value of a = 0.01, based on comparison of observed extreme values 
with predictions using a range of a’s. 
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FIGURE 5.23 Design maximum value as a function of number of cycles and confidence 
parameter a 

Results for Design Maximum Heave corresponding to 
the heave spectrum shown on Figure 5.19 

(1 - a) Design Maximum 

0.90 4.61 
0.95 4.75 
0.99 5.05 
0.995 5.18 

Heave, m 

0.90 0.92 0.94 0.96 098 1W 

Confidence, (la) 

FIGURE 5.24 Design Maximum Heave for 24 hour exposure, corresponding to 
Heave Spectrum shown on Figure 5.19. 
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This approach is obviously applicable only to a single sea state, heading, and 
ship speed. For design purposes, we must assess the most severe responses, 
considering the effects of all sea states, speeds and headings that will be 
experienced by the ship or structure in its lifetime. There are (at least) two basic 
methodologies, known as the “long-term” and “short-term” approaches. 

The long-term approach is similar to the method described in Chapter 4, 
Section 5.1, for prediction of the distribution of significant waveheight based on 
occurrence data; however the present problem is more complex because we must 
account for the expected variations of heading and speed. The probability density 
function (PDF) for long-term response is given by Ochi [1978] in the following 
form: 

(5.204) 

where 

pi = weighting function (fraction of time) for sea state 
pj = weighting function for wave spectrum (modal period, 
spectrum shape) 
Pk = weighting function for heading in a given sea 
Pm = weighting function for speed in a given sea and heading 

and 

f i jb  = PDF for short-term response 
nijb = average number of responses per unit time = 1 / T, ijlon 

T, is the average zero-crossing period computed from the response spectrum, 

The factors pi and pj can be found in occurrence tables for the design site or route; 
pk and pm are functions of sea conditions as indicated above. The total number of 
cycles in the lifetime of the ship or structure is 
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(5.205) 
i j k m  

where D is the total exposure duration. 
function F(x) is found by integrating Eq. (5.204). For large values of N, 

The long-term cumulative distribution 

(5.206) 

which can be solved for the most likely extreme value. The design maximum value 
can be determined from 

(5.207) 

Alternatively, the expected or design maximum response can be evaluated only 
in the highest expected sea state identified using the methods of Chapter 4. In this 
case we can use Eq. (5.203), with the duration D equal to the total exposure time to 
the given sea state at the worst-case speed and heading. This is referred to as the 
short-term approach since we are only considering the response in a single sea state. 
Ochi [1978] argues that in addition to being much simpler than the long-term 
approach, the short-term method yields superior results. This is due to the fact that 
the form of the long-term distribution is determined largely by the data in mild seas, 
which constitutes the preponderance of available information, but which is not 
directly relevant to the extreme value. However for studies of fatigue performance, 
for example, the cumulative effect of all loading cycles must be considered 
regardless of their magnitude, so that only the long-term approach is appropriate. 

7.3 Caveats 

The formulas presented above are convenient “short cuts” for calculation of 
response spectra and associated statistics, but it must be kept in mind that they are 
applicable under the assumption of linearity of the responses (i.e., the responses are 
linearly proportional to wave elevation). As we have stated above, this 
methodology yields useful predictions for a wide range of conditions; however, the 
results for extreme conditions must be used with caution. Important nonlinear 
effects on the encounter frequency motions (“first-order motions”) include viscous 
damping and variations in the hydrostatic and hydrodynamic forces and moments 
due to significant changes in the submerged portion of the hull; i.e., the motions 
cannot be regarded as “small” with respect to the wave elevation. 
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The latter effects are particularly significant for hullforms with overhanging 
stems or a large amount of flare, since in those cases even moderate motions can 
result in large changes in the submerged hull surface. However, these effects are 
mitigated to some degree by the fact that the observed wave periods generally 
increase with increasing significant wave height, so that the average wave steepness 
does not change much. In fact it has been shown by Adegeest [1997], Kring et.al. 
[1997], Miyake et.al. [2001], and others, that nonlinear effects on heave and pitch 
motions are not significant for conventional hullforms. 

We know that roll motions, on the other hand, are strongly affected by 
nonlinear viscous damping; this can be accommodated in the linear theory by the 
“equivalent linear roll damping” method discussed in Section 4.3 above. However 
the roll restoring moment becomes nonlinear above a roll angle of 20 or 30 degrees, 
requiring modification of Eq. (2.36). A typical “righting arm curve”, where the 
“righting arm” is defmed as the roll restoring moment divided by displacement, is 
shown on Figure 5.25. The slope of this curve at the origin, multiplied by 
displacement, is equal to the magnitude of the linear roll restoring rate C44. The 
curve usually becomes somewhat steeper with increasing roll angle at fist, because 
of the small increase in waterplane area. However a point is eventually reached 
when the center of buoyancy cannot move further from the centerplane and the 
righting arm must decreaseee; this happens when the deck edge becomes submerged. 
At this point the righting arm curve rapidly turns downward eventually reaching 
zero at the “point of vanishing stability” (which, if reached, will probably also be 
the “point of vanishing ship”). Thus when very large rolling motions are expected, 
such as in evaluation of survivability, we must consider nonlinear hydrostatics. 

25 

20 

E ’ 5  

0) 1 0  

a c 0, 
n 05 

D O  

-0 5 
20 40 611 
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FIGURE 5.25 Typical righting arm curve 

ee For a simple rectangular prismatic barge, we can show that there is a second term in the restoring 
moment expression that reinforces the linear term, proportional to sin@tan2$. 
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Another source of nonlinearities is in the forces applied by mooring lines and 
fenders. Fenders and short mooring lines are highly nonlinear since they apply a 
force in only one direction unless they are pre-tensioned (not the usual case). And, 
the constitutive materials (foam rubber, nylon) have nonlinear force - deflection 
behavior. Thus problems involving these types of restraints should be solved in the 
time domain, where it is easy to incorporate nonlinear forces of this type. Long 
mooring lines, such as anchor chains, are governed by the highly nonlinear catenary 
equations; however in th s  case the force - motion relationship can be linearized 
about the equilibrium position for evaluation of small-amplitude motions (Faltensen 
[ 19901). 

There are other types of nonlinearities, which produce forces at frequencies 
other than the wave or encounter frequencies. These include mean drift forces, and 
sum- and difference-frequency effects, which are “second-order effects” because 
they are proportional to the square of the wave amplitude and involve two 
frequencies (which happen to be equal in the case of mean forces). These effects 
will be discussed in Section 9 below. 

8. Derived Responses 

Solution of the equations of motion as written above yields the motions of the 
reference point on the moving body. We are often more interested in motions at 
some other point on the body, such as the bridge on a ship or the helicopter landing 
area on a platform. In addition, relative motions between the wave crests and 
certain points on the body are of extreme importance in design: For ships, water 
shipping and propeller emergence, for example, depend on relative vertical motions, 
and slamming depends on relative vertical velocity; for platforms, designers try to 
minimize wave contact with the deck cross-structure. 

8.1 Motions at a point 

Recall that the location of a point P on a moving body relative to a fixed 
coordinate system is given by 

R(P) = R + p(P) (5.208) 

where R is the location (position vector) of the origin of the body axes and p(P) 
gives the location of the &‘point of interest” relative to this origin. Since the 
components of p are usually known constants relative to body axes (we can regard 
the ship or structure as a rigid body in most seakeeping analyses), we need to apply 
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the transformation of Eq. (1.7) to find the location of the point relative to the fixed 
(or steadily translating) E,q& system: 

The transformation matrix T is given by Eq. (1.8), which simplifies to the form 
given in Eq. (2.21) for small-amplitude motions. 

The velocity and acceleration of point P are found by differentiating Eq. (5.209) 
with respect to time, as described in Section 3 of Chapter 1. The velocity is just 

U(P) = u + n x p(P) (5.2 1 0) 

where n is the angular velocity vector, usually resolved in body axes. The 
expression for acceleration is a little more complicated due to the presence of 
centripetal and Coriolis accelerations; see Eq. (1.20). Assuming that the point of 
interest is fixed relative to body axes, this becomes 

U(P) = u + n x  p(P) + a x  ( a x  p(P)) (5.21 1) 

The last term can be neglected for small-amplitude motions. 

In the frequency domain, the linearized expressions (i.e., the small-amplitude 
forms of the transformation matrix and Eq. (5.21 1)) can be used to find the RAO’s 
of the points of interest. It is important to keep track of the phases of the various 
motions in these calculations; recall that the complex representation of the RAO 
does this automatically. For example, Eq. (5.210) gives the vertical velocity of a 
point with body-axes coordinates (x,y,z) as 

w(P) = w + py- qx 

so that the RAO for the total vertical velocity at P would be 

where we have used Eq. (5.192) to express velocity RAO’s in terms of those for 
displacements; z, $ and 8 denote heave, pitch and roll displacements; we again 
emphasize that the M O ’ s  are complex quantities. 
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8.2 Relative motions 

The term “relative motions” refers to the motion of a point on the body relative to 
the water surface; generally, only relative vertical motions are of interest, so the 
following discussion will focus on these. To find the relative vertical motion, we 
must subtract the wave elevation at the point of interest from the total vertical 
motion there: 

(5.212) 

relative to seakeeping axes ( z  pointing up); relative to our standard (maneuvering) 
axes we should write 

(5.2 12a) 

because the positive sense of the wave elevation f is always taken to be upwards. 
Strictly speaking, f should represent the total wave elevation, including the 
diffracted and radiated wave systems as well as the deformation of the free surface 
due to the steady velocity of the body. The elevation of the diffracted and radiated 
waves can be evaluated from the total velocity potential at the point of interest (at 
the undisturbed free surface level) using Eq. (4.9). The total potential is given by 
the sum of Eqs. (5.56) and (5.91). For points on the body we have to evaluate these 
potentials anyway (with the exception of the contribution of steady motion, +J 
when we solve the radiation and diffraction problems; however, notice that in the 
radiation problem we obtain the potential for unit motion amplitude. Thus to obtain 
the total radiation potential we have to go back and multiply by the responses; see 
Eq. (5.56a). Perhaps for this reason, the values are usually not available in the 
output of commercial software packages, and the waves generated by ship motions 
and diffraction are generally neglected. Similarly, the s h p  motion should include 
the mean heave and pitch (sinkage and trim) induced by the forward speed, which 
are also usually neglected. 

In terms of RAO’s in the frequency domain, Eq. (5.212) becomes 

where again you are reminded that the RAO’s are complex. The last term accounts 
for the phase of the wave at the point of interest. Note that this formulation yields 
only the time-varying (sinusoidal, zero mean) portion of the relative motion; the 
mean vertical distance from the still water ‘level to the point of interest (e.g., 
freeboard or airgap) must be added to give the total distance. 
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An example of a relative motion RAO is shown on Figure 5.26 below, at the 
bow of a 200m ship moving at 16 knots in head seas. The behavior in the frequency 
domain is almost the reverse of what we are used to for absolute vertical motion, i.e. 
the relative motion goes to zero at zero frequency and approached 1 at high 
frequency. This is however the expected behavior since at low frequency the ship is 
“contouring” or following the wave profile, so that relative motion approaches zero. 
Conversely, at high frequency, the ship “platforms”, or remains essentially fixed, so 
that the relative motion consists entirely of the wave motion. At a wave frequency 
of 0.5 radsec (wave period of 12.6 sec), which evidently corresponds to the pitch 
natural frequency of the ship, the effects of heave, pitch and the incident wave 
reinforce at the bow to produce a relative motion of nearly four times the incident 
wave elevation. We might expect the bow motion of th s  ship to be particularly 
severe in Sea State 6, which has a most likely modal period of 12.4 seconds. A 
quick calculation using the RAO in Figure 5.26 with a Bretschneider spectrum for 
Sea Staten 6 (H, = 5m; To = 12.4 sec) yields an average relative bow motion 
amplitude of about 4m. 

The statistics of relative vertical motion can be used to calculate the expected 
number of deck wetness or propeller emergence events per unit time in a given sea 
state. The number of upcrossings per unit time across a threshold value X is given 
by 

(5.213) 

where and m2 are the moments of the relative vertical motion spectrum at the 
point of interest. For evaluation of deck wetness or propeller emergence we would 
set X equal to the freeboard at the bow or propeller submergence, respectively. Eq. 
(5.213) can also be used to determine the minimum freeboard required for a 
specified deck wetness frequency. A commonly specified maximum value is 30 
events per hour (Beck et.al. [1989]), or 0.00833 per second. For our 200m ship in 
Sea State 6, we find by numerical integration of the relative motion spectrum that 
m,, = 11 m2 and m2 = 7.8 mz/sec2. Plugging these values into Eq. (5.213) and 
solving for X yields a value of 7 . 8 ~  which means that the waves are expected to 
reach an elevation of 7.8m thirty times per hour. This in turn means that the 
required freeboard is 7.8m. 

We mentioned above that Eqs. (5.212) do not account for the waves induced by 
the motions of the ship, which are sometimes referred to as “dynamic swell-up”. 
Thus the freeboard should be somewhat larger than indicated by Eq. (5.213) to 
allow for these effects. But how much larger? 
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Journee [2001] presents two simple methods to estimate the amplitude of the 
The fnst, attributed to Tasalu [1963], gives the radiated wave radiated waves. 

amplitude s, in head waves at the forward perpendicular, as 

(5.214) 

which is applicable in the range 

0.60 < CB < 0.80 
0.16 < Fn < 0.29 

1.60 < o;L/g < 2.60 

Since no information is available on the phase of this contribution, it should be 
assumed to be 180" out of phase with the relative motion. The alternative 
formulation developed by Journee is based on the relationship between the damping 
coefficient and the radiated wave amplitude presented in Section 2.4 above; see Eq. 
(5.50): 

(5.2 15) 

where xb is the location of the cross-section that radiates the waves that reach the 
point of interest: 

in deep water, and c, is the phase speed of the radiated waves, 

c, = g lo,. 

The phase can again be taken as 1 80" with respect to the relative motion at the point 
of interest (not quite true, but conservative). 

Journee [ 1976al also supplies an approximation for the combined effects of 
smkage, trim, and the bow wave (i.e., the steady-motion contribution) on the 
relative free surface elevation at the bow, again attributed to Takagi [1963]: 
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L Af = 0.75B-Fn 
L e  

(5.216) 

which is to be interpreted as a static “swell-up” of the free surface at the bow; L, is 
the length of entrance of the waterline. Journ6e states that “experiments at the Delft 
Ship Hydromechanics Laboratory with a model of a fast cargo ship in full load and 
ballast conditions has shown a remarkably good agreement between the 
measurements and this empirical formula”. 

8.3 Slamming 

Slamming is a special case of relative motions, in whch two conditions must be 
simultaneously met: 

The keel emerges at the bow (i.e., relative motion of keel at bow > 0), and 
The relative velocity at this point exceeds a critical value. 

Unfortunately the critical or “threshold” velocity cannot be predicted easily; Ochi 
and Motter [ 19731 provide the following empirical estimate based on results for a 
single ship: 

v,, = 0 . 0 9 2 8 a  (5.2 1 7) 

The probability of simultaneous bottom emergence and critical velocity exceedance 
is given by (Ochi and Motter [ 19731): 

(5.2 18) 

where T is the draft at the station of interest (usually some distance aft of the FP), 
and mzr and mi, denote the mean square relative motion and relative velocity at 
this station, respectively. The number of slams per unit time is thus 

The impact pressure is also of interest; it is usually expressed in the form 

(5.2 1 9) 

ps = % p k / & I 2  (5.220) 
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where k is a constant which is a function of the hull section shape. The value of k 
ranges from about 4 to around 30 for shp-like sections, with the smaller values 
corresponding to narrow sections with a small percentage of flat bottom. Ochi and 
Motter [ 19731 present formulas and charts for evaluation of k. 

8.4 Shear force and bending moment 

The internal shear force and bending moment on a ship hull can be computed using 
the hydrodynamic forces determined by the methods described above, together with 
the distribution of weight in the ship. This is similar to the problem of a beam 
subjected to an arbitrary distributed load, treated in introductory strength of 
materials courses; the added complication here is that the ship is moving, so that 
“inertial forces” (i.e., the effects of acceleration) must be accounted for. 

The procedure for calculation of the internal force and moment is the same as 
that employed in beam theory; the ship is sliced transversely at the station of 
interest, and a free body diagram is constructed of one portion of the hull. The 
internal shear force and bending moment acting in the plane of the cut, added to the 
forces and moments acting on the free body, are equal to its mass x acceleration or 
moment of inertia x angular acceleration. Another way to look at this is to transfer 
the mass x acceleration terms to the other side of Newton’s equation, 

F = m a  + F - m a = O  

where now “ m d ’  can be treated as another force, and the body can be considered to 
be in equilibrium. 

In most derivations of the shear force and bending moments in the literature, the 
total force is first expressed as a force per unit length on a 2-D cross-section of the 
ship, which is integrated from the bow up to the station of interest. The total 
vertical force per unit length acting on a section with longitudinal coordinate x can 
be expressed relative to the seakeeping axes as 

w(x) = -- (z .‘ - xe)+ F(x)+ pgA(x)- p(x) 
g 

(5.221) 

where F(x) is the sectional hydrodynamic force and p is the weight per unit length; 
the first term is the inertial “force”. The last two terms represent the static loads; 
note that they are not in general equal and opposite at any given station since the 
load distribution does not necessarily match the section area curve. The shear force 
and bending moment are then given by 
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The sign convention for the moment is consistent with beam theory, i.e., positive 
corresponds to a “concave-up” deflection tendency. Note that both the shear force 
and bending moment are equal to zero at the ends of the ship, as is the case at the 
free ends of a loaded beam. This approach lends itself well to strip theory, where 
the 2-D results developed above are used to find the sectional hydrodynamic force. 
However, note that if the speed is nonzero, the additional terms that arise because of 
coupling between the forward speed and body oscillations must be added, see Eqs 
(5.79) and (5.13 1) for the effects on radiation and diffraction forces, respectively. 
Note also that you will have to account for the “end terms” discussed in Section 
2.6.2 above, since the section area at the end of the integration range is obviously 
nonzero (except possibly at the stem); see the classic treatise by Salvesen et. at. 
[ 19701, for example, for one form of the full expressions. 

8.5’ Motion sickness incidence and motion induced interruptions 

8.5.1 Motion sickness and fatigue-reduced proficiency 

Motion sickness can be regarded as a “derived response” since it is induced by the 
ship motions. There have been several studies attempting to quantify this 
relationship; Stevens and Parsons [2002] provide a recent summary. Probably the 
most cited reference on the subject is the study by McCauley et.al. [1976], relating 
Motion Sickness Incidence (MSI, defined as the percentage of subjects experiencing 
motion sickness) to oscillation frequency, acceleration, and exposure time. In this 
study a number of college students were placed in a “Motion Generator” and 
subjected to various types of sinusoidal oscillations for a period of 2 hours, or until 
they suffered motion sickness (i.e., they “experienced emesis”, or in layman’s 
terms, vomited). For this the subjects were paid the generous sum of $10. One 
significant conclusion of the study was that vertical motion is much more important 
than either pitch or roll motion in inducing motion sickness. McCauley et.al. 
obtained an analytical expression for MSI which seemed to fit their data, using a 
bivariate normal distribution: 

(5.223) 

where 
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cD = standardized cumulative distribution function, 
a = RMS vertical acceleration, g 
f = frequency of oscillation, Hz, 
t = exposure time, minutes; and 

The parameters were determined by fitting this function to the data: 

pL,(f) = 0.87 + 4.36 loglo(f) + 2.73 (10glo(f))2 
oa = 0.47 ( ~ t  zz 0.76 vt = 1.46 p = -0.75 

Ths representation is valid within the following approximate limits: 

0 I t 5 120 min. 
0.025 5 a 2 0.75 g 
0.065 5 f 2 0.8 Hz 

and should be used with caution outside of this range. Figure 5.27 shows some 3-D 
plots of the computed MSI as a function of frequency and acceleration, for exposure 
times of 30, 60 and 120 minutes. Note that the hghest MSI occurs at a frequency of 
about 0.16 Hz (a period of 6.25 sec). 

More recently, an alternative formulation based on a “motion sickness dose 
value” (MSDV) for vertical accelerations has been developed (IS0 [ 19971). The 
MSDV is defined as 

MSDV, = \i j a w z  ( tkt  
0 

(5.224) 

where a,(t) is the frequency-weighted vertical acceleration and T is the duration 
(between 20 min. and 6 hr.); the subscript “z” indicates vertical motions. The 
frequency weighting function is shown on Figure 5.28. The motion sickness 
incidence is determined from the MSDV as follows: 

MSI(%) = K, MSDV, (5.225) 

where K, is a constant, K, = 1/3 for a “mixed population of unadapted male and 
female adults”, and MSDV, is in metric units. 
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FIGURE 5.27 Motion Sickness lncidence vs Oscillation Frequency and 
RMS Acceleration for three exposure times 

An advantage of the latter approach is that it can be applied to an arbitrary 
acceleration signal in a straightforward manner. Calculation of MSI using 
McCauley’s method, Eq. (5.223), is difficult in irregular waves because of the 
explicit frequency dependence in the formulation. To apply this method in irregular 
seas we could use the modal wave frequency of the acceleration spectrum in Eq. 
(5.223) but this lacks theoretical or empirical justification. 

At frequencies higher than about 1 Hz, “fatigue-decreased proficiency” 
becomes a problem. This is much higher than the frequencies associated with 
typical ship motions, but such vibrations can be induced by machinery or even 
possibly by slamming. The International Standards Organization has published 
guidelines on the effects of “whole-body vibrations” on health, comfort and 
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perception as a function of exposure time, frequency, and acceleration (IS0 [1997]). 
The guidelines are in terms of weighted RMS accelerations. There are weighting 
curves for vibrations in the head-to-feet (C‘z”) direction and the transverse directions 
(x, forward and back; y, side to side) relative to the human body (real “body 
axes”!); there are additional weightings for seat-back measurements, rotational 
vibrations, and “vibrations under the head of a recumbent person”. 

Frequency. Hz 

FIGURE 5.28 Weighting factor for vertical accelerations, used in evaluation of MSDV, 

The guidance with respect to the effects of vibration on health is in the form of 
a plot showing “caution zones” for the weighted acceleration as a function of 
duration of exposure, see Figure 5.29. The guidance is applicable for a seated 
person. The two sets of curves apparently correspond to two sets of data, one 
indicating a square-root dependence on duration (“Equation B. 1”) and the other 
proportional to duration to the 114-power. The two caution zones agree for 
durations of 4 to 8 hours. where most of the available data exists. 
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FIGURE 5.29 Health guidance caution zones according to ISO-263 1 

The effects of vibration will be firther examined in the next chapter. 
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8.5.2 Motion induced interruptions 

Motion induced interruptions (MII) are cases in which a subject either loses balance 
and stumbles or falls, or slides along the deck; the concept is applicable to objects 
(cargo, machinery, vehicles) as well as peopleff. The methodology as originally 
formulated (Graham et.al. [ 19921) involved computation of the “horizontal force 
estimator” (HFE), actually the total lateral acceleration parallel to the deck at the 
point of interest: 

HFE(P) = -u,(P) - g sin# (5.226a) 

relative to seakeeping (xyz) coordinates, where uv (P) is the acceleration in the y- 
direction at the location of interest, computed as described in Section 8.1 above. It 
will be convenient to define a “vertical force estimator” in a similar manner: 

VFE(P) = -u,(P) - g COS@ (5.226b) 

The lateral force mHFE(P) acts at the center of mass of the person or object, a 
distance h above the deck. The reaction forces at the deck provide the resistance to 
tipping and sliding. Sliding is expected when 

HFE >-pVFE or -HFE >-pVFE (5.227) 

for sliding to port or to starboard, and, assuming two points of contact located a 
distance 2d apart (in a transverse direction), tipping is possible when one of the 
reaction forces drops to zero: 

(5.228) d d 
h h 

HFE>--VFE or -HFE >--WE 

in seakeeping coordinates (i.e., VFE is positive up). Here p is the friction 
coefficient and the ratio d/h is sometimes referred to as the “tipping coefficient”. 
The tipping coefficient for a human will obviously differ from that of a rigid body, 
and is a function of many different factors, such as an individual’s ability to alter his 
stance in response to the motions. Stevens and Parsons [2002] quote an average 
value for “all tasks” of0.222, determined from experiments in a motion simulator. 

?n fact possibly more applicable to objects, since people are usually treated as rigid bodies when making 
predictions based on the theory. 
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We can apply the methodology given in the previous sections to find the 
expected number of MIIs per unit time. To do this it is convenient to express Eqs. 
(5.227) and (5.228) in the form 

fHFE + aVFE > 0 (5.229a) 

where a is the friction or tipping coefficient. 
assuming small amplitude motions (so that we can apply spectral analysis), 

Plugging in Eqs. (5.226) and 

Thus the total number of MII's per unit time can be found using Eq. (5.213): 

(5.230) 

where w,~+ and w,~- correspond to the zeroth and second moments of the spectra of 
the quantities on the left-hand side of Eq. (5.229b), with + and - signs before the 
brackets, respectively. 

8.6 Operability criteria 

Operability criteria, defrning conditions in which a vessel can carry out its mission 
without degradation due to wave-induced motions, are generally specified in terms 
of the derived responses discussed above. For example, the North Atlantic Treaty 
Organization Standard Agreement 4154 (NATO [ 19971) has established the 
following operability criteria for naval vessels: 

TABLE 5.7  Operability Criteria (NATO STANG 4154)
Response Criterion 

Motion Sickness Incidence 
Motion Induced Interruption 

Pitch amplitude (RMS) 1.5" 

20% in 4 hours 
1 per minute 

Roll amplitude (RMS) 4" 

Vertical Acceleration (RMS) 0.2g 
Lateral Acceleration (RMS) 0.lg 

Criteria for other types of vessels differ. Small high-speed craft routinely 
experience high accelerations, particularly at the bow, so that a value of 0.65g RMS 
is appropriate; for cruise liners, a value of 0.02g RMS has been recommended 
(NORDFORSK [ 19871). Establishment of such criteria thus requires consideration 
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of the type of service the craft is designed for as well as the tasks and activities 
being carried out by passengers and crew. 

9. Some Nonlinear Effects 

We have stated several times in th s  chapter that wave-induced forces and motions 
on shps in low to moderate sea states can be predicted reasonably well using linear 
theory provided that the roll damping is properly accounted for. However, for 
moored or anchored structures, second-order wave forces play an important role. 
These are proportional to the square of the wave amplitude, and in general involve 
two wave frequencies. These effects are particularly important for moored 
structures because they include a component that oscillates at a frequency 
corresponding to the difference between the two wave frequencies. This low 
frequency can coincide with the natural frequency of the moored structure in a 
horizontal plane, and thereby produce larger-amplitude oscillations than the wave- 
frequency forces. 

It is instructive to examine the wave-induced pressure to second order in the 
absence of a body. In terms of the velocity potential, using the Bernoulli equation 
(Eq. (4.1)): 

(5.23 1) 

For monochromatic waves the solution is given in Eq. (4.69) for arbitrary water 
depth; in deep water this expression reduces to 

= -,pgA 1 
2 e 2k< (5.232) 

However if there are two waves with frequencies o1 and w2, we obtain 

(5.233) 

in deep water, where C2 is the total phase of each wave, e.g.: 



5. Wave-Induced Forces on Marine Crufi 321 

and E is a phase angle. Thus a new term appears, proportional to the dzference 
between the wave frequencies (if the waves are travelling in the same direction), 
which would not be anticipated on the basis of the single-wave result. Thus we 
should expect to find both mean and slowly-varying second-order forces if waves 
with more than a single frequency are present. 

B e  second order wave pressure is only one component of the total nonlinear 
pressure acting on a floating body. The total second-order pressure is obtained by 
inserting the total velocity potential (including radiation and diffraction effects) in 
Eq. (5.23 1). In addition, to be consistent we need to account for the first-order body 
motions, and integrate the total pressure on the body up to the actual instantaneous 
free surface level, to obtain the force to second order. Details are provided in the 
following sections. 

9.1 Evaluation of second order force: Pressure integration 

The direct way to calculate the total hydrodynamic force to second order is to 
integrate the first- and second-order pressure on the instantaneous wetted surface of 
the body. The total second order contribution can be written as (Pinkster [1980]) 

where So denotes the body surface below the static waterline and s denotes the 
surface between the static waterline and the instantaneous free surface elevation. 
The normal vector components Q and nTi are taken with respect to the body in its 
static equilibrium position and instantaneous position, respectively; the subscript 
“T” denotes “transformed”, indicating that it is necessary to apply the 
transformation matrix [TI to the normal vector. Thus we could also write ni = nTi(’). 

Note the contributions of the zeroth and first order pressure to the second order 
force. Recall that the “zeroth order” pressure is hydrostatic, so that the third term 
represents the second-order change in the apparent hydrostatic force due to the 
change in the orientation of the body (relative to the equilibrium condition). 

The second order pressure is given by Eq. (5.231); however we have to deal 
with the additional complication that the pressure is to be evaluated on the moving 
body. The usual way to deal with this is to expand the pressure in a Taylor series in 
space about the mean location of the body surface, 

p(r+dr)=p(r)+x.Vp(r)+f(x.V)’p(r)+.. (5.23 5 )  
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where x = dr denotes the displacement of the point on the body surface relative to 
its mean location given by r. We can also expand the displacement in a series, 

x = EX(1) + E2X(*) + . . . (5.236) 

as we have previously done for the pressure and the velocity potential (see Eqs. 
(4.66)). Thus the second order pressure on the moving body becomes 

where subscript t indicates partial differentiation with respect to time. 

The zeroth and first-order pressure contributions are given by 

(5.238) 

Now we can substitute Eqs. (5.237) and (5.238) in Eq. (5.234) to obtain the second 
order force. Before doing this it is convenient to express the “transformed normal” 
nT in terms of the angular displacement components: 

where we define the angular displacement “vector” as 

Thus the first term on the right-hand side of Eq. (5.234) is equivalent to 

(5.24 1 a) 

where F(’) is the total hydrodynamic (plus hydrostatic) force. As we mentioned 
above, the third term represents the second order “correction” to the hydrostatic 
force due to body motions: 
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Evaluation of the last term in Eq. (5.234) is a little more complicated; it turns 
out that the integral over the surface s can be converted into a line integral around 
the equilibrium waterline: 

(5.24 1 c) 

where fr is the relative wave elevation, which is simply the negative of the relative 
motion z, of a point on the equilibrium waterline (see Eq. (5.212). Ths leaves only 
the second term in Eq. (5.234). Here we plug in Eq. (5.237) to obtain 

Thus the second order force comprises six terms, four of which are independent of 
the second order quantities! 

To illustrate how the second order force depends on the first order quantities, 
we can (following Pinkster [1980]) examine the contribution of the relative wave 
elevation, Eq. (5.241~). If we express the relative wave elevation in terms of its 
response amplitude operatorf,, 

and consider a long-crested seaway in which 

j=l 

(see Eq. (4.125)), the square of the relative wave elevation can be written as 

so that the second order force will include slowly-varying (dzflerence frequency) 
and rapidly-varying (sum frequency) components. In the literature, these two 
components are generally treated independently, with those interested in the 
behavior of moored ships or structures generally focusing on the slowly-varying 



components, while others involved with fixed structures or very stiff mooring 
systems (such as those associated with tension leg platforms) concentrate on the 
rapidly-varying components. Here we will discuss only the slowly-varying forces 
in detail; the development of the rapidly-varying components proceeds along a 
similar path. 

Using Eq. (5.242), we can express the slowly-varying component of the second 
order force associated with relative wave elevation in the form 

(5.243) 

where 

(5.244) 

are the in-phase and out-of-phase components of the second order transfer function, 
for the component of the second order force associated with the relative wave 
elevation. 

Similar developments are possible for the other components of the second order 
force, so that the total slowly-varying second order force can be written in terms of 
a second order transfer function: 

(5.245) 

Note that when j = k we obtain 

i.e., a mean force, which is usually referred to as the mean drqt force. 

(5.245a) 

Pinkster [I9801 has shown that of the terms given in Eqs. (5.241), the largest 
contribution to the mean drift force comes from the relative wave elevation. The 

330 The Dynamics of Marine Craft



5. Wave-Induced Forces o n  Mur ine  Craft 33 1 

second-largest contributor (in magnitude) is the resultant of the “nonlinear 
Bernoulli” pressure, given by the second term on the right-hand side of Eq. 
(5.241d). However, this term generally opposes the force due to the relative wave 
elevation; i.e. its direction is into the incident waves. It can be shown that the mean 
value of the force due to the second order potential (the fust term on the RHS of Eq. 
(5.241d)) is zero; the remaining components are smaller in magnitude and evidently 
can have either sign, depending on the particular configuration. The bottom line is 
that the total mean drift force is roughly halfof the contribution of the relative wave 
elevation, which suggests the approximation 

Using Eq. (5.245a), the mean second order force, can be written as 

(5.246) 
j=1 

This can be expressed in terms of the wave spectrum by noting that, according to 
Eq. (4.125), 

Aj’ =2Sff(oj)40j  

so that, in the limit Ao-+O, 

m 

(5.24 7 )  

The spectrum of the square of the wave elevation can be written as 

so that the spectrum of the slowly varymg drift force is 

(5.249) 

where 
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(5.250) 

In the time domain, the ‘low frequency second order force can be written in terms of 
the quadratic impulse functions using the second-order form of Eq. (5.2a): 

m m  

F(2’(t) = 1 lh!’) (tl , t 2 )  f (t - t l )  f (t - t l  )dtldt2 (5.251) 
-m -m 

where 

Further details on the application of these expressions can be found in (Dalzell 
[ 19761). 

9.2 Evaluation of second order force: Momentum conservation 

An alternative method to find the mean second order force makes use of 
conservation of momentum. This method is generally much easier to apply, 
particularly for two-dimensional bodies; however, it is only applicable for the mean 
force. It is usually referred to as the far-field method, because it involves 
examination of the momentum flux through a control surface located far from the 
body. Ths  is advantageous because the flow field has a simple form here, 
corresponding to a superposition of the incident waves and the waves radiated and 
diffracted by the body. You will recall (I am sure) that we have made use of this 
procedure previously, to express the power necessary to sustain forced oscillations 
of a body in terms of the amplitude of the radiated waves (see section 2.4 above). 

In the present case we again make use of a closed control surface consisting of 
the body surface, free surface, sea bottom, and either a vertical cylinder or two 
vertical walls located far from the body, for three- and two-dimensional cases, 
respectively. Using the principle of conservation of momentum, we can show that 
the average horizontal force on the body in any azimuthal direction is equal to the 
net change in momentumflux in that direction. 
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In two dimensions the problem is straightforward. The average mass flux in a 
wave with amplitude A across a plane normal to the direction of wave propagation 
is given by the volume flux, Eq. (4.72), multiplied by the density of the fluid: 

1 
2 

average mass flux = pq = - poA coth kh 

The average momentum flux is just the mass flux multiplied by the group velocity: 

1 1 2 v, 
2 2 VP 

- 
M =-pA2V, cothkh =-pgA - (5.253) 

Interaction of the incident waves with the body produces diffracted and radiated 
waves, which move away from the body in both directions. The diffracted waves 
are conveniently expressed in terms of reflection and transmission coefficients as 
mentioned in Section 2.1 in Chapter 4. Thus in two dimensions for waves incident 
from the -c direction, the velocity potential far from a fixed body can be written as 

- igA cosh k(h + <) -iwt 
= (e'kt + &'kt __ e , <+-m 

w ) coshkh 

-igA coshk(h+<) -iot 
(5.254) 

= Teikt( T) cosh kh e 9 <+a 

(see Eq. (4.15)), where R and T are complex reflection and transmission 
coefficients. The amplitudes of the transmitted and reflected waves are 

respectively; we can show using conservation of energy that 

lTI2 + IR l 2  = 1 (5.255) 

Now the net average momentum flux into the control volume bounded by two 
vertical planes located far from the (fixed) body is just given by Eq. (5.253). The 
momentum flux out of the control volume is given by the same expression, 
multiplied by IT l 2  and IR l 2  for transmitted and reflected waves, respectively. The 
mean horizontal force on the (fixed) body is equal to the net change in average 
momentum flux in the 4 direction (Longuet-Higgins [ 19771): 
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Note that this can be combined with Eq. (5.256) to yield 

(5.25 6) 

(5.257) 

An analytical solution is available for the mean force on a thin wall extending 
to a depth d below the free surface in deep water; recall that the solution for the 
corresponding first-order force was given in Section 2.1 in Chapter 4 (Wehausen 
and Laitone [ 19601): 

n21,2(kd) 

~ ~ 1 , ~  (kd)+ KI2(kd) 
Fi2) (kd) = pgA * (5.258) 

where I,  and K, are modified Bessel functions of the first and second kind (of order 
l), respectively; the solution is shown on Figure 5.30 below. Note that at very low 
frequencies, h >> d, the waves are unaffected by the presence of the wall and the 
reflection coefficient is zero. At very high frequencies, the waves are completely 
reflected and the normalized drift force attains its maximum deep-water value of 
1 .o. 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

wavenumber kd 

FIGURE 5.30 Mean horizontal force on a thin vertical wall in deep water 

In finite water depths, the factor V$V, is a function of frequency or wavenumber, 
decreasing from a value of 1 at zero frequency to 0.5 at infinite depth. Thus the 
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1.0 - 

0.8 - 

drift force on a fixed body in finite water depths will in general have a maximum 
value near kh = 1, as shown on Figure 5.3 1. 

".... .. 
" . v p ,  

When the body is free to move, we have to account for the radiated waves. If 
we denote the total amplitude of the radiated waves in the far-field (accounting for 
all modes of oscillation) by AR, the expression for mean horizontal force becomes 

Fi2' =-ppgA2 1+ R + A R  - T + A R  
- 1  ( I -I2 1 +I*) 2 VP 

(5.259) 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

wavenumber kh 

FIGURE 5.31 Behavior of mean horizontal drift force with wavenumber 
in finite water depths 

The expression for energy conservation is 

for a freely-floating body. However, if a damper or power takeoff device is 
somehow connected to the body, absorbing some of the wave energy, conservation 
of energy takes the form 

IT+AR + I + IR + AR- j 2  + EF= 1 (5.260b) 

where EE is the energy absorption eficiency (Mei [1989]). Thus a wave power 
extraction device will absorb all of the energy in the incident waves if it can be 
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designed so that the waves generated by its motions just cancel the reflected and 
transmitted waves. 

Because of the presence of the radiated waves, the behavior of the drift force on 
a freely-floating body differs somewhat from that shown on Figures 5.30 and 5.31. 
The salient difference is that peaks in the drift force are usually present near the 
natural heave, roll and pitch frequencies of the body. However, the behavior at low 
and high frequencies is the same as that for a fixed body, since no waves are 
radiated in these limits (see the discussion of wave damping in Section 1.2 above). 

In three dimensions, we must account for the fact that waves can be scattered 
(diffracted) and radiated in all directions. Also, recall that the scattered and radiated 
wave amplitudes approach zero far from the body, since the energy is being spread 
out over a wider and wider area. Following Mei [1989], we can express the velocity 
potential far from the body in the form 

where ASR includes the effects of all scattered and radiated waves. Note that ASR is 
not the amplitude of these waves; the amplitude is given by 

(5.262) 

The component of the horizontal drift force in the direction of wave motion is 

and perpendicular to this direction 

(5.263b) 

Again we can quote one analytical result, which is the mean force on a bottom- 
mounted vertical circular cylinder, in infinite water depthgg (Kagemoto and Murai 
[2002]): 

gg This 1s a very long cylinder, however "the results are . . . practically applicable for a cylinder of finite 
but large draft" (Kagemoto and Murai [2002]). 
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where Hi1) is the #-order Hankel function of the first kind (which we have already 
encountered in Chapter 4, in connection with the first-order force on a cylinder), 
and the prime indicates the derivative with respect to the argument; “a” is the radius 
of the cylinder. The derivatives of the Bessel functions can be determined using the 
so-called “recurrence formulas” (see Gradshteyn and Ryzhik [ 19801 or Hildebrand 
[ 19761, for example). The series converges very rapidly, particularly for small ka; 
five terms were found to be sufficient for ka as high as 3.0. Computed results are 
shown on Figure 5.32. The limiting value at high frequency (normalized as 
indicated on the figure) is about 0.66. 

0.7 , 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 

Wavenurnber ka 

FIGURE 5.32 Mean horizontal force on a bottom mounted vertical cylinder 
in infinite water depth 

It is interesting to examine the ratio of the mean drift force to the magnitude of 
the first order wave exciting force that we computed back in Chapter 4, see Eq. 
(4.52). In deep water the ratio is a function only of ka (or, alternatively, hld where 
d is the cylinder diameter) and aJA, as shown on Figure 5.33; note the l o g a r i t h c  
scale. The figure shows that the mean force can exceed the magnitude of the first 
order force in high or very short waves. 
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103 

Wavelength I cylinder diameter 

FIGURE 5.33 Ratio of mean drift force to magnitude of first order 
force on a cylinder, infinite water depth 

9.3 Newman s approximation 

Evaluation of the second order transfer functions required for prediction of the 
slowly varying second order force is computationally time consuming, because 

the contribution of the second order potential must be computed, 
which is difficult, and 
if we want results at n frequencies we need to compute the second 
order transfer functions at n2 frequency combinations (differences). 

(i) 

(ii) 

In this connection it should be pointed out that the coefficients Tijk in Eq. 
(5.245) are not uniquely defined for j # k. We can rewrite that equation as follows: 

In this form it is evident that there is effectively one in-phase and one out-of-phase 
coefficient corresponding to each frequency difference; we can distribute the total 
between Tijk and Ti,k, in any way we see fit. The generally accepted convention is to 
define the coefficients such that 
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(5.266) 

so that the opposite elements contribute equally. All published results that we are 
aware of follow this convention. 

Newman [ 19741 argued that since “slow drift” motions are associated with very 
low frequencies, the principal contribution should be associated with the elements in 
Eq. (5.265) which are near the main diagonal j = k, we can write 

(5.267) 

which is a good approximation for TijkprOVided that we select only terms involving 
small differences (oj He then showed that the double summation, Eq. (5.265), 
could be replaced by the lowfrequency part of the square of a single summation: 

F;‘’ z low frequency part of [g A & cos(a j t  + 6 f ] (5.268) 
j=l 

which reduces computation time substantially, since only the mean force 
coefficients are involved, so that the second order problem does not have to be 
solved, and only a single summation must be computed. However it is important to 
keep in mind that the low frequency part of this expression must be extracted, by 
filtering for example. 

‘This approximation, or at least Eq. (5.267), is apparently adequate for some 
practical applications. Pinkster [1980] indicates that, at least in the cases he 
examined, most of the difference between Ti,j and Tijk comes from the contribution 
of the second order potential to the latter; thus the approximation can be expected to 
be satisfactory for cases in which this contribution is small. In two examples 
examined by Pinkster, this occurred when most of the wave energy was above a 
frequency of about 0.4 rad/sec for a tanker and 0.8 rad/sec for a semisubmersible 
platform. The latter is fairly restrictive, limiting applicability to the lowest sea 
states. 
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9.4 Efects of forward speed: Wave drift damping and added resistance 

All of the results presented in this section thus far pertain to a body at zero speed. 
However, like the first order forces, the second order forces are functions of speed. 
As mentioned above, a moored body may undergo large-amplitude excursions due 
to slowly varying second order forces; the effect of this “slow drift velocity” on 
these forces must be considered. A second case in which speed effects are 
particularly important is in the evaluation of the mean longitudinal force on a shlp 
running in waves, usually referred to as the “added resistance”. 

9.4.1 Wave-drift damping 

In the case of a moored body undergoing slow oscillations, the speed effect is 
usually expressed in terms of wave-dr$t damping coefficients (Tanizawa and Naito 
[ 19971): 

(5.269) 

where U, are the components of the ‘‘slowly varying” velocity. It is conventional to 
adopt a coordinate system moving with this velocity; thus the free surface boundary 
condition must be modified (similar to Eq. (5.58) for the linear case) and we expect 
analogous “frequency of encounter” effects. Solution methodologies have been 
presented by Triantafyllou [1982], Faltinsen and Zhao [1989] and in a series of 
papers co-authored by Grue (e.g., Finne and Grue [1998]); the latter papers present 
results for some particular cases. 

The total damping for slow drift motions includes the wave-drift damping and 
viscous drag. In low sea states the viscous effects dominate the damping forces, but 
in hgh  seas, the wave-drift damping is dominant. For example, Faltinsen [1995] 
states that the wave-drift damping on a 235m long ship is 85% of the total damping 
in waves with a significant height of 8.lm but negligible in waves with a significant 
height of 2.8m. He goes on to show that if the damping is small (as is typically the 
case for slow drift motions), the mean square of the slow drift motion for a single 
degree of freedom can be approximated by 

2 
00 

(5.270) 
‘3i,s 2 zsF,i(aOi,s)Il$(m{ dm =sF,i(mO,s) n 

0 1  2* ii,s C ii ,s 
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where Sfi is the spectrum of the slowly varying force, Eq. (5.249), w ~ i , ~  is the natural 
frequency of the slow oscillations in mode i, Cii,s is the linear restoring force 
coefficient (due to the action of the mooring system), and the total drift damping 
coefficient Bii,, is assumed to be independent of frequency. This simple 
approximation codinns that large low frequency motions are to be expected when 
the damping is small; surprisingly, the motions are independent of the inertia (mass 
plus added mass) of the body! By multiplying both sides of Eq. (5.270) by the 
square of the restoring force coefficient, we obtain an approximation for the mean 
square of the total mooring force, 

(5.271) 

which increases linearly with the mooring system stiffness. It is emphasized that 
Eqs. (5.267) and (5.268) are rough approximations only, since we know that the 
damping is frequency dependent, the mooring system stiffness is generally not 
linear and coupling among the motions cannot be neglected; however these 
formulas do provide an indication of the salient effects of damping and stiffness. 

The data presented by Faltinsen and Zhao [ 19891 indicates that the maximum 
value of the wave drift damping force coefficient for a semi-submerged circular 
cylinder of radius a is about 

B22,s =3- pgA2 at k a = l  6 
The first order wave radiation damping coefficient is also maximum near this 
wavenumber; its value is approximately 

BZ2 = 0.5pona2 

so that the ratio of the slow drift damping force to the frrst order wave damping 
force is roughly 

(5.272) 

where we have used Ix2/Al = 0.5 at ka = 1.0 to arrive at the final expression. Thus 
the relative importance of the wave-drift damping increases linearly with the wave 
amplitude and drift velocity. 
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9.4.2 Added resistance 

The longitudinal component of the mean second order force on a moving ship is 
usually referred to as the added resistance due to waves or added resistance for 
short. Actually, strictly speaking, added resistance also includes the effects of 
reduced propulsive efficiency due to increased loading and unsteadiness of the flow. 
This effect is “automatically” included in simulations if the propulsion system has 
been properly modeled (see Section 4 in Chapter 3). 

You should keep in mind that the added resistance is generally only partially 
responsible for the speed reduction of a ship in a seaway, particularly in higher seas; 
this portion is called “involuntary speed loss”. The other portion comes from a 
conscious decision of the captain to reduce speed, usually because of the severity of 
the motions or the occurrence of frequent slamming and/or deck wetness. 

A commonly used strip theory estimate for the mean longitudinal second order 
force on a moving ship in regular waves is that developed by Gerritsma and 
Beukelman [1972]: 

Here lwrl is the amplitude of the relative vertical velocity. This formulation is based 
on the relationship among the mean drift force, the amplitude of the radiated waves, 
and the (first order) damping coefficient; the effects of scattered waves are 
neglected. Comparisons of this prediction with model test data are presented by 
Journee for an S-175 containership [2001] and a cargo ship [1976b]; in both cases 
the prediction is remarkably accurate for wave incidence within 60 degrees of head 
seas. Figure 5.34 shows some of this data; the agreement is good above a 
wavelength to ship length ratio of about 0.8. In shorter waves the effect of wave 
reflection probably accounts for most of the difference. The high peak near h/L z 1 
is characteristic of added resistance curves and occurs at the frequency at which the 
relative vertical velocity is maximum. 

At high frequencies the ship motions go to zero, and the waves are completely 
reflected from the bow. In this limit, the expressions presented by Faltensen [ 19901 
suggest that the added resistance should approach 

R,,--pgA 2 1 2 (  l+- 2aguo ). sin2 c1 (5.274) 
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in deep water at high encounter frequencies, where a is the “half-entrance angle of 
the waterline” (or more accurately an average value of the angle of the waterline. 

R * W  

pgA2 B2/L 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

hlL 

FIGURE 5.34 Comparison of predicted (Eq. (5.273)) and measure added resistance for a 
containership (JournCe [2001]). Line: prediction; Symbols: test data (two test 
programs). 

The value of the added resistance in irregular waves can be calculated using Eq. 
(5.247) which in the present context is written as: 

(5.275) 

10. Mooring systems 

We conclude this rather long chapter with a brief discussion of mooring systems 
(basically a mooring system). You might argue that mooring systems do not really 
belong in a chapter about wave-induced forces; however the discussion will not be 
lengthy enough to merit a separate chapter. This is as good a place as any since the 
mooring forces are involved in the low frequency horizontal-plane motions just 
discussed. 
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10.1 Static catenary line 

We will focus here on a simple catenary mooring system, which is probably the 
most common type for offshore applications. In this system the restoring force 
comes primarily from the weight of the line (usuaily a heavy chain), the end of 
which rests on the sea bottom. If the body is moved away from its equilibrium 
position, more chain gets lifted up off of the bottom, thus inducing a force 
transmitted through the line that acts to pull the body back. The line usually 
terminates at some sort of anchor; however it is desirable that the line be long 
enough to avoid applying a vertical force to the anchor. 

Most analyses of mooring systems begin with a free body diagram of an 
element of the line, showing the forces that act on it (Figure 5.35): Tension, weight, 
buoyancy, and drag are the most important ones. The figure shows an element with 
initial (unloaded) length ds, cross sectional area A, with a weight per unit length in 
water of w and elastic modulus E; T is the tension, F and D are the axial and 
tangential components of drag, and 8 is the angle with the horizontal. We will 
neglect line dynamics and assume that the line lies in a vertical plane; coordinates x 
and z are horizontal and vertical distances relative to an origin on the undisturbed 
free surface. Bending stiffness will also be neglected, which is not a bad 
representation in most practical cases. 

FIGURE 5.35 Small element of a mooring line 

By summing the forces in the tangential and normal directions, we can obtain 
two equations that determine the shape of the line and the distribution of tension 
along its length: 
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dT - pgAdz = [w sine - F( 1 + T/AE)]ds (5.276a) 

(T - pgAz) de = [w cose + D( 1 + T/AE)]ds (5.276b) 

No closed-form solution exists for Eqs. (5.276). However in many cases the axial 
stiffness AE is much larger than the tension so we can safely neglect those terms. 
Furthermore, the drag force can be neglected if the currents are not significant; 
Faltinsen [1995] states that “for many operations it is a good approximation to 
neglect the effect of current forces F and D’. Under these assumptions, Eqs. (5.276) 
can be integrated along the length of the line and solved for the horizontal 
displacement of the moored body as a function of the tension in the line (see 
Faltinsen [ 19951, for example, for details). For the configuration shown on Figure 
5.36, the solution has the form 

(5.277) 

where X is the horizontal distance from the anchor to the point of attachment on the 
body, L is the total line length, h is the water depth, and 

a = T H / w  (5.278) 

where TH is the horizontal component of the line tension at the point of attachment 
to the body. It should be noted that in addition to the assumptions given above, the 
line weight per unit length is assumed to be constant in this solution. This implies 
that the line is submerged for its entire length (i.e., strictly speaking the point of 
attachment to the body must be at or below the waterline). The vertical component 
of the line force at the point of attachment to the body is equal to the submerged 
weight of the suspended portion of the line L, = L - X: 

Tv = wL, (5.279) 

FIGURE 5.36 Mooring arrangement 
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Eq. (5.277) is not particularly easy to work with when carrying out simulations, 
since in these cases we need the force for a given displacement; this involves 
solving Eq. (5.277) iteratively. As an alternative we have developed an explicit 
approximation that is probably sufficiently accurate for most applications. First we 
write Eq. (5.277) in dimensionless form and add 1 to both sides: 

h + X - L  = 1 +- a cosh-l( 1 +:) 
h h 

(5.280) 

Notice that the quantity on the left-hand side ranges from 0 (the case where the line 
hangs vertically and makes a right angle at the bottom) to 1 (corresponding to a very 
long line so that X = L), and that the right-hand side is a function only of a h .  By 
generating a data table and applying nonlinear regression analysis, we obtain the 
following explicit expression for the horizontal component of the line force: 

Figure 5.37 shows a comparison of ths  formula with the exact (implicit) expression, 
Eq. (5.277). 

Some other useful formulas for catenary mooring problems are listed below. 

Tension as a function of distance from sea surface (z is positive downward): 

T = T H  + wh + (W - pgA)z (5.282) 

The maximum line tension thus occurs at the surface, z = 0: 

T,, = TH + wh (5.282a) 

Length of suspended portion of the line: 

L, = d h 2  + 2ha (5.283) 

Horizontal distance from point of attachment to body, to point of contact with 
bottom: 
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(5.284) 
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FIGURE 5.37 Comparison of explicit approximation for catenary force with exact formula 

Again, these expressions are for an inelastic line of constant weight per unit 
length, and line dynamics are neglected. The latter effects are important in cases 
where transverse oscillations may develop due to vortex shedding, for example. 
The tendency for vortex shedding is characterized by a dimensionless quantity 
called the Strouhal number, 

f s d St =- u (5.285) 

where Fs is the frequency of vortex shedding in Hz, d is the line diameter, and U is 
the velocity normal to the line. Vortex sheddmg occurs when St = 0.20, at Reynolds 
numbers (based on line diameter) ranging from lo2 to lo5. If the vortex shedding 
frequency coincides with one of the natural frequencies of the line, large amplitude 
oscillations could occur. 
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These formulas may also be applied to towing cables, which are essentially 
horizontal. Here, the sag of the cable replaces the water depth h, and the length L, 
is now halfthe length between connection points (L, is the length to the point where 
the line becomes horizontal). Elasticity may be important in such cases, since the 
wire rope or synthetic line used for towing is much lighter and more elastic than a 
mooring chain. In the case of an elastic catenary line, we cannot obtain X as a 
function only of the horizontal force TH as was done in the inelastic case; solution of 
the elastic catenary equations yields Eq. (5.277) but with an additional term: 

X = L - h  1+2-+acosh-' 1+- +- i ( 3 a;:s (5.2 86) 

which involves the unstretched cable length L,. This can still be expressed in terms 
of the vertical force at the attachment point using Eq. (5.279); however, the 
relationship between L, and a, Eq. (5.283), must be replaced with the following 
implicit relationshp: 

a 2EA 
(5.287) 

Thus for given cable properties and water depth (or cable sag), Eqs. (5.286) and 
(5.287) must be solved for the horizontal force, the unstretched length L,, and the 
distance X. One way to solve the equations would be to create a table of values of 
L,, use Eq. (5.287) to find the corresponding values of a, and finally plug L, and a 
into Eq. (5.286) to determine the corresponding X. 

10.1.1 A simple example 

As a simple application of the catenary formulas, we will find the equilibrium 
position of a ship moored with a single anchor chain in a 2 knot current. The water 
depth is 18m. We will employ the merchant shp  example that we examined 
previously in the examples in Chapter 3 and above. 

The first step is to find the total longitudinal force on the shp  (assuming that 
the s h p  will align itself with the direction of the current). We can find the 
resistance at a speed of 2 knots using the methods described in Chapter 3 and 
Section 5.1 above. However we must remember to add the drag of the locked 
propeller, which may actually exceed the drag of the shp. The propeller drag can 
be approximated using 
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X,(RPM = 0) = -%pU,2A,C, (5.2 8 8) 

where Ap is the “expanded blade area” of the propeller and C, is a propeller drag 
coefficient, C, = 1 (MIL-HDBK-l026/4A [1999]). Using the propeller data given 
in Section 5.1 above we find 

A, = (expanded area ratio) x 7cD2/4 = 21.38m2 

and 
X,= 11.6kN. 

The Holtrop [ 19841 method yields 

R = 7.0 kN 

at 2 knots whch is indeed less than the drag on the propeller. Thus the total 
horizontal force on the mooring line due to the current is 

We will assume that the ship is moored with a 2.5 inch chain, whch has a 
submerged weight w = 769 N/m. Neglecting elasticity, we can find the suspended 
line length using Eq. (5.283): 

L, = 34.6m 

which is also the minimum length of the line to avoid applying a vertical force to 
the anchor (note that since the formulas assume that some portion of the line rests 
on the bottom, they do not apply to the case L < Ls). With a = Th/w = 24.2m and a 
line length L = 50m, Eq. (5.277) yields 

X = 43.4m. 

This data can also be used to estimate the natural frequency of the low 
frequency longitudinal motions. The natural frequency is given by 

(5.289) 

where CI1 is the restoring force coefficient in surge: 
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(5.290) 

where x is relative to the body axes fixed in the ship; x, represents the equilibrium 
location, corresponding to X = 43.4m in this example. If the shp  remains aligned 
with the anchor, x and X differ by a constant and so aldx = a/aX. We can obtain an 
expression for the derivative using Eq. (5.281): 

1-0.97085( h + X - L  ) 
-- dTH - 0 . 2 9 4 6 2 ~  (5.291) 
dX 

[I - 1.97085( +c-L) + 0.97085( +: -'),'I 
The value at X = 43.4m is 

=6937N/m 

The mass and surge added mass of the shp  can be found in Table 5.3 above. Now 
the natural frequency and period in surge can be calculated: 

oo = 0.018 radsec; To = 349 sec = 5.8 min. 

10.2 Stability of a towed or moored ship 

Another interesting mooring problem, which we can treat (approximately) using the 
theory developed in Chapter 3, concerns the stability of the ship moored using a 
single line in a steady current, as in the previous example. The methodology is also 
applicable to the case of a body being towed along a straight line at constant speed. 

We wish to examine the behavior of the towed or moored ship subsequent to a 
small yaw or sway disturbance. We can thus use the linearized surge-sway-yaw 
equations, Eqs. (3.141a). For simplicity we will assume that the line tension is 
constant, which is tantamount to neglecting surge motion (this is reasonable in a 
steady current or at constant towing speed); we then need only to deal with the yaw 
and sway equations. To these we must now add the force exerted by the mooring 
line, which we can obtain geometrically, using the layout shown on Figure 5.38. 
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Here LL is the horizontal projection of the unsupported line length, assumed to be 
constant (equal to x, Eq. (5.284), for a catenary mooring line). 

Note that the angle between the longitudinal axis of the ship and the mooring 
line is (6 + Y), where 6 is defmed on Figure 5.38; recall that Y is the yaw angle 
with respect to the fixed coordinate system (xyz). The component of line tension in 
the transverse direction is 

for small deflections; here “a” is the x-coordinate of the attachment point of the 
mooring line. The yaw moment is just 

NM = aYM (5.293) 

I 
I 

I 
I 

I 
I 

FIGURE 5.38 Geometry for moored or towed ship 
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Notice that Eq. (5.292) expresses the force in terms of the lateral displacement 
and yaw angle relative to the "fixed" (CqQ coordinate system. Thus we really need 
to convert the yawlsway equations to a consistent coordinate system in order to 
make use of Eqs. (5.292) and (5.293). For small perturbations, the force and 
moment relative to the fixed system will not differ from those relative to the moving 
system to leading order; thus it will suffice to transform the variables (v,r) with the 
aid of the small perturbation transformation matrix, Eq. (2.21): 

(5.294) 

where Uo is the steady current velocity or forward speed. Plugging Eqs. (5.294) 
into the yawlsway equations (3.141a), adding the mooring force and moment (Eqs. 
(5.292) and (5.293)) to the right-hand sides yields, after some rearrangement, 

+f1Uo+(A,,-A2,)Uo 

It is convenient to normalize these expressions by dividing the first by ('/zpUtL2) 
and the second by (%pU~L3),  where L is the length of the s h p  (we will also 
normalize y, a and LL by dividing by L): 

(m'+A2, ')jil+(m'xG '+A26')Y'-bl ' yl-[b3 '-(Al '-A22 ')f3''+l TH' y' 
LL 

(5.295a) 
a' 

(m'xG '+A62')jj'+(Izz'+A66')~'-[fl'+(Al l'-A22')b-f3'€''+TH'7 y' 
LL 

+fl'+(All'-A22') Y = O  I 
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The solution strategy is the same as that employed for such equations in Chapters 2 
and 3 :  We assume a solution of the form 

Plugging these expressions into Eqs. (5.295a) yields simultaneous equations for the 
amplitudes To and Yo, which can be written in the form 

B, (5.297) 
8 +B, IGI+B, 1 B 1 8  +B, 1 ( 3 1 + ~ 6  I{ :} = {:} 

F, ' d2 +F3 o'+F, ' F, d2 +F4 ' d+F6 ' 

where B,' = (m' + A22'), B i  = (m'xc' + A26(), etc. Nontrivial solutions exist only if 
the determinant of the coefficient matrix is zero; t h s  requirement yields a fourth- 
order equation for the stability indices 0': 

(B, F2'-B2' F', )d4+(Bl' F4'+B,' F2'-B2' F3'-B4' F11)oq3 

+ (B, F6'+B3' F4'+B, F, I-B, F, '-B4' F3 '-B6' F,')o'' 
+ (B, F6'+B5 F4 '-B4' F, '-B6' F3 ')d+(B5 F6'-B6' F5 I) = 0 

(5.29 8) 

For stability we require that all coefficients of (3' in t h s  equation have the same 
sign (we will assume that they are positive, which can always be achieved by 
multiplying the equation by -1 if necessary), and that the values of the "Hunvitz 
determinants" (Appendix C, Chapter 3) formed from the coefficients in Eq. (5.298) 
to be positive; there are four of them for a fourth-order equation. This may seem 
rather intimidating, but it is easy to set up and evaluate the Hurwitz determinants 
using mathematical software such as Mathcadoh. Then, the stability "region" can 
be mapped as a function of, say, line length and attachment point location, by 
varying these quantities and observing the effect on stability. 

The constant term in Eq. (5.298) is, in terms of the coefficients in Eq. (5.295), 

hh When the coefficients are normalized as indicated here, the values of the Hurwitz determinants will be 
very small, resulting in an indicated value of zero unless you increase the precision of the displayed 
results. It may be convenient to multiply the result by a large number (say lo"). 
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m ,  
I '  = [fl '+(A,, '-A22 ')- a'b, '1 
L L '  

which is positive if 

f l  '+(A 11 '-A 22 '> a' > 
bl ' 

(5.299) 

since b,' is always negative. This turns out to be a stability criterion for a moored or 
towed body that possesses controls-fixed directional stability, as pointed out by Eda 
[1972], for example". Thus a stable ship could be unstable under tow if the towline 
is attached too far aft (although it is hard to imagine why this would occur; it is 
generally most convenient to tow from a point at or near the bow). 

A more interesting case is that in which the towed or moored body is not 
directionally stable. In th s  case, the body can be made stable by suitable 
adjustment of the line tension and/or length, provided that the criterion of Eq. 
(5.299) is met. Mooring line tension can be increased by applying reverse thrust, 
for example, if the moored vessel has a propulsion system; this isn't very practical 
for towing, however. 

As an example, we will again employ our trusty merchant shp. The required 
hydrodynamic coefficients were computed in Chapter 3 (see Section 7.2.2 and 
Table 3.5 therein). You should remember that the "steady flow" coefficients in that 
table. which were predicted using Eqs. (3.44), actually contain the effects of some 
of the added mass terms: 

b , ' =  b, '  
b3 ' = b3 '-A 11 ' 
f, ' = f, '+(A , '-A22 I) 

f ' = f  '-A ' 3 3 26 

(5.3 00) 

" This criterion is not always sufficient, as we will demonstrate later 
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The required added mass coefficients can be found in Table 3.3. Writing Bi and Fi 
in terms of the hydrodynamic coefficients as indicated above, and plugging in the 
known values from Table 3.5 leaves three remaining unknowns in Eq. (5.298): the 
mooring system parameters a’, TH’ and LL. 

We found this ship to be directionally stable in Section 7.2.2 of Chapter 3. The 
mooringltowing stability criterion, Eq. (5.299), is in this case, 

a flt+(All’-A22’) f , ’  a‘=--> - - 0.406 
L b , ’  b, ‘  

(5.301) 

so that the towline has to be connected relatively near to the bow. 

To look at what happens in the (more interesting) case of an unstable ship, we 
will look at another s h p  whose characteristics and coefficients are identical to those 
in the example above except that the coefficient b< is reduced by 50%. Using Eq. 
(3.156) we now find that 

C’ = -1 .333~10-~ < 0 

so that this configuration is indeed unstable. Now with Eq. (5.298) and the stability 
criteria, we can show that if the condition in Eq. (5.299) is met, the towed or 
moored unstable ship is stable for a range of TH and LL combinations. In fact there 
is a “critical” value of TH above which the towed shlp will be stable regardless of 
the length of the towline. Figure 5.39 shows the range of mooredtowed stability for 
this unstable ship, for two locations of the attachment point that satisfy Eq. (5.301). 

Another approach to this problem is to actually solve Eqs. (5.297) for various 
values of the mooring line parameters TH, LL and a. In fact, these equations can be 
re-cast in the form of a standard eigenvalue problem, 

where {x} is a vector of “generalized coordinates”, corresponding to the yaw and 
sway displacements and velocities: 

Eqs. (5.295) can be written as a set of four coupled linear first-order differential 
equations in these variables: 
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FIGURE 5.39 Stability of a moored or towed ship that is unstable without the mooring line, 

as a function of line length and tension. 

(5.3 02) 

where MI1 = m + A22, etc. Note that the velocities are treated as independent 
variables in this formulation. 

We will now make use of the assumed solution, Eq. (5.296), to express the 
derivatives in terms of the stability indices: 

- of df 
dt 
- _  
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where f represents any one of the variables in Eqs. (5.302). Now those equations 
can be written in the following form: 

(5.303) 

where 

[MI = [ :l: M12] , etc. 
M 22 

Now we can multiply the second set of equations by [MI-‘ and rearrange to obtain 

0 0  I I 0 0  0 1  
. ‘1 1 

(5.304) 

which is in the standard form of an eigenvalue problem. Most mathematical 
software packages (MATLAB@, MATHCAD@) have built-in functions for solving 
such problems. The four eigenvalues correspond to the stability roots, i.e., the 
solutions of the characteristic equation (5.298). For a moored or towed ship, two of 
the roots will generally be distinct real numbers, indicating exponential decay or 
growth of the perturbations, and two will be complex conjugates, corresponding to 
oscillatory modes. 

To provide a graphical illustration of the behavior of the stability indices, we 
can plot their “trajectories” in the complex plane (i.e., plot the imaginary part vs. the 
real part) as we vary one of the parameters. Such a plot is called a “root locus”, 
which is a common tool used by designers of various types of control systems. The 
root locus for the unstable moored ship, with a = 0.5L and LL = 2L, is shown on 
Figure 5.40; the parameter is the line tension (all quantities in the plot are 
dimensionless). The stability indices of the unmoored ship are indicated by the 
large open circles, at (-3.333,O) and (0.0225,O); these are the eigenvalues at zero 
tension. As the tension is increased, the lower (negative) real root moves to the 
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right ("Root I" on the figure), and three branches emanate from the upper (positive) 
root. One of these remains real and moves to the left ("Root II"), passing zero and 
becoming negative at a very low value of the tension (TH' = 1.3 x in this case). 
The other two branches represent the complex conjugate roots; they remain in the 
right half-plane until a value of TH' of about 0.0009 is reached. Thus the 
configuration is unstable up to t h s  value of the tension, whch is consistent with 
Figure 5.39. 
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FIGURE 5.40 Root locus of the moored or towed ship that is unstable without the mooring 
line, as a function of line tension. Open circles represent stability indices of 
unmoored vessel. Numerical values correspond to TH'. 

As the tension is increased further, Roots I and I1 appear to converge toward a 
value of 0' = 0.28, and the complex roots appear to be asymptotic to o' = 1.4, with 
the imaginary parts diverging to infinity (i.e., the oscillation frequency increases 
with increasing tension). 
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Figure 5.41 is an enlarged view of the root locus in the vicinity of the origin; 
the locus corresponding to a = 0.45L is also shown. Note that the complex 
conjugate branches for a = 0.45L enter the left half-plane at a lower value of tension 
than for a = 0.5L, as also indicated by Figure 5.39. 
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FIGURE 5.41 Root locii near the origin, of the moored or towed ship that is unstable 
without the mooring line, as a function of line tension. Numerical values 
correspond to TH'. 

The root locus obtained by varying the location of the attachment point, a, is 
shown on Figure 5.42, for TH' = 0.001 and LL = 2L.. Here we show only the roots 
which are located in the vicinity of the origin ("Root I" is not shown; it is real and 
remains near 0' = -3.2). In this case real Root I1 is critical. As the attachment point 
is moved forward from x = 0, the root progresses to the left from 0.42, crossing the 
origin at a value of a = 0.41L. Note that the complex conjugate roots cross into the 
right half-plane near a = 0.6L, moving back into the stable region at a somewhat 
higher value of a. These magnitudes might be unrealistic since they represent 
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attachment points that are located forward of the bow; however the exercise 
demonstrates that the stability condition given in Eq. (5.299) is not necessarily 
sufficient. 
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FIGURE 5.42 Root locii near the origin, with attachment point as parameter 



CHAPTER 6 

DYNAMICS OF HIGH SPEED CRAFT 

In the “traditional” maneuvering and seakeeping analyses described in the preceding 
chapters, it is assumed that the geometry of the “wetted” hull surface is constant. 
For high-speed craft, dynamic lift is developed which results in a speed-dependent 
reduction in draft relative to the static condition, accompanied by a change of trim. 
Some of the consequences are: 

All hydrodynamic (and “hydrostatic”) coefficients are strongly dependent on 
speed, even when normalized using speed squared. 
Longitudinal and lateral motions are coupled, since changes in trim and heave 
affect the underwater geometry, which in turn affects lateral as well as vertical 
and longitudinal forces. 
In waves, the underwater geometry may change significantly during the 
passage of a single wave; in extreme cases the craft might even become 
airborne. Thus nonlinear seakeeping behavior is more significant compared 
with displacement ships. 

Thus the methods presented in the previous chapters for prediction of hydrodynamic 
forces and moments should be applied with caution in the regime where dynamic 
lift is significant. 

In this final chapter we will briefly summarize some of the available methods 
for prediction of the maneuvering and seakeeping behavior of high-speed 
monohulls. We will define “high speed” as that at which the effects of dynamic lift 
become significant; this generally occurs above a Froude number of about 0.7-0.8. 

1. Maneuverability 

1. I Transverse/directional stability, general 

As we stated above, there is a high degree of coupling among the various motions of 
high-speed craft. Thus the surge-sway-yaw equations cannot be reliably used for 
trajectory predictions, as is commonly done for displacement craft. Because of the 
complexity of t h s  coupling and the strong dependence of the coefficients on speed, 

361 
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there is at present no reliable general method to predict the maneuvering 
performance of high-speed craft. However, for stabiliv analyses, in which we 
consider the fate of small perturbations, the equations can be linearized about the 
steady trim and heave values at a given speed. Furthermore, if these values are 
“small” (which is usually the case in practice), the coupling between longitudinal 
and lateral modes will be of second order. Thus the sway-roll-yaw equations can be 
considered independently for the analysis of transverse/directional stability. 

The equations of motion appropriate for analysis of the behavior of high speed 
surface craft are developed by the author in Lewandowslu [ 19941, corresponding to 
a form of the “third coordinate system” presented in Section 6 of Chapter 1. These 
equations are written relative to a coordinate system with its origin at the center of 
gravity of the craft: 

X=m(G+wq, -vr,) 
Y=m(ir+ur, -wp,) 
Z=m(w+vp,  -uqa)  

(6.la) 

where (you will recall) o represents the angular velocity of the body with respect to 
the axes and R = (pa,qa,ra) is the angular velocity of the axes; we have added 
subscript “a” to distinguish these components from the usual body-axes values. In 
addition, to streamline the notation we have dropped the bars denoting that the 
moments of inertia are evaluated with respect to axes passing through the center of 
mass. Note that since the body can move relative to the axes, the moments of 
inertia with respect to these axes will in general change in time. The moments of 
inertia relative to the coordinate axes, relative to the conventional body-axes values, 
are obtained as follows: 

where [Ib] represents the moment of inertia matrix relative to body axes and T is the 
transformation matrix going from body axes to the coordinate axes, e.g. Eq. (1 .8),. 

a The moment of inertia [ I 3 is a “second rank tensor”, which require two matrix multiplications for the 
transformation, as opposed to vectors which require only a single multiplication by the transformation 
matrix. 
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We can combine Eqs. (6.lb) and (6.2) to express the first set of terms in the 
moment equations in terms of the body-axes moments of inertia (which can 
generally be assumed to be invariant) and the angular acceleration components of 
the body with respect to the axes. The general form of these expressions is 
complicated; however, if we assume small deflections and neglect terms hgher than 
first order in the perturbations, the expressions are simplified considerably. 

For surface craft it is convenient to let the xy plane remain horizontal. Then we 
have ra = a,= \i, and pa = qa = 0; also ox = 6 and my = 6 ,  where ( 4 , 0 , ~ )  are the 
rotations of the body with respect to earth-fixed axes, as before. Thus the 
transformation fiom body axes to this "boat coordinate system" involves only the 
pitch and roll angles: 

cos 0 sin 0 sin 4 sin 0 cos 4 

-sin 0 cos 0 sin 4 cos 0 cos 4 
-sin4 

which for small deflections becomes 

1 04 0 

- 0  4 
T = [  0 1 -:] 

(6.3a) 

(6.3b) 

Plugging into Eq. (6.2), and neglecting terms of second order and higher in the 
angles, we obtain the following expression for the moments of inertia relative to the 
boat coordinati 

[I1 = 

system: 

assuming port-starboard symmetry. We can write t h s  in the form 

[ 11 = [ I b  1 + [ 61 1 
where 
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Thus the time derivatives appearing in Eqs. (6. lb) can be expressed as 

where the last form is obtained by deglecting terms of second order and hlgher, as 
before. Thus we do not need to wony about the changes in the moments of inertia 
(induced by motion relative to the boat coordinate system) when examining the fate 
of small perturbationsb. 

Inserting all of the results of the previous paragraph in Eqs. (6.1) and retaining 
only linear terms, we obtain the linear equations of motion relative to the "boat 
axes": 

where Uo is the steady forward speed as before. 

Focusing on the linearized sway I roll I yaw equations, which govern transverse 
and directional stability, we can express the hydrodynamic force and moments as 
linear functions of the velocity and acceleration components, as we did for other 
craft back in Chapter 3: 

Recall that we have assumed that the mean heave and pitch (him) are also small (of the same order as 
the perturbations). 
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where the coefficients may be functions of speed, and trim and draft (which are 
themselves speed-dependent). 

Combining Eqs. (6.8) and (6.9) and collecting terms we can write the sway I 
roll I yaw equations in the form 

where bl  = Yi, - m ,  etc. You should by now have the ability to solve this set of 
equations in your sleep (hopefully this book has not put you in that condition, 
however!): Assume solutions of the form 

(6.1 1) 

and substitute into Eqs. (6.10) to obtain 

As before, the condition for nontrivial solutions is that the determinant of the 
coefficient matrix equals zero, whch leads in this case to a fourth-order 
characteristic equation in o: 

Ao4 + Bo3 + Co2  + D o  + E=O (6.13) 

The coefficients are given in terms of bi, di and fi in Eqs. (6.14). 
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To evaluate stability we once again apply the Routh-Hurwitz criteria (Appendix 
C, Chapter 3) which results in the following conditions (see Section 7.2.3 in Chapter 
3):  

A, B, C, D, E >  0, BC - A D  > 0, and B(CD-BE)-AD2 > 0 (6.15) 

1.2 Trunsverse/directionul stability, planing bouts 

Unfortunately there are at present no theoretical methods available for the 
evaluation of the hydrodynamic coefficients for high-speed craft. However, the 
author has developed semiempirical methods for evaluation of all of the coefficients 
in the linear sway / roll / yaw equations, applicable to hard chine planing craft in the 
planing regime (i.e,, the water breaks cleanly from the chines and transom). 
Lewandowski [ 19961 describes a semiempirical method to determine the roll 
restoring moment coefficient d5 for these craft, including both static and dynamic 
contributions. The contribution of appendages to the roll restoring and damping 
coefficients is given in Lewandowski [1997J, where i t  is shown that the appendages 
actually reduce the roll restoring moment at positive trim angles. 

Brown and Klosinski [1990, 1991al describe an extensive series of captive 
model tests of prismatic hull  forms having deadrise angles of 10, 20 and 30 degrees. 
The models were towed at a range of speeds, drift angles, roll angles, trim angles, 
and turning radii (including straight-course). This data has been analyzed using 
functional forms suggested by Smiley [ 19521 to determine the coefficients 
Y, , YW , K ”, K + ,  N, ,and N+ ; the resulting expressions are given in Table 6.2. 

Table 6.1 contains some preliminary results required in the evaluation of these 
quantities. The coefficients are expressed as functions of the beam (specifically, the 
“average wetted chine beam” B) and deadrise p of the craft, and the speed, running 
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trim angle z, wetted keel and chine lengths LK and Lc, and transom draft T, see 
Figure 6.1. 

The added mass and added inertia terms for sway and yaw are estimated by a 
“strip theory” approach using the theoretical value for flow past a two-dimensional 
wedge. The contribution of appendages to the added mass can be found using the 
formula for added mass of a plate as was done in Chapter 3. The resulting formulas 
are also given in Table 6.2. Formulas for the effects of appendages are presented in 
Table 6.3. 

A series of dynamic roll extinction tests was also carried out using the prismatic 
hulls (Brown and Klosinski [1991b, 19921). The empirical expressions for roll 
damping and added inertia of the hull given in these references are also included in 
Table 6.2. 

FIGURE 6. I Definition of mean trim angle z, wetted keel and chine lengths LK and LC, 
and transom draft T, for a planing hull. 

1.2.1 Dynamic roll moment 

The expression for dynamic roll moment in Table 6.2 was developed using the 
formulas for lift on a planing surface presented by Brown [1971]; this formulation is 
convenient because in it the L‘static’’ and “dynamic” contributions are distinct. Here 
“static” denotes the contribution that is not explicitly dependent on speed; however 
it is dependent on the trim and heave, which do depend on speed. This static 
contribution can be computed using the method developed for displacement ships, 
except that the instantaneous (speed-dependent) waterplane area and center of 
buoyancy must be used. Furthermore, since the flow breaks from the hull at the 
transom, the pressure at the stern is atmospheric; thus the total “static” force and 
moment are expected to be less than a truly static condition (same trim and draft but 
at zero speed). A static force reduction factor of 0.624 was obtained by Brown 
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[1971] based on experimental data; applying this same factor to the static roll 
moment we obtain: 

Ks, = -0.624pg[Vo(z~ - zB)+Syy] = -0.624[pgB3(LK + 3Lc)/48 + (KB-KG) A] 

where A represents the instantaneous static lift (see Table 6.2). However, more 
recent roll moment data (Brown and Klosinski [ 1990, 1991a1, Lewandowski [ 19961) 
suggest that this expression underestimates the magnitude of the roll moment at 
lower speeds (speed coefficients Cv below about 2.5). A possible explaination is 
that at these speeds the flow is not separating fully from the chme and transom, 
resulting in “side wetting” and a consequent increase in static pressure. Thus a 
“side wetting correction factor” f,, was developed (Lewandowski [ 19971) which 
restores the full static pressure to the portion of the hull subject to side wetting, 
which can be predicted using a relationshlp presented by Savitsky and Brown 
[1976]; the formulas are given in Table 6.2. Thus the final expression for the static 
moment rate is 

Ks, = -0.624fs,[pgB3(LK + 3Lc)/48 + (ICE-KG) A] (6.16) 

TABLE 6.1 Definitions for planing craft 
Quantitv Definition 

B 

P 

LK 
LC 
T 
T‘ 

KG‘ 

CV 
LCG 
LCP 

A 

z 

C 

b 

UF 

Average wetted chme beam 
deadrise angle amidships 

Dynamic trim (positive bow up) 
Wetted length of keel 
Wetted length of chine 

Transom draft 
T I B  
KG/B 

Speed coefficient U/-\l(gB) 
Measured from transom 

Center of pressure measured from transom 
Appendage planform area 
Appendage mean chord 

Appendage span 
Flow velocity at appendage 

Coordinates of appendage in body system 
with origin at CG 
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TABLE 6.2 Preliminary calculations, dynamic stability of planing hulls 

Quantity Formula 

h 

C V  SDeed coefficient U / , h  

Mean wetted lengthheam ratio, [LK + Lc] / 2B 

k(P) Hull added mass function: 0.06641+0.00716p+ 0.0003861p2, p [deg] 

hl Transfer of axes lever arm: (KG-0.3927B tanb)(KG-0.306 B) 

A “Static” lift: 0.25 p g h2 sin2z B3 

KB Estimated vertical center of static lift: B tanp [ O S  + Lc / LK] / 6 
Dynamic lift 

I 2 2 sin27 x h 1.33 -pU B LD - -(1 -sin p) cos z- +- h cos T sin 2.r cos p 
2 { ~ C O S ~  [ 4 l + h  4 

Roll-induced change in dynamic normal force (one side); z in radians 

. . ,  

h2 Lever arm for dynamic hull force: O.SnB/(S cosp) - KG sinb 

KD4 

fsw 

Lc2 

Dynamic roll moment rate = 2h2F4 
Side wetting correction factor: 

fsw = 1 if U2 > gB(h - 0.16 tanp/tanz)/3 sinT 
fsw = 1 + 0.603Lc2/hB if U’ < gB(h - 0.16 tanp/tanz)/3 sinz 

L~ -3u2 sinz / g 

LCP 
2 

Appendage added mass function 
OX AR AC / 4d( 1 + AR2) 

Appendage effective aspect ratio: 
b’/A, isolated from hull; 2b2/A, against hull 

Appendage lift rate (per radian): 

Lever arm for appendage roll moment 
yFsin+F + (ZFCOSZ - xFsinz)cos$p 

Appendage cant angle relative to vertical 

AR 

0 . 5 P u ~ ~  A [1.8X/(1+2.8/AR)] A 

h3 

4 F  

(xF, yF, zF) Coordinates of appendage in body system with origin at CG 
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TABLE 6.3 Hydrodynamic coefficients in linear sway / roll I yaw 
equations for hard-chine planing hulls 

Coefficient Formula 

y v  -B2p tanp k(p) [ LK+ 2Lc] / 12 

K v  =O 

Y$ 0 

K;d - 0.010237pB5h (1-sinp) + hl  Yc 

Y" -0.5pUBZ[ 0.6494 TI2 Cv '1 

N" Y ,  [-LCG+12.384 B (T+ 5.28)] 

y+ 0.5pUB2L[ 55.439 T' 3] [0.02754 - 0.5949 T' / (z+ 5.28)] 

~ ~ ~~ 

N i  0.5pUB3L[73. 918 P O 6  T3 1 C0.00638 + 6.714 T'* / (z f  5.28)'] 

- (1-sinp)(0.029Cv + 0.021) pgB4d(B/g)+ h,Y, Ki 

y4 2F4sinP 

K4 KW + 0.624 f,,,, [-pgB3(L~ + 3L&48 + (KG-KB) A] 

N4 Yg (LCP - LCG) 
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TABLE 6.4  Contribution of appendages to hydrodynamic coefficientscoefficients 

Considering now the dynamic component, when the craft rolls to a small angle 
€i$, the “effective deadrise” increases on the port side (for a positive roll angle) and 
decreases on the starboard side; see Figure 6.2. The normal force on each surface 
decreases with increasing effective deadrise angle; thus the dynamic force on the 
“rolled down” side is larger than that on the “rolled up” side (Figure 6.3).  Thus it 
might appear that the dynamic roll moment contribution is always stabilizing; 
however, unlike the waterplane contribution in hydrostatics, this is not a pure 
couple. Thus if the line of action of the total dynamic force passes beneath the CG, 
the dynamic forces will have a destabilizing effect. 

An approximate expression for the location of the lateral center of dynamic 
pressure on a deadrise surface was developed by Smiley [ 19521: 
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7 t B  7tB cp = -- = - 
4 2cosp 8COSP 

(6.17) 

where cp is measured from the keel (Figure 6.2). Thus the lever arm about an axis 
through the CG is 

KG sin p 7tB h, =-- 
8 cos p (6.18) 

FIGURE 6.2 Cross-section of a planing hull at a roll angle, showing effective deadrise 
angles and dynamic normal force 

The rate of change of the normal force (Fp or Fs) with roll angle is given in 
Table 6.2 (note that t h s  is the full nonlinear expression; note that contrary to the 
usual planing boat convention, T is taken to be in radians in ths  expression). It can 
be seen immediately that this rate is always negative as indicated above. Thus the 
sign of the dynamic component of the roll rate depends only on the sign of the lever 
arm h2 (Eq. (6.18)); thus the dynamic component increases stability if 
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> KG‘ n 
8 cos j3 sin fi 

(6.19) 

The only assumption involved in the development of the dynamic roll rate from 
Eq. (6.18) and Brown’s expression for dynamic lift for a prismatic hull (see Table 
6.2) that the keel wetted length LK is constant for small changes in roll angle‘, The 
expression is apparently linear in the trim angle. Actually this is true only at 
constant mean wetted length to beam ratio h, which is itself a nonlinear function of 
trim. For a prismatic planing hull 

B tanP 
x tanT 

L K  -Lc =-- 

so 

(6.20) 

(6.21) 

Thus we run into problems with the prismatic hull equations if we try to make the 
trim angle too small. This could have been anticipated based on Figure 6.1, since 
eventually the bow will enter the water and the hull can no longer be regarded as 
“prismatic”. At any rate, we will forgo attempting to linearize the lift expressions 
with respect to trim, at the cost of strict mathematical consistency, since there is 
little if any additional computational effort involved in retaining the hlly nonlinear 
expressions. 

To illustrate the behavior of the roll restoring moment with speed we will 
consider the case given in Table 6.5. The trim and mean wetted length to beam ratio 
can be computed from this data using the classic Savitsky[l964] method, for 
example; the results are shown on the upper panel of Figure 6.3. These results, 
along with the data in Table 6.5 below, are next substituted in the expression for K, 
in ‘Table 6.2 to obtain the roll moment rate coefficients that are plotted in the lower 
panel o f  the figure. Recall that roll stability is reduced as the roll rate becomes less 
negative. 

This latter assumption is supported by experimental evidence (Brown and Klosinski [1990]); this 
assumption is applied in computing the behavior of h with roll angle using the effective deadrise concept. 
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TABLE 6.5 Planing hull examde 
Length overal1,m 32 
Beam at chine, m 4.15 
Deadrise, deg 15 
Weight, MT 37.6 
LCG, m 9.14 

Thrust line height at LCG, m 
Drive shaft angle, deg 8 

KG, m 2.0 
2.0 

7 ,  I 

- Estimated static value 

-0.4 
0 10 20 30 40 50 

Speed, knots 

FIGURE 6.3 Components of roll moment rate for the example case 

The figure shows that the “static” contribution to the roll moment rate decreases 
significantly in magnitude with increasing speed. This is mostly due to the 
reduction in waterplane area as speed increases. The dimensionless waterplane 
area, normalized using the square of the beam, is equal to the mean wetted length to 
beam ratio h; the reduction of the static moment is practically linear with h (there is 
also a small contribution of the reduction in height of the center of buoyancy). This 
loss is compensated for by the dynamic contribution, which is negative (stabilizing) 
and increasing in magnitude with increasing speed. Then net effect is that the roll 
moment rate has a maximum (the magnitude is minimum) near 40 knots in this case, 
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decreasing (becoming more negative) at higher speeds. The estimatedd roll moment 
rate at zero speed is indicated by a circle. The reduction in magnitude of the “roll 
restoring moment” with increasing speed is significant. 

Figure 6.4 shows the effects of CG height and deadrise angle on the roll 
moment rate. As might be expected, the increase in CG height leads to an upward 
shift in the static component of the roll moment rate, with a relatively small effect 
on the dynamic component. Increasing the deadrise also leads to a reduction in the 
magnitude of the roll moment rate. At lower speeds, this is due to the smaller chine 
wetted length (relative to the lower deadrise hull); at higher speeds, the roll moment 
is reduced because the dynamic lift is lower and the lever arm h2 is smaller than for 
a lower deadrise hull. 

KO = 2m e KO = 2m 

P=15deg 

-0.25 4 
10 20 30 40 50 

Speed, knots 

FIGURE 6.4 Effect of CG height and deadrise on roll moment rate 

Note that the concepts of “righting arm” and “metacentric height” are not 
meaningful when dynamic lift is present, since the static and dynamic contributions 
have distinct lever arms; the two moment components must be computed separately 
and added. 

1.2.2 Dynamic stability; effect of appendages 

If the trim and wetted lengths of the chine and keel are known as a function of 
speed, the sway / roll I yaw stability of a hard-chine prismatic planing hull can be 
computed using the formulas in Tables 6.2 - 6.4 and Eqs. (6.14) and (6.15); in fact, 
the ambitious reader can even (numerically) solve Eq. (6.13) to obtain the stability 

It is an estimate because the value depends on the geometry of the bow, which will be submerged at 
zero speed; the bow shape has not been specified. 
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indices (see Abramowitz and Stegun [1972], Section 3.8.3 for example). The other 
required input quantity is the transom draft T, which is related to the trim and keel 
wetted length by 

T = LK sin z (6.22) 

as is evident from Figure 6.1. Ths has been done using the data for the example 
case above (assuming no appendages); the results are shown in the form of a root 
locus plot" on Figure 6.5. There are of course four roots; one pair represents 
oscillations with decreasing frequency and increasing damping as speed increases; 
these roots become real above about 59 knots. The other pair of roots represent 
oscillation at a lower frequency, whch first increases and then decreases with 
increasing speed. These roots become real above a speed of about 25 knots; the real 
roots get respectively larger and smaller with further increases in the speed. Thus 
below 25 knots we should expect oscillatory motion in all three modes; at 20 knots, 
for example, there are two frequencies: 1.45 radsec and 0.51 radsec (periods of 
4.3 and 12.3 seconds). 

2.0 

1.5 

1 .o 

0.5 

0.0 

-0.5 

Im(d 

-1.0 

-1.5 

-2.0 

FIGURE 6.5 

I I I I 

-1 2 -10 -a -6 -4 -2 0 

Wd 
Root locus plot for example planing boat. Numbers correspond to 
speed in knots. Units are radianslsec. 

Strictly speaking, this is not really a root locus, which actually is supposed to show the behavior of the 
roots as a single parameter is vaned; here, the primary parameter is speed, but him, wetted lengths LK 
and k, and transom draft all vary with speed. A plot could be constructed for variation of any one of 
these parameters, but most of the points on it would represent impossible (non-equilibrium) conditions. 
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Figure 6.6 shows the corresponding plot for the roots of the roll equation 
considered as a single degree of freedom, and for the sway/yaw equations without 
roll coupling, are shown superimposed on the results in Figure 6.5. This figure 
shows that the first pair of roots discussed above, corresponding to higher 
frequencies (shorter periods), are associated with the roll motion, and the second 
pair is associated with swaylyaw motions. The salient feature in Figure 6.6 is the 
large difference in the behavior of the roll root for the coupled and uncoupled 
systems. Using the single degree of freedom expression leads to a substantial 
under-prediction of the magnitude of the real part of the stability roots. The effect 
of coupling in this case is to increase the apparent roll damping. 

2 

-1 

-2 
-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 

Re(o) 
FIGURE 6.6 Comparison of root locus plots for coupled system with single degree of 

freedom roll and two degree of freedom swaylyaw systems. 
Units are radianskec. 

To examine the effects of appendages, it will be assumed that the boat is fitted 
with two rudders, oriented normal to the hull surface and in the propeller stream. 
The rudder dimensions are given in Table 6.6. The flow velocity at the rudder, to 
be used in the expression for the appendage lift function A, is 

(6.23) 

We will assume here that w 2: 0 and 
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KT 
J2  
- Y 0.2 

so that 

Interestingly, the contribution of the rudders to the roll restoring moment is 
positive for positive values of the lever arm h3 and trim angle (as is almost always 
the case), thereby reducing the magnitude of the total roll restoring moment. This is 
easily verified physically, since it can be seen that when the boat is trimmed and 
heeled, the rudder force induced by the combination of trim and heel will act to 
further increase the heel angle (it’s easier to visualize this if you make a small 
cardboard model). Ths  suggests that addition of rudders or similar appendages will 
reduce the transverse stability of a planing boat, whch was pointed out by the 
author [ 19951. However, this is one of the pitfalls of considering roll as a single 
degree-of-freedom. What really happens that the appendage force also induces 
yawing motion, which generally overwhelms the effect of roll (the lever arm 
associated with yawing is typically much larger than h3) and the net result is 
increased stability. 

TABLE 6.6 Rudders for planing hull example 
Number of rudders 2 
Orientation Normal to hull 
Span, m 0.61 
Chord, m 0.53 
Location of centroid, m: 

Forward of transom 0.267 
Lateral 0.609 
Below keel -0.152 

The effect of the rudders on stability is best illustrated by examination of the 
critical (least negative) stability root; this is shown on Figure 6.7 for the hull with 
and without rudders. The figure shows that with the exception of a small range of 
speeds near 30 knots, addition of the rudders does indeed enhance stability. Note 
that to the left of the abrupt change in the slope of the curve, the roots are complex 
(the motion is oscillatory) whereas to the right the roots are real. Figure 6.8 shows 
the corresponding results for the uncoupled roll plus swaylyaw equations. Here it is 
incorrectly predicted that the rudders will reduce stability at the higher speeds, as 
mentioned above. 
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FIGURE 6.7 Critical stability roots for sway/roll/yaw motion of a planing boat 
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FIGURE 6.8 Critical stability root, neglecting coupling between roll and sway/yaw 
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1.3 Heave /Pitch Stability 

While on the subject of stability, we should briefly discuss “longitudinal” or 
heave/pitch stability. High speed craft may develop an instability consisting of 
combined pitching and heaving oscillations known as porpoising. Porpoising 
occurs as a result of running at too large a trim angle; based on experiments with 
seaplane floats, it was shown that the trim at which porpoising occurs can be 
expressed as a function of Cv and a “loading coefficient” Ch where 

(6.24) A W  

Pgb 
CA =- 

and A,,, is the “load on water”, the weight minus the vertical component of thrust. 

Based on data from a now celebrated series of model tests conducted by two 
undergraduates at Webb Institutef (Day and Haag [1952]), Savitsky [ 19641 
developed a plot of the limiting trim angle as a function of 

where CL is a lift coefficient, for deadrise angles of 0, 10 and 20 degrees (Figure 
6.9). The following expression represents these curves fairly well: 

C 
2 

T ~ ” ~  = -1.87+12.54 +80.87J+0.193p-0.0017p2 -0.3125p 

which is applicable for 

0 .131 __ 10 .3  and O I P 1 2 0 “  dc; 
Solutions to a porpoising problem include reducing the trim angle by shifting 

the CG forward or adding trim tabs or a transom wedge. 

Another pitch instability referred to as “bow drop”, which is non-oscillatory, is 
associated with operation at low trim angles when the curved forward sections 
become immersed. The longitudinal flow around the curved areas induces low 

‘Day and Haag employed planing surface models that had a four-inch beam, showing that carefully 
conducted tests of “small” models can produce useful results. 
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dynamic pressures, which may tend to pull the bow down further. A boat with 
highly curved buttocks is more prone to develop the local low pressure areas that 
lead to this type of instability (Blount and Codega [1992]). These low pressure 
areas may also reduce the roll restoring moment, and furthermore, any slight port- 
starboard asymmetries may induce heeling and possibly yawing motions, resulting 
in broaching (“chine tripping”) or “corkscrew” oscillations. These instabilities 
appear to be a function of hull loading and LCG location as well as the curvature of 
the buttock lines; a proposed general guideline (Blount and Codega [1992]) states 
that such instabilities are likely under the following conditions: 

Dynamic instability likely if: 
AP / V2’3 < 5.8 and CAP - LCG < 0.03L 

where AP is the projected bottom area bounded by the chmes and the transom, and 
CAP is the centroid of this area. Thus the “problem boats” are relatively heavily 
loaded with forward LCG locations. This combination of heavy weight and forward 
LCG requires a forward center of buoyancy location which is usually associated 
with very full waterlines and severely curved buttock lines in the bow. A well- 
designed planing hull will not have such features and thus would not be expected to 
experience the “bow drop” phenomenon. 

0.10 0.15 0.20 0.25 0.30 0.35 

dCA I C” 

FIGURE 6.9 Porpoising limits for prismatic planing hulls (after Savitsky [1964]) 
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1.4 Turning Performance 

Prediction of the turning performance of high speed craft is generally more difficult 
than for slow-speed displacement shps. Reasons for this include: 

The hydrodynamic force and moment coefficients are hghly speed-dependent 
(even after normalization using u*); 
All motion modes are strongly coupled; 

coefficients for horizontal-plane motions. 
No techniques exist to predict any of the nonlinear force or moment 

Turning performance of high speed craft can of course be assessed using captive 
model test data; the strong speed dependence of the coefficients means that data are 
required at each speed of interest. Free-running tests can also be used as for 
displacement ships; here the combination of smaller scale ratios and larger 
prototype speeds generally results in much higher model speeds than for 
displacement ship models of the same size. This means that a more powerful model 
propulsion motor is generally required, sometimes necessitating the use of internal 
combustion engines whch are more difficult to control than heavier, battery- 
powered motors which can be used in slower displacement shp  models. 

A simple expression which can be used to roughb approximate the steady 
turning radius of small craft equipped with conventional propeller and rudder 
arrangements has been derived by the author from the full-scale data presented by 
Denny and Hubble [I9911 and other sources: 

sTD L = [ 1.7 + 0.0222Fv (-$) 2'81]( f) 
for 

0.3 < Fv < 4 
4.5 I L/Vli3 I 7  

where the volumetric Froude number 

(6.26) 

is based on approach speed, and 6 is the rudder angle in degrees. The formula 
reflects a linear growth of turning diameter with Froude number; the dependence on 
116 is consistent with linear theory. The formula indicates that turning performance 
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improves with increasing displacement for a given length, which is consistent with 
observations and theoretical predictions for displacement craft (Crane et. al. 
[1989]). Other factors whch may influence turning diameter, such as deadrise 
angle, length to beam ratio and trim, are not included in this equation because there 
simply is not enough data available to isolate these effects. In addition, Equation 
(6.25) contains no specific dependence on rudder geometry. It has been shown for 
high speed small craft that steady turning diameter is in fact not strongly dependent 
on rudder geometry, provided that the total rudder planform area is greater than 
about 1/30 of the product of static draft and waterline length (Sugai [1963]). 

2. Seakeeping 

Prediction of the wave-induced forces and moments on high speed craft is also more 
difficult than is the case for displacement vessels, primarily because the underwater 
hull shape is so strongly speed dependent because of dynamic lift and the associated 
moments. In addition, because of the relatively small size of these craft, the fraction 
of the hull that is in contact with the water can vary substantially in each wave 
encounter; in fact some wave components may not be encountered as the hull 
“skips” over them. Thus the essential assumptions of (relatively) “small” waves 
and proportionally small motions are questionable for such craft. However, at low 
speeds (below Cv = 1.5 or so) the approach of the previous chapter is probably 
adequate. 

Data from a comprehensive series of model tests carried out at Davidson 
Laboratory (Fridsma [1969, 19711) in head seas show that while responses increase 
linearly with wave height at a speed coefficient of 1.3, at speed coefficients of 2.7 
and 4.0 the responses are noticeably nonlinear. A nonlinear approach for 
computation of surge, pitch and heave motions of planing craft, based on strip 
theory, was formulated by Zarnick [ 19781. This approach is based on the following 
expression for the sectional dynamic normal force: 

(6.27) 

where w is the velocity relative to the fluid normal to the baseline; this is of the 
same form as the Morison formula, Eq. (4.59). The theory was developed for V- 
shaped sections; CD,c is a “crossflow drag coefficient” which Zamick took to be 

and for the added mass coefficient he used 
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based on the value for an impacting wedge. He accounted for the wave force by 
including the vertical wave particle velocity in the computation of the relative 
velocity w (and by the effect of the waves on the wetted Iength and draft); 
diffraction is neglected. 

The total dynamic normal force is computed by integrating Eq. (6.27) over the 
instantaneous wetted length of the hull. The longitudinal and vertical forces, relative 
to the “boat axes” described above, are obtained by resolving the normal force. The 
pitching moment is obtained by multiplying by the x-coordinate of the section prior 
to integration, as in the strip theory discussed in the previous chapters. To these the 
instantaneous hydrostatic force and moment are added (also determined by 
integrating over the instantaneous wetted length). Zarnick employed pressure 
reduction factors of 0.5 for the buoyancy force based on Shuford [1957], and 0.25 
for the pitch moment “to obtain the proper mean trim angles”. 

Correlation of the predicted heave and pitch motions with the regular wave data 
of Fridsma [ 19691 is “remarkably good” (Savitsky and Koelbel [1993]). However, 
in irregular waves, the predicted vertical accelerations are “substantially smaller” 
than the experimental values in severe seas, although the motions are reasonably 
well predicted. Unfortunately, the accelerations are of principal interest to 
designers. 

2.1 Impact accelerations 

As an alternative to the theoretical predictions, at least two pragmatic empirical 
formulas for prediction of acceleration statistics in irregular seas are available. One 
method, from Savitsky and Brown [1976], is based on a regression analysis of 
Fridsma’s [ 197 11 data. The formulas are applicable to hard-chine prismatic planing 
hulls in the following parameter ranges: 

Param 
ll_ll_lll 

CV 1.3 -4 
L/b 3 - 5  

Trim, deg 3 - 7  
Deadrise, deg 10 - 30 

CA 0.38 - 0.72 
H , / b  0.2 - 0.7 
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Average impact acceleration at CG: 

- 

Average impact acceleration at bow (10% of LOA aft of the FP): 

! - [  c v  

- 1.13$&(L / b - 2.25) 
Zbow = zcs 1+ 

(6.28) 

(6.29) 

In these formulas L is the overall length and the trim is the running trim at the given 
speed in calm water. Figures 6.10 and 6.1 1 show comparisons of these predictions 
with the original data on which the formulas are based. The formulas indicate that 
low trim, high deadrise, and high loading are advantageous with respect to impact 
acceleration. 

2.1 

0 0  

0 
0 

0 

0 0  0 5  1 0  1 5  2 0  2 5  

Measured CG acceleration, g 

FIGURE 6.10 Comparison of prediction formula with data, average CG acceleration 

Note that the wave spectra in the model tests were of the Pierson-Moskowitz 
form, characterized by a fixed relationship between wave height and modal 
frequency (Eq. (4.113)). So the waves get longer as they get higher, and 
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consequently the average slope doesn’t change much with increasing height. This 
assumption is thus built into the empirical formulations, Eqs. (6.28) and (6.29) 
(perhaps explaining why the equations do not exhibit a strong nonlinearity with 
significant wave height). Steeper waves would be expected to result in hgher 
accelerations. 

0 1 2 3 4 5 6 7 8  

Measured bow acceleration, g 

FIGURE 6.1 1 Comparison of prediction formula with data, average bow acceleration 

Another formulation was developed by Hoggard and Jones [1980], based on 
regression analysis of model and full-scale data for 14 hard-chme planing hulls with 
wdely varying hull forms. The range of parameters for this data is: 

Parameter Range 
Fn 0.3 - 1.8 

LPb 2.66 - 6.43 
Deadrise, deg 10 - 24 

CA 0.17 - 1.27 
H , / b  0.12 - 0.80 

Here EP is the length between perpendiculars. The Hoggard and Jones formulas 
give the average of the one-tenth highest acceleration peaks at the CG and at the 
bow: 
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Average impact acceleration at CG: 

FV 
0.25 

7 ( (Lp/b)1’25 

1/1 ocg 

g 
-- -7- 1+- 

Average impact acceleration at bow (1 0% of LBP aft of the FP): 

(6.30) 

(6.3 1) 

Savitsky and Koelbel [1993] note that this formulation shows no dependence on 
deadrise and a very weak dependence on trim, in contrast with the Savitsky/Brown 
formulas. They speculate that trim and deadrise may not have been independent 
variables in the HoggardJones database (higher deadrise hulls run at lower trim 
angles, other factors being equal) so that the two effects may cancel. In addition, 
we note that the speed dependence is quite different in the two methods. 

In order to compare the results of these two formulations, we need to know how 
the average of the 1110-highest accelerations is related to the average value (of the 
peaks). Fridsma [ 19711 found that h s  acceleration maxima were well represented 
by a simple exponential distribution: 

(6.32) 

Thus we can compute the average of the lln-highest accelerations using the method 
of Section 4.1.3 in Chapter 4: 

(6.33) 

So the average of the 1110-highest acceleration peaks is 

When applied to Fridsma’s data, using this factor, the HoggardJones formulas 
generally underpredict the accelerations, particularly the larger values. For 
example: 
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Parameter Value 
CV 2.66 
L/b 5 

Trim, deg 6 
Deadrise, deg 10 

CA 0.6 
H , / b  0.444 

Measured Eqs. 7.28-29 Eqs. 7.30-3 1 
CG accel, g 1.70 1.46 0.55 

Bow accel, g 5.57 5.27 1.95 

This is of course not a fair comparison of the accuracy of the methods but it does 
provide an indication of the potential differences in the predictions. 

2.2 Application: Habitability 

Habitability refers to “the acceptability of conditions on-board a s h p  in terms of 
vibration, noise, indoor climate, and lighting as well as physical and spatial 
characteristics, according to prevailing research and standards for human efficiency 
and comfort” [ABS, 20011. Vibration, in particular, is a concern for high-speed 
craft because of the relatively hgh  slamming accelerations that they experience. 
We briefly discussed the effects of vibration in the previous chapter, where we 
presented some of the criteria contained in IS0 International Standard 2631. We 
will now apply these criteria to evaluate the habitability of a planing boat with 
respect to vibrations. 

As discussed briefly in Section 8.5.2 in Chapter 5,  IS0 2631 addresses the 
effects of vibration on motion sickness incidence, health, comfort and perception. 
Criteria are based on weighted accelerations; there are different weighting functions 
for different axes of motion (relative to the human body). The weighting functions 
are specified in the frequency domain and are equivalent to filters to be applied to 
the time-domain data. The weighting functions Wk and Wf, applicable for 
vibrations in the “vertical” (head-to-foot) direction, for evaluation of effects on 
health, comfort and perception (wk), and motion sickness (W,) are shown on Figure 
6.12. The figure shows that the frequencies that contribute to motion sickness are 
much lower and narrow-banded than those contributing to the other factors. The 
peak of the weighting curve for motion sickness occurs at 0.17 Hz whereas that for 
W, occurs at about 5.5 Hz. 
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Frequency, Hz 

FIGURE 6.12 Frequency weighting curves, from IS0 263 1 

A typical time hlstory of bow vertical acceleration (in this case about 21%L aft 
of the FP) on a Ul0-scale model of a 19m planing boat in head seas is shown on 
Figure 6.13. The full-scale speed in thls example is 26 knots and the significant 
wave height is 1.25m (borderline between Sea States 3 and 4) with a modal period 
of 8 sec. The total run time was 30 seconds model scale which corresponds to 95 
sec full-scale; there were about 53 wave encounters during the run. This is not 
considered to be long enough for a valid statistical analysis (a rule of thumb is that 
at least 100 wave encounters are required). Figure 6.14 shows the evolution of 
some of the statistics; note the remarkable effect of the slam that occurred at 19.1 
sec on the skewness (measure of asymmetry) and particularly on the kurtosis 
(measure of flatness of the distribution). However, the figure shows that the RMS 
acceleration is notably consistent after about 20 seconds (the upper panel shows the 
RMS acceleration with an expanded vertical scale). Thus the RMS acceleration is 
probably representative of the value that would be obtained from a longer run. 

A rough spectrumg of the acceleration was obtained by applying three 
overlapping FFT’s to the data; see Figure 6.15. The corresponding Wk- and W,- 
weighted or filtered spectra are also shown. Because of the relatively h g h  
encounter frequency, there is not much energy at low frequencies; consequently the 
Wfweighted spectrum is small. At the other end of the spectrum, there is also not 

The spectrum is given by the expected value of the squared magnitude of the FFT divided by the record 
length, which is approximated using an average of the values from several records. The random error of 
the spectral estimate is proportional to the inverse of the square-root of the number of records used in the 
average; see Bendat and Piersol [1993], chapt. 3. 
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much energy above about 1 Hz so that the W,-weighted spectrum is also relatively 
small. 

m 

0 5 10 15 20 25 30 

Time, sec 

FIGURE 6.13 Time history of acceleration near the bow of a model of a 19m 
planing boat. Speed: 26 knots. Significant waveheight: 
1.25m. Head seas. 

RMS acceleration. g 
v) 0.50 

2 0.45 

Length of Run. sec 

FIGURE 6.14 Evolution of some statistics of acceleration shown in previous figure 

The effects of vibration on health, comfort and perception are determined based 
on the RMS of the weighted acceleration for the duration of exposure. Ths is given 
by the area under the weighted spectrum; it could also be calculated directly from 
the time history of the filtered signal. The motion sickness incidence is a function 
of the "motion sickness dose value" calculated using Eq. (5.224); however th s  is 
equivalent to multiplying the RMS of the weighted acceleration by the square root 
of the exposure time. The RMS accelerations are tabulated below. 
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FIGURE 6.15 Spectra of original and weighted acceleration 

Results for bow vertical acceleration 
RMS, g RMS, misec2 

Unweighted 0.423 4.15 
Weighted, Wk 0.198 1.95 

“Health guidance caution zones” are shown on Figure B.l in ISO-2631, 
reproduced in the previous chapter as Figure 5.28. Recall that this is applicable to 
seated persons, where the vibration “is transmitted to the seated body as a whole 
through the seat pan.. .the effects of vibration on the health of persons standing, 
reclining or recumbent are not known” [ISO-2631, 19971. The Wk-weighted RMS 
acceleration is shown superimposed on this figure in Figure 6.16. The figure shows 
that the present results fall in one of the two caution zones for durations of about 
0.05 hr. to about 0.45 hr. (3 min. to 27 min.), and in the other caution zone for 
durations of about 0.45 hr. to 1.25 hr. (27 min. to 75 min.). Recall that the two 
caution zones result from two sets of data that indicate different time dependencies. 
Thus it can be concluded that for this sea state, speed and location in the vessel, 
health risks are likely for exposures longer than 75 minutes; caution is indicated for 
durations between 3 and 75 minutes. 

This is the so-called “basic evaluation method”. The basic method is applicable 
only if the “crest factor”, defined as the ratio of the maximum instantaneous peak 
weighted acceleration to the RMS value over the duration of the measurement, is 
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less than 9. This requires examination of the time history of the weighted 
acceleration, whch can be obtained from the weighted spectrum by an inverse-FFT 
provided that the phase spectrum is also available. If the crest factor exceeds 9, or if 
the vibration contains “occasional shocks” or “transient vibrations”, one of two 
additional evaluation methods must be applied; refer to ISO-2631 for details of 
these methods. 

I 
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s 
8 1  

z 
2 - 

m 
-0 

r 0, 
+ 

._ 
5 

0.1 
0.1 1 

ExDosure duration. hr 
10 

FIGURE 6.16 Evaluation of health risk 

Relative to comfort, the Standard provides the following guidance: 

RMS of weighted acceleration 
Less than 0.3 15 d s 2  
0.315 d s 2  to 0.63 d s 2  
0.5 d s 2  to 1 d s 2  
0.8 m / s 2  to 1.6 d s 2  
1.25 d s 2  to 2.5 d s 2  
Greater than 2 d s 2  

Comfort level 
Not uncomfortable 
A little uncomfortable 
Fairly uncomfortable 
Uncomfortable 
Very uncomfortable 
Extremely uncomfortable 

Thus in the present example the comfort level is “Very uncomfortable”. Note that 
in general, there are vibrations in all three directions, and the guidance applies to the 
“vibration total value” which is the combined value; however, there is a weighting 
factor to be applied to each component. 
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The American Bureau of Shipping also has whole-body vibration criteria. 
According to the ABS Guide for Crew Habitability on Shps [2001], the maximum 
weighted RMS accelerations under normal operating conditions in manned crew 
spaces is not to exceed 0.4 m/s2 for the HAB notation, and 0.315 m/s2 for the HAB+ 
notation. The criteria apply to operations in the most probable sea state based on 
the geographical area of vessel operation. 

For perception, the IS0 Standard states only that “Fifty percent of alert, fit 
persons can just detect a Wk weighted vibration with a peak magnitude of 0.015 
m/s2.” Thus we can safely conclude that in the present example, the occupants will 
perceive the vibration. 

As we stated above, the incidence of motion sickness is determined using the 
Motion Sickness Dose Value, equivalent (as also stated above) to the RMS value 
multiplied by the duration of the measurement; only vertical vibration is considered, 
and the Wf weighting curve is used. The method is applicable to longer durations if 
it can be assumed that the RMS value is constant, as would be expected at constant 
(mean) speed and heading in a given sea state. In this case we have 

MSDV, =Zmsfi (6.35) 

where T is the duration of exposure in seconds and the acceleration is in m/sec2. 
The motion sickness incidence (MSI), or the “percentage of people who may 
vomit”, is then given by 

MSI = K, MSDVz (percent) (6.36) 

where the constant K, = 113 for “a mixed population of unadapted male and female 
adults”. The MSI for the present example, assuming constant RMS acceleration, is 
shown on Figure 6.17. 

Exposure time, hr 

FIGURE 6.17 MSI for the planing boat example 
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As we mentioned above, vibration is only one aspect of habitability; the ABS 
criteria (ABS [200 11) also address accommodations, noise, indoor climate and 
lighting, for example. However these factors are outside of the somewhat outside of 
the scope of the present discourse. 

2.3 Bottom pressure 

Like the vertical accelerations, semiempirical expressions have also been developed 
for prediction of “design pressure” on the hull bottom in waves. The most 
commonly used formulations are based on the total “load on water” which includes 
the weight of the vessel as well as the effects of vertical impact acceleration. This 
load is divided by a reference area to yield an “average bottom pressure”, which is 
then multiplied by a coefficient representing the ratio of maximum to average 
pressure. The first of these is due to Heller and Jasper [1960], based on data 
collected during trials of an extensively instrumented 33.5m planing hull. The 
following expression has been derived from the Heller/Jasper data: 

(6.37) 

A procedure for calculation of design pressures was developed by Allen and 
They start with the same expression for maximum pressure but Jones [1978]. 

employing what boils down to a higher value of the coefficient: 

(6.38) 

where the average of the lA0-highest accelerations is generally used for design. 
This value of pmx is not used directly, however. It is first multiplied by a pressure 
reduction factor, to account for the fact that the pressure is distributed over a 
“design area”. For plating, the design area depends on the aspect ratio of the plate; 
however in “virtually every case” the appropriate value is given by 

AD = 2s2 (plating) 

where s i s  the span of the plating, which is the spacing of the longitudinals 
(Savitsky and Koelbel [ 19931). For longitudinal stiffeners or transverse frames, the 
design area is the area supported by the member. The pressure reduction factor is a 
hnction of the ratio of the design area to the reference area, 

AR = 0.3bL (6.39) 
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The pressure reduction factor KD is shown on Figure 6.18 as a function of the 
area ratio ADJAR. The curve is well represented by the following expression: 

The design pressure is given by 

(6.41) 

Design Area / Reference Area 

FIGURE 6.18 Pressure reduction factor for planing hulls 

3. Concluding Remarks 

There are of course many other types of “high speed craft” in addition to those we 
have discussed above. These include catamarans and other n-marans (where n is a 
whole number greater than one), surface effect shps (SES), air cushion vehicles 
(ACV), and hydrofoils, to name a few. Each of these hullforms has advantages and 
disadvantages and some are certainly more suitable for some applications than the 
planing monohull. We have concentrated on the monohull because this form is very 
common (for example, the majority of recreational boats currently in use are 
planing or semi-planing monohulls) and because enough systematic data exists for 
the semiempirical analyses that we have presented to be carried out. In addition, the 
other high-speed hullforms have additional  complication^^^ associated with 
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multiple hulls, cushions, seals, etc. that preclude a simple approach. Thls might 
become feasible in the future with further development of the database, theory and 
computational power ...p erhaps even in a later edition of this book (although the 
author would advise the readers not to “hold their breath”. . .). 
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